
 Journal of Information Processing Systems, Vol.4, No.2, June 2008 77

Neural Text Categorizer for Exclusive Text Categorization

Taeho Jo*

Abstract: This research proposes a new neural network for text categorization which uses alternative
representations of documents to numerical vectors. Since the proposed neural network is intended
originally only for text categorization, it is called NTC (Neural Text Categorizer) in this research.
Numerical vectors representing documents for tasks of text mining have inherently two main
problems: huge dimensionality and sparse distribution. Although many various feature selection
methods are developed to address the first problem, the reduced dimension remains still large. If the
dimension is reduced excessively by a feature selection method, robustness of text categorization is
degraded. Even if SVM (Support Vector Machine) is tolerable to huge dimensionality, it is not so to the
second problem. The goal of this research is to address the two problems at same time by proposing a
new representation of documents and a new neural network using the representation for its input vector.

Keywords: Disk Neural Text Categorizer, Text Categorization, NewsPage.com

1. Introduction

Text categorization refers to the process of assign a

category or some categories among predefined ones to each
document, automatically. Text categorization is a pattern
classification task for text mining and necessary for
efficient management of textual information systems. In
the academic world, research on text categorization has
been progressed very much, and we will survey it in next
section. In the industrial world, text categorization systems
were already developed as an independent system or a
module for textual information systems [9]. Although
research and development on text categorization have been
progressed like this, we need further research on it to
improve techniques and implementations of text
categorization.

There are two types of approaches to text categorization:
rule based and machine learning based approaches [19].
Rule based approaches mean ones where classification
rules are defined manually in form of if-then-else, and
documents are classified based on the rules. For example,
classification rules are defined as, “business and company

 company” meaning that if a document includes the two
words ‘business’ and ‘company’, it is classified into the
category, ‘business’ [9]. This class of approaches has high
precision but poor recall, because of its poor flexibility.
Machine learning based approaches mean ones where
classification rules or equations are defined automatically
using sample labeled documents. This class of approaches

has a much higher recall but a slightly lower precision than
rule based approaches. In addition to their poor flexibility,
rule based approaches require time consuming manual jobs
for building classification rules. Therefore, machine
learning based approaches are replacing rule based ones for
text categorization. This research focuses on machine
learning based approaches to text categorization,
discarding rule based ones.

Typical machine learning based approaches to text
categorization are K Nearest Neighbor, Naïve Bayes,
Support Vector Machine, and Back Propagation. They are
used not only for text categorization, but also for any
pattern classification problem, such as image classification,
protein classification, and character recognition. Although
there are other approaches than the five approaches, the
four approaches are most typical and popular. In section 2,
we will present previous cases of applying the four
approaches to text categorization. In order to apply one of
the four approaches to any pattern classification problem,
raw data should be encoded into numerical.

Like any other pattern classification problem, in text
categorization, it is true that documents given as raw data
should be encoded into numerical vectors. The process will
be described in detail in section 3. This strategy of
encoding documents leads to two main problems: huge
dimensionality and sparse distribution. In spite of using
feature selection methods, a reduced dimension of
numerical vectors representing documents still remains
large. Excessive reduction of the dimension of numerical
vectors using a feature selection method degrades the
robustness of text categorization. The second problem,
sparse distribution, leads to poor discrimination among
numerical vectors for categorizing them. Although Support

DOI : 10.3745/JIPS.2008.4.2.077

Copyright ⓒ 2008 KIPS (ISSN 1976-913X)

Manuscript received November 29, 2007; revised March 25, 2008;
accepted May 12, 2008.
Corresponding Author: Taeho Jo
* School of Computer and Information Engineering Inha University

(tjo018@naver.com)

78 Neural Text Categorizer for Exclusive Text Categorization

Vector Machine is very tolerant to huge dimensionality, it
is not so to the second problem. Therefore, the goal of this
research is to address the two problems at same time.

The idea of this research is to propose an alternative
representation of documents to numerical vectors and a
new supervised neural network as an approach to text
categorization using the alternative representation in order
to avoid the two problems. In this article, the alternative
representation of documents is called string vector, and the
proposed neural network is called NTC (Neural Text
Categorizer). A sting vector is defined as a finite ordered
set of words; it consists of words as its element, instead of
numerical values. Since string vectors representing
documents are classified robustly with their smaller
dimension than numerical vectors in using the proposed
neural network, string vectors are regarded as more
compact representation of documents for text
categorization. Additional advantage of string vectors is to
provide more transparency in classification; it is possible to
trace why documents are classified into such labels.

The architecture of NTC consists of three layers: input
layer, learning layer, and output layer. Like Perceptron, the
input layer is connected directly with the output layer, and
the learning layer determines synaptic weights between the
input layer and the output layer. The input layer
corresponds to an input vector given as a string vector, and
the learning layer and the output layer correspond to
predefined categories. Each node in the learning layer has
its own table consists of words and their weights indicating
their membership of the corresponding category. Learning
of NTC is the process of optimizing these weights in each
table. NTC classifies unseen documents by computing
output values by summing corresponding weights of string
vectors.

The advantage of the proposed neural network is that
NTC can classify documents with its sufficient robustness
with its smaller input size and iterations of learning than
traditional approaches using numerical vectors. Therefore,
NTC solves the first problem, huge dimensionality,
completely. Since sparse distribution can not exist in string
vectors, the second problem is also addressed. Another
advantage of NTC is that it provides transparency about its
classification; it provides answer to why it classifies an
unseen document into a particular category.

This article consists of six sections including this section.
In section 2, we explore relevant previous research and
consider its limitations in text categorization. In section 3,
we describe in detail the process of encoding documents
into numerical vectors and string vectors with the two
subsections. In section 4, we describe the proposed neural
network, called NTC, in detail, with respect to its
architecture, learning process, and properties. In section 5,
we compare the proposed neural network with other

traditional approaches in text categorization, using the test
bed: 20NewsGroups. In section 6 as the conclusion, we
will mention the significance of this work, and present
directions of further research.

2. Related Work

In this section, we will survey previous works relevant

to this research, and point out their limitations. There exist
other kinds of approaches to text categorization than
machine learning based ones: heuristic and rule based
approaches. Heuristic approaches were already applied to
early commercial text categorization systems [9]. However,
we count out the kind of approaches in our exploration,
since they are rule of thumbs. Since rule based approaches
have poor recall and require a time consuming job of
building rules manually as mentioned in the previous
section, they are not covered in this article, either.
Therefore, this article counts only machine learning based
approaches to text categorization considered as state of the
art ones.

Typical machine learning algorithms applied
traditionally to text categorization are KNN (K Nearest
Neighbor), NB (Naïve Bayes), SVM (Support Vector
Machine), and BP (Back Propagation). The four
approaches to text categorization have been used more
popularly in previous literatures on text categorization than
any other traditional approaches. Among them, the simplest
approach is KNN. KNN is a classification algorithm where
objects are classified by voting several labeled training
examples with their smallest distance from each object.
KNN was initially applied to classification of news articles
by Massand et al, in 1992 [13]. Yang compared 12
approaches to text categorization with each other, and
judged that KNN is one of recommendable approaches, in
1999 [21]. KNN is evaluated as a simple and competitive
algorithm with Support Vector Machine for implementing
text categorization systems by Sebastiani in 2002 [19]. Its
disadvantage is that KNN costs very much time for
classifying objects, given a large number of training
examples because it should select some of them by
computing the distance of each test object with all of the
training examples.

Another popular and traditional approach to text
categorization is NB. Differently from KNN, it learns
training examples in advance before given unseen
examples. It classifies documents based on prior
probabilities of categories and probabilities that attribute
values belong to categories. The assumption that attributes
are independent of each other underlies on this approach.
Although this assumption violates the fact that attributes
are dependent on each other, its performance is feasible in

Taeho Jo 79

text categorization [14]. Naïve Bayes is used popularly not
only for text categorization, but also for any other
classification problems, since its learning is fast and simple
[4].

In 1997, Mitchell presented a case of applying NB to
text categorization in his textbook [14]. He asserted that
NB was a feasible approach to text categorization, although
attributes of numerical vectors representing documents
were dependent on each other; this fact contradicts with the
assumption underlying in NB. In 1999, Mladenic and
Grobellink evaluated feature selection methods within the
application of Naïve Bayes to text categorization [15].
Their work implied that NB is one of standard and popular
approaches to text categorization. Androutsopoulos et al
adopted NB for implementing a spam mail filtering system
as a real system based on text categorization in 2000 [1]. It
requires encoding documents into numerical vectors for
using NB to text categorization.

Another popular and traditional approach to text
categorization is SVM. Recently, this machine learning
algorithm becomes more popular than the two previous
machine learning algorithms. Its idea is derived from a
linear classifier, Perceptron, which is an early neural
network. Since the neural network classifies objects by
defining a hyper-plane as a boundary of classes, it is
applicable to only linearly separable distribution of training
examples. The idea of SVM is that if a distribution of
training examples is not linearly separable, these examples
are mapped into another space where their distribution is
linearly separable, as illustrated in the left side of figure 1.
SVM optimizes the weights of the inner products of
training examples and its input vector, called Lagrange
multipliers [2], instead of those of its input vector, itself, as
its learning process. It defines two hyper-planes as a
boundary of two classes with a maximal margin, as
illustrated in the left side of figure 1. Refer to [8]or [2], for
more detail description on SVM.

)(1xψ

)(2xψ

1x

2x

Fig. 1. Mapping Vector Space in SVM

The advantage of SVM is that it is tolerant to huge
dimensionality of numerical vectors; it addresses the first
problem. Its advantage leads to make it very popular not

only in text categorization, but also any other classification
problems [2]. In 1998, it was initially applied to text
categorization by Joachims [10]. He validated the
classification performance of SVM in text categorization
by comparing it with KNN and NB. Drucker et al adopted
SVM for implementing a spam mail filtering system and
compared it with NB in implementing the system in 1999
[3]. They asserted empirically that SVM was the better
approach to spam mail filtering than NB. In 2000,
Cristianini and Shawe-Taylor presented a case of applying
SVM to text categorization in their textbook [2]. In 2002,
Sebastiani asserted in his survey paper that SVM is most
recommendable approach to text categorization by
collecting experimental results on the comparison of SVM
with other approaches from previous works [19]. In spite
of the advantage of SVM, it has two demerits. One is that it
is applicable to only binary classification; if a multiple
classification problem is given, it should be decomposed
into several binary classification problems for using SVM.
The other is that it is fragile to the problem in representing
documents into numerical vectors, sparse distribution,
since the inner products of its input vector and training
examples generates zero values very frequently.

The third popular and traditional approach to text
categorization is BP. It is most popular supervised neural
network and used for not only classification tasks but also
nonlinear regression tasks [6]. It is also derived Perceptron,
together with SVM. When a distribution of training
examples is not linearly separable, in SVM, the given
space is changed into another space where the distribution
is linearly separable, whereas in back propagation, a
quadratic boundary is defined by adding one more layer,
called hidden layer [7][6], as illustrated in the right side of
figure 1. More detail explanation about back propagation is
included in [7] or [6].

In 1995, BP was initially applied to text categorization
by Wiener in his master thesis [20]. He used Reuter 21578
as the test bed for evaluating the approach to text
categorization and shown that back propagation is better
than KNN in the context of classification performance. In
2002, Ruiz and Srinivasan applied continually back
propagation to text categorization [18]. They used a
hierarchical combination of BPs, called HME (Hierarchical
Mixture of Experts), to text categorization, instead of a
single BP. They compared HME of BPs with a flat
combination of BPs, and observed that HME is the better
combination of BPs. Since BP learns training examples
very slowly, it is not practical, in spite of its broad
applicability and high accuracy, for implementing a text
categorization system where training time is critical.

Research on machine learning based approaches to text
categorization has been progressed very much, and they
have been surveyed and evaluated systematically. In 1999,

80 Neural Text Categorizer for Exclusive Text Categorization

Yang evaluated 12 approaches to text categorization
including machine learning based approaches directly or
indirectly in text categorization [21]†. She judged the three
approaches, LLSF (Linear Least Square Fit), K Nearest
Neighbor, and Perceptron, worked best for text
categorization. In 2002, Sebastiani surveyed and evaluated
more than ten machine learning based approaches to text
categorization [19]. He asserted that Support Vector
Machine is best approach to text categorization with
respect to classification performance. All approaches which
were surveyed and evaluated in these literatures require
encoding documents into numerical vectors in spite of the
two problems.

We explored and presented previous cases of applying
one of the four traditional machine learning algorithms to
text categorization. Although the traditional approaches are
feasible to text categorization, they accompany with the
two main problems from representing documents into
numerical vectors. In the previous works, dimension of
numerical vectors should reserve, at least, several hundreds
for the robustness of text categorization systems. In order
to mitigate the second problem, sparse distribution, a task
of text categorization was decomposed into binary
classification tasks in applying one of the traditional
approaches. This requires classifiers as many as predefined
categories, and each classifier judges whether an unseen
document belongs to its corresponding category or not.

There is a previous trial to solve the two problems. In
2002, Lodhi et al proposed a string kernel for applying
Support Vector Machine to text categorization [11]. In
their solution, documents as raw data are used directly for
text categorization without representing them into
numerical vectors. String kernel is a function computing an
inner product between two documents given as two long
strings. An additional advantage of the solution is to
process documents independently of a natural language in
which documents are written. However, their solution was
not successful in that it took far more time for computing
string kernel of two documents and the version of SVM
using the string kernel was not better than the traditional
version. As presented in section 5, this research will be a
successful attempt to solve the two problems by proposing
string vectors and a new neural network.

3. Strategies of Encoding Documents

Since documents are unstructured data by themselves,

they can not be processed directly by computers. They
need to be encoded into structured data for processing them

† In her study, direction evaluation means to evaluate approaches by

performing experiments, while indirect evaluation means to evaluate
them by collecting experimental results from other literatures.

for text categorization. This section will describe the two
strategies of encoding documents with the two subsections:
the traditional strategy and the proposed strategy. The first
subsection describes the former and points out its demerits,
and the second subsection describes the latter and mentions
its merits.

3.1 Numerical Vectors

A traditional strategy of encoding documents for tasks of
text mining, such as text categorization is to represent them
into numerical vectors. Since input vectors and weight
vectors of traditional neural networks such as back
propagation and RBF (Radial Basis Function) are given as
numerical vectors, each document should be transformed
into a numerical vector for using them for text
categorization. Therefore, this subsection will describe the
process of encoding documents into numerical vectors and
what are their attributes and values.

Figure 2 illustrates the process of extracting feature
candidates for numerical vectors from documents. If more
than two documents are given as the input, all strings of
documents are concatenated into a long string. The first
step of this process is tokenization where the string is
segmented into tokens by white space and punctuations. In
the second step, each token is stemmed into its root form;
for example, a verb in its past is transformed into its root
form, and a noun in its plural form is transformed into its
singular form. Words which function only grammatically
with regardless of a content are called stop words [5], and
they correspond to articles, conjunctions, or pronouns. In
the third step, stop words are removed for processing
documents more efficiently and reliably for text
categorization. Through the three steps illustrated in figure
2, a collection of words are generated as feature candidates.

Tokenization

Stemming and
Exception Handling

Remove Stop Words

Document or Documents

Feature
Candidates

Fig. 2. The process of encoding a document into a bag of

words

Since the number of the generated feature candidates is

usually too big, using all of them is not feasible as features
of numerical vectors. Therefore, only some of them are
used as features of numerical vectors for efficiency. A

Taeho Jo 81

scheme of defining criteria for selecting some of them as
features is called feature selection method [15]. Generally,
features are selected from the generated collection by their
frequencies in the corpus. Therefore, candidates with
highest frequencies are used as features of numerical
vectors. The number of selected candidates as features
becomes the dimension of numerical vectors. There are
other feature selection methods than the frequency based
one, and they are described in detail in [15]and [19].
However, although only some of the candidates are used as
features, the number of features is still large for robust text
categorization‡.

The selected features are given as attributes of numerical
vectors and numerical information about attributes become
elements of numerical vectors. In this article, we mention
the three ways of defining elements as the representative
ones, although others may exist. The first way is to assign a
binary value indicating absence or presence of the
corresponding word in the given document; one indicates
its presence and zero indicates its absence. The second way
is to define elements as frequencies of corresponding
words in the given document; the elements become
integers which are greater than or equal to zero. The third
way is to assign weights computed from equation (1) to
elements of numerical vectors; elements are real values.

)1)(log)(log()(22 +−= kkiki wdfDwtfwweight (1)

where)(ki wtf is the frequency of the word,

kw , D is the

total number of documents in the corpus, and)(kwdf is

the number of documents including the word,
kw in the

given corpus. Note that the first and second way does not
require the reference to a corpus, where as the third way
requires the reference for computing elements of numerical
vectors using equation (1).

Note that numerical vectors encoding documents have
two main problems as mentioned in section 1. The first
problem is that the dimension of numerical vectors is still
large. This problems leads to high cost of time for
processing each encoded document for training a classifier
and to requirement of a very large number of training
examples proportionally to the dimension. The second
problem is that each numerical vector includes zero values,
dominantly. Since the discrimination among numerical
vectors over categories is lost, categorization performance
is degraded.

‡ Generally, several ten thousands feature candidates are generated from a

particular corpus. Among them, several hundreds candidates are used as
features. Therefore, the dimension of numerical vectors is several
hundreds and is still high.

3.2 String Vectors

An alternative strategy of encoding documents for text
categorization is to represent them into string vectors. In
this subsection, we describe this strategy and its advantage
in detail. However, this strategy is applicable to only NTC,
while the previous one is applicable to any traditional
machine learning algorithm.

A string vector is defined as a finite ordered set of words.
In other words, a string vector is a vector whose elements
are words, instead of numerical values. Note that a string
vector is different from a bag of words, although both of
them are similar as each other in their appearance. A bag of
words is an infinite unordered set of words; the number of
words is variable and they are independent of their
positions. In string vectors, words are dependent on their
positions as elements, since words correspond to their
features. Features of string vectors will be described in
detail in the next paragraph.

Features of string vectors are defined as properties of
words to the given document. The features are classified
into the three types: linguistic features, statistical features,
and positional features. Linguistic features are features
defined based on linguistic knowledge about words in the
given document: the first or last noun, verb, and adjective,
in a paragraph, title, or full text. Statistical features are
features defined based statistical properties of words in the
given documents; the highest frequent word and the
highest weighted word using equation (1). Positional
features are features defined based on positions of words in
a paragraph or the full text: a random word in the first or
last sentence or paragraph, or the full text. We can define
features of string vectors by combining some of the three
types, such as the first noun in the first sentence, the
highest frequent noun in the first paragraph, and so on.

We can define features of string vectors in various ways
as mentioned above, but in this work, features of string
vectors are defined based on only frequencies of words for
implementing easily and simply the module of encoding
documents into string vectors. A d dimensional string
vector consists of d words in the descending order of their
frequencies in the given entire full text; the first element is
the highest frequent word, the second element is the second
highest frequent word, and the last element is the d the
highest frequent word. Figure 3 illustrates the process of
encoding a document into its string vector with the simple
definition of features. In the first step of figure 3, a
document is indexed into a list of words and their
frequencies. Its detail process of the first step is illustrated
in figure 3. If the dimension of string vectors is set to d ,
d highest frequent words are selected from the list, in the
second step. In the third step, the selected words are sorted
in the descending order of their frequencies. This ordered

82 Neural Text Categorizer for Exclusive Text Categorization

list of words becomes a string vector representing the
document given as the input.

Fig. 3. The process of mapping a bag of words into a string

vector

This strategy of encoding documents for text

categorization addresses the two main problems from the
previous strategy. As presented in section 5, NTC using 50
dimensional string vectors is compared with other
traditional approaches using 500 dimensional numerical
vectors. The classification performance of NTC is
comparable with the best traditional approach with much
smaller input size and number of iterations. The
experiments show that string vectors represent documents
more compactly and efficiently than numerical vectors; the
first problem is addressed. Since sparse distribution can not
exist in string vectors, the second problem is also
addressed.

Another advantage of string vectors is that string vectors
represent documents more transparently than numerical
vectors. Since each element of string vectors is symbolic
data, it is possible to guess the content of the document by
its surrogate; this is more user-friendly representation of
documents than numerical vectors. Therefore, it is easier to
trace why each unseen document is classified into a
particular label in string vectors, than in numerical vectors.

4. Text Categorization Systems

This section describes the proposed neural network,

NTC, in detail, with respect to its architecture, training,
classification, and properties. The proposed neural network
follows Perceptron in that synaptic weights are connected
directly between the input layer and the output layer, and

the weights are updated only when each training example
is misclassified. However, note that NTC is different from
Perceptron in context of its detail process of learning and
classification, since it uses string vectors as its input
vectors, instead of numerical vectors. The learning layer
given as an additional layer to the input and the output
layer is different from the hidden layer of back propagation
with respect to its role. The learning layer determines
synaptic weights between the input and the output layer by
referring to the tables owned by learning nodes. The
learning of NTC refers to the process of optimizing
weights stored in the tables.

Figure 4 illustrates the architecture of the proposed
neural network, NTC. It consists of the three layers: input
layer, output layer, and learning layer. The input layer
receives an input vector given as a string vector. The
learning layer determines weights between the input and
the output layer corresponding to words of the given input
vector by looking up in the tables owned by learning nodes.
The output layer generates the categorical scores indicating
memberships of the string vector in categories as the output.
The conditions of designing the proposed neural network,
NTC, for text categorization are defined as follows.

 The number of the input nodes should be identical to
the dimension of string vectors representing
documents.

This layer receives an input vector given as a string

vector, so each node corresponds to each word in the
string vector.
 The number of the learning nodes should be
identical to the number of predefined categories.

Nodes of this layer own tables corresponding to

predefined categories, and determine weights between
the input and output layer, to each word in the input
vector.
 The number of the output nodes should be identical
to the number of predefined categories.

This layer generates categorical scores as the output,

and they correspond to predefined categories.

Fig. 4. The Architecture of NTC

Taeho Jo 83

The first step of NTC is the initialization of weights
which is the process of filling the tables which are empty
initially. Each table corresponds to a predefined category,
and it consists of entries. Each entry consists of a word and
its weight. In this step, each weight is filled with the
frequency of the corresponding word in the category
corresponding to the table. Therefore, all tables owned by
the learning nodes are constructed in this step.

The learning of NTC follows its initialization. An input
vector given as a string vector is denoted by

[]dttt ,...,, 21=x , where
it , di ≤≤1 , is a word given as

an element of the string vector, x , and d is the
dimension of the string vector, x . A set of the given
predefined categories is denoted by []

C
cccC ,...,, 21= . The

weigh, jiw denote the weight connected between an input

node, i , and an output node corresponding to the category,

jc Cj ≤≤1 . The value of the weight,
jiw , is defined, using

equation (2),

⎩
⎨
⎧

=
otherwise 0

 tablein the word theis thereif)(ij

ji

ttable
w (2)

where jtable denotes the table owned by the learning
node corresponding to the category,

jc and)(ic ttable
means the weights of the word,

it , stored in the table,

jtable . The weight,
jiw , means the membership of the

word, it , in the category,
jc . Therefore, if there is the

word, it , in the table,
jtable , the weight,

jiw , is fetched
from the table,

jtable . Otherwise, the weight,
jiw

becomes zero.
We compute the value of the output node, jo , the

output node corresponding to the category, jc , using
equation (3),

 ∑
=

=
d

i
jij wo

1

 (3)

The value of jo means the membership of the given
input vector, x in the category, jc . Since values of

output nodes are combined by linear combination of
weights illustrated in equation (3), the proposed neural
network is similar as Perceptron. This is the first property
shared with Perceptron.

As mentioned above, the learning of NTC is the process
of optimizing weights between the input and output layer
to minimize classification error in training examples. This
learning is performed interactively to each training
example. Each string vector in the training set has its own
target label, jc . If its classified category, kc is identical

to its target category, c , the weights does not change, as

expressed in equation (4),

0,0 , if =Δ=Δ= jikikj wwcc (4)

Otherwise, weights are adjusted to reinforce weights for

its target category and to inhibit weights for its
misclassified category, to minimize the classification error,
as illustrated in equation (5),

jijikikikj wwwwcc ηη =Δ−=Δ≠ , , if (5)

where η is the learning rate given as a parameter, like any
other neural networks, such as Perceptron, back
propagation, and Kohonen Networks. This learning is
repeated until the weights converge.

Figure 5 illustrates the process of learning sample
documents and classifying unseen ones using NTC. A
collection of sample labeled documents is given as the
input, and the learning rate and the number of iterations are
given as the parameters of NTC. In its first step, NTC
initializes the weights stored in the tables owned by the
learning nodes. For each sample labeled document, it is
classified using equation (3) and the weights are updated
using equation (5) whenever it is misclassified. This
process is repeated with the fixed number, given as a
parameter. After training NTC, unseen documents are
classified by encoding them into string vectors, computing
values of output nodes with the optimized weights using
equation (3), and assigning the category corresponding to
the output node with the highest value to each unseen
document.

Fig. 5. Process of training NTC and classifying unseen
documents

Classifier Training
Input: A Series of Sample Documents, Learning Rate, and Iteration
Number
Step 1: Encode these sample documents into string vectors
Step 2: Design the architecture of NTC
Step 3: Initialize weights in each learning node with its document
frequency within its corresponding category
Step 4: Repeat step 3-1 with the number of iteration
Step 4-1: For each encoded sample document
Step 4-1-1: Compute the values of output nodes of the encoded
document with the current weight using the equation (3)
Step 4-1-2: Classify each training string vector into the category
corresponding to the output node with its highest value
Step 4-1-3: If its classified category is different from its target
category, update weights to every misclassification using the
equation (5)
Output: Optimized weights in each learning node
Document Classification
Input: An unseen document and the optimized weights in each
learning node
Step 1: Encode the unseen document into a string data
Step 2: Compute the values of output nodes of the encoded
document with the current weight using the equation (5)
Step 3: Classify the unseen string vector into the category
corresponding to the output node with its highest value
Output: its classified label

84 Neural Text Categorizer for Exclusive Text Categorization

Since NTC uses string vectors as its input vectors, the
two main problems could be naturally avoided at same
time. Each table owned by its corresponding learning node
stores classification rules grained by training the NTC.
These rules provide the basis of classifying documents
more transparently than traditional machine learning
algorithms using numerical vectors. Although string
vectors used as input vectors in the proposed neural
network address the two main problems, operations on
string vectors are more restricted than those on numerical
vectors. For example, we do not discover the method for
finding a string vector representing a collection of string
vectors, corresponding to a mean vector and a covariance
matrix in numerical vectors. Therefore, NTC can not be
trained in batch mode, because a mean vector can not be
computed in string vectors.

5. Experiment and Results

This section concerns experimental results of evaluating

traditional and proposed approaches to text categorization
on three test beds. In the experiments, five approaches,
SVM, NB, KNN, Back Propagation, and NTC are
evaluated as the approaches to text categorization, and a
collection of news articles, 20NewsGroups, is used as the
test beds of text categorization. In two of three test beds,
the five approaches are evaluated both with decomposing
text categorization into binary classification problems and
without decomposing it.

In the experiments, documents are represented into
string vectors for using NTC and numerical vectors for
using the other methods. The dimensions of numerical
vectors and string vectors representing documents are set
as 500 and 50, respectively. In encoding documents into
numerical vectors, most frequent 500 words from a given
training set for each problem are selected as their features.
The values of the features of numerical vectors are binary
ones indicating the absence or presence of words in a given
document; this is for using Naïve Bayes. In encoding
documents into string vectors, the most frequent 50 words
are selected from a given document and sorted in the
descending order of their frequencies as values of its
corresponding string vector.

The parameters of the five approaches involved in this
experiment are set by tuning them with a validation set,
which is constructed by selecting 600 documents randomly
from training documents, spanning the three test beds.
Table 1 shows the definition of the parameters which is
obtained through this tuning. With the parameters defined
in table 10, the five approaches to text categorization will
be applied to the three test beds.

Table 1. Parameters of the Five Approaches
Approaches to Text

Categorization Definition of Parameters

SVM Capacity = 4.0
KNN #nearest number = 3
NB N/A
Back Propagation Hidden Layer: 10 hidden nodes

Learning rate: 0.3
#Iteration of Training: 1000

NTC Learning rate: 0.3
#Iteration of Training: 100

This experiment is to evaluate the five approaches on

another test bed, called ‘20NewsGroups’. This test bed is
obtained by downloading it from the web site,
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgrou
ps.html. This test bed consists of 20 categories and 20,000
documents; each category contains 1,000 documents. This
test bed is partitioned into the training set and the test set
with the ratio, 7:3; there are 700 training documents and
300 test documents per each category. Hence, 20,000
documents are partitioned into 14,000 training documents
and 6000 test documents.

In this experiment, the task of text categorization on this
test bed is decomposed into 20 binary classification
problems, consistently with the number of predefined
categories. A training set of each binary classification
problem consists of 700 positive documents and 7000
negative documents. These negative documents are
selected at random from 13,300 documents subtracted by
700 positive documents from 14,000 training documents.
For a test set of each binary classification problem, 300
negative documents are allocated by selecting them
randomly from 5,700 negative documents within the test
set, in order to maintain the class balance in the test set.

Figure 6 shows the result of evaluating the five
approaches on the test bed, 20NewsGroup. Since each
category contain identical number of test documents,
micro-averaged and macro-averaged F1 are same as each
other. Therefore, their performances are presented in an
integrated group, instead of two separated groups, in figure
8. This result shows that back propagation is also the best
approach, while NB is the worst approach with the
decomposition of the task on this test bed. Like the
previous experiment set, NTC is comparable and
competitive with back propagation.

0

0.2

0.4

0.6

0.8

1

F1

Micro & Macro

SVM

KNN

NB

BP

NTC

Fig. 6. Result of evaluate the five text classifiers in

20Newsgroup with decomposition

Taeho Jo 85

Figure 7 shows the result of evaluating the four
classifiers except the SVM without the decomposition on
this test bed. In this case, a classifier answers to each test
document by providing one of 20 categories. This result
shows that there exits two groups: better group and worse
group. The former contains back propagation and NTC,
and the latter contains NB and KNN.

0

0.2

0.4

0.6

0.8

Acc

KNN
NB
BP
NTC

Fig. 7. Result of evaluating four Text Classifiers in

20NewsGroups without decomposition

Like the previous set of this experiment, NTC is

competitive with back propagation with smaller size of
input data and lower number of training iterations. The
result of this set is similar as that of the previous set, with
respect to the trend.

6. Conclusion

This research used a full inverted index as the basis for

the operation on string vectors, instead of a restricted sized
similarity matrix. It was cheaper to build an inverted index
from a corpus than a similarity matrix, as mentioned in
section 1. In the previous attempt, a restricted sized
similarity matrix was used as the basis for the operation on
string vectors. Therefore, information loss from the
similarity matrix degraded the performance of the modified
version. This research addresses the information loss by
using a full inverted index, instead of a restricted sized
similarity matrix.

Note that there is trade-off between the two bases for the
operation on string vectors. Although it is cheaper to build
an inverted index from a corpus, note that it costs more
time interactively for doing the operation expressed in
equation (3). Let’s the numbers of words, documents, and
elements in each string vector be N , M , and d . In using the
inverted index, the complexity for doing the operation is

)(2dMO in worst case, while in using the similarity matrix,
the complexity is)(dO . When we try to compute semantic
similarities of all possible pairs, the complexity
is)(22 dMNO , whether we use a similarity matrix or an
inverted index.

Other machine learning algorithms such as Naïve Bayes
and back propagation are considered to be modified into
their adaptable versions to string vectors. The operation
may be insufficient for modifying other machine learning
algorithms. For example, it requires the definition of a
string vector which is representative of string vectors
corresponding to a mean vector in numerical vectors for
modifying a k-means algorithm into the adaptable version.
Various operations on string vectors should be defined in a
future research for modifying other machine learning
algorithms.

References

[1] Androutsopoulos, K. Koutsias, K. V. Chandrinos,
and C. D. Spyropoulos, “An Experimental
Comparison of Naïve Bayes and Keyword-based
Anti-spam Filtering with personal email message”,
The Proceedings of 23rd ACM SIGIR, pp.160-167,
2000.

[2] N. Cristianini, and J. Shawe-Taylor, Support Vector
Machines and Other Kernel-based Learning Methods,
Cambridge University Press, 2000.

[3] H. Drucker, D. Wu, and V. N. Vapnik, “Support Vector
Machines for Spam Categorization”, IEEE
Transaction on Neural Networks, Vol.10, No.5,
pp.1048-1054, 1999.

[4] R. O. Duda, P. E. Hart, P. E., and D. G. Stork,
Pattern Classification, John Wiley & Sons, Inc, 2001.

[5] V. I. Frants, J. Shapiro, and V. G. Voiskunskii,
Automated Information Retrieval: Theory and
Methods, Academic Press, 1997.

[6] M. T. Hagan, Demuth, H.B., and Beale, M. Neural
Network Design, PWS Publishing Company, 1995.

[7] S. Haykin, Neural Networks: Comprehensive
Foundation, Macmillan College Publishing Company,
1994.

[8] M. Hearst, “Support Vector Machines”, IEEE
Intelligent Systems, Vol.13, No.4, pp.18-28, 1998.

[9] P. Jackson, and I. Mouliner, Natural Language
Processing for Online Applications: Text Retrieval,
Extraction and Categorization, John Benjamins
Publishing Company, 2002.

[10] T. Joachims, “Text Categorization with Support
Vector Machines: Learning with many Relevant
Features”, The Proceedings of 10th European
Conference on Machine Learning, pp.143-151, 1998.

[11] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini,
and C. Watkins, Text Classification with String
Kernels, Journal of Machine Learning Research, Vol.2,
No.2, pp.419-444, 2002.

[12] T. Martin, H. B. Hagan, H. Demuth, and M. Beale,

86 Neural Text Categorizer for Exclusive Text Categorization

Neural Network Design, PWS Publishing Company,
1995.

[13] B. Massand, G. Linoff, and D. Waltz, “Classifying
News Stories using Memory based Reasoning”, The
Proceedings of 15th ACM International Conference on
Research and Development in Information Retrieval,
pp.59-65, 1992.

[14] T. M. Mitchell, T. M., Machine Learning, McGraw-
Hill, 1997.

[15] D. Mladenic, and M. Grobelink, “Feature Selection
for unbalanced class distribution and Naïve Bayes”,
The Proceedings of International Conference on
Machine Learning, pp.256-267, 1999.

[16] J. C. Platt, “Sequential Minimal Optimization: A Fast
Algorithm for Training Support Vector Machines”,
Technical Report MSR-TR-98-14, 1998.

[17] J. Rennie, “Improving multi-class text classification
with support vector machine”, Master's thesis,
Massachusetts Institute of Technology, 2001.

[18] M.E. Ruiz, and P. Srinivasan, “Hierarchical Text
Categorization Using Neural Networks”, Information
Retrieval, Vol.5, No.1, pp.87-118, 2002.

[19] F. Sebastiani, “Machine Learning in Automated Text
Categorization”, ACM Computing Survey, Vol.34,
No.1, pp.1-47, 2002.

[20] E. D. Wiener, “A Neural Network Approach to Topic
Spotting in Text”, The Thesis of Master of University
of Colorado, 1995.

[21] Y. Yang, “An evaluation of statistical approaches to
text categorization”, Information Retrieval, Vol.1,
No.1-2, pp.67-88, 1999.

Taeho Jo
Taeho Jo received PhD degree from
University of Ottawa in 2006,
Master degree from POSTECH
(Pohang Institute of Science and
Technology) in 1997, and Bachelor
from Korea University in 1994.

Currently, he works for the School of Computer and
Information Engineering at Inha University as a
Professor. Previously, he had worked for Samsung SDS,
ETRI (Electronic Telecommunication Research Insitute),.
KISTI (Korea Insitute of Science and Technology
Information), Nstein Technologies, BK21 Chonbuk
National University, and IT Convergence Insitute for
KAIST. He has published and submitted more than 100
research papers since 1996. His research interests are
text mining, neural networks, machine learning, and
information retrieval.

