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Neural Text Categorizer for Exclusive Text Categorization 
 
 

Taeho Jo* 
 
 

Abstract: This research proposes a new neural network for text categorization which uses alternative 
representations of documents to numerical vectors. Since the proposed neural network is intended 
originally only for text categorization, it is called NTC (Neural Text Categorizer) in this research. 
Numerical vectors representing documents for tasks of text mining have inherently two main 
problems: huge dimensionality and sparse distribution. Although many various feature selection 
methods are developed to address the first problem, the reduced dimension remains still large. If the 
dimension is reduced excessively by a feature selection method, robustness of text categorization is 
degraded. Even if SVM (Support Vector Machine) is tolerable to huge dimensionality, it is not so to the 
second problem. The goal of this research is to address the two problems at same time by proposing a 
new representation of documents and a new neural network using the representation for its input vector. 
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1. Introduction 

 
Text categorization refers to the process of assign a 

category or some categories among predefined ones to each 
document, automatically. Text categorization is a pattern 
classification task for text mining and necessary for 
efficient management of textual information systems. In 
the academic world, research on text categorization has 
been progressed very much, and we will survey it in next 
section. In the industrial world, text categorization systems 
were already developed as an independent system or a 
module for textual information systems [9]. Although 
research and development on text categorization have been 
progressed like this, we need further research on it to 
improve techniques and implementations of text 
categorization. 

There are two types of approaches to text categorization: 
rule based and machine learning based approaches [19]. 
Rule based approaches mean ones where classification 
rules are defined manually in form of if-then-else, and 
documents are classified based on the rules. For example, 
classification rules are defined as, “business and company 

 company” meaning that if a document includes the two 
words ‘business’ and ‘company’, it is classified into the 
category, ‘business’ [9]. This class of approaches has high 
precision but poor recall, because of its poor flexibility. 
Machine learning based approaches mean ones where 
classification rules or equations are defined automatically 
using sample labeled documents. This class of approaches 

has a much higher recall but a slightly lower precision than 
rule based approaches. In addition to their poor flexibility, 
rule based approaches require time consuming manual jobs 
for building classification rules. Therefore, machine 
learning based approaches are replacing rule based ones for 
text categorization. This research focuses on machine 
learning based approaches to text categorization, 
discarding rule based ones. 

Typical machine learning based approaches to text 
categorization are K Nearest Neighbor, Naïve Bayes, 
Support Vector Machine, and Back Propagation. They are 
used not only for text categorization, but also for any 
pattern classification problem, such as image classification, 
protein classification, and character recognition. Although 
there are other approaches than the five approaches, the 
four approaches are most typical and popular. In section 2, 
we will present previous cases of applying the four 
approaches to text categorization. In order to apply one of 
the four approaches to any pattern classification problem, 
raw data should be encoded into numerical. 

Like any other pattern classification problem, in text 
categorization, it is true that documents given as raw data 
should be encoded into numerical vectors. The process will 
be described in detail in section 3. This strategy of 
encoding documents leads to two main problems: huge 
dimensionality and sparse distribution. In spite of using 
feature selection methods, a reduced dimension of 
numerical vectors representing documents still remains 
large. Excessive reduction of the dimension of numerical 
vectors using a feature selection method degrades the 
robustness of text categorization. The second problem, 
sparse distribution, leads to poor discrimination among 
numerical vectors for categorizing them. Although Support 
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Vector Machine is very tolerant to huge dimensionality, it 
is not so to the second problem. Therefore, the goal of this 
research is to address the two problems at same time. 

The idea of this research is to propose an alternative 
representation of documents to numerical vectors and a 
new supervised neural network as an approach to text 
categorization using the alternative representation in order 
to avoid the two problems. In this article, the alternative 
representation of documents is called string vector, and the 
proposed neural network is called NTC (Neural Text 
Categorizer). A sting vector is defined as a finite ordered 
set of words; it consists of words as its element, instead of 
numerical values. Since string vectors representing 
documents are classified robustly with their smaller 
dimension than numerical vectors in using the proposed 
neural network, string vectors are regarded as more 
compact representation of documents for text 
categorization. Additional advantage of string vectors is to 
provide more transparency in classification; it is possible to 
trace why documents are classified into such labels. 

The architecture of NTC consists of three layers: input 
layer, learning layer, and output layer. Like Perceptron, the 
input layer is connected directly with the output layer, and 
the learning layer determines synaptic weights between the 
input layer and the output layer. The input layer 
corresponds to an input vector given as a string vector, and 
the learning layer and the output layer correspond to 
predefined categories. Each node in the learning layer has 
its own table consists of words and their weights indicating 
their membership of the corresponding category. Learning 
of NTC is the process of optimizing these weights in each 
table. NTC classifies unseen documents by computing 
output values by summing corresponding weights of string 
vectors.  

The advantage of the proposed neural network is that 
NTC can classify documents with its sufficient robustness 
with its smaller input size and iterations of learning than 
traditional approaches using numerical vectors. Therefore, 
NTC solves the first problem, huge dimensionality, 
completely. Since sparse distribution can not exist in string 
vectors, the second problem is also addressed. Another 
advantage of NTC is that it provides transparency about its 
classification; it provides answer to why it classifies an 
unseen document into a particular category.  

This article consists of six sections including this section. 
In section 2, we explore relevant previous research and 
consider its limitations in text categorization. In section 3, 
we describe in detail the process of encoding documents 
into numerical vectors and string vectors with the two 
subsections. In section 4, we describe the proposed neural 
network, called NTC, in detail, with respect to its 
architecture, learning process, and properties. In section 5, 
we compare the proposed neural network with other 

traditional approaches in text categorization, using the test 
bed: 20NewsGroups. In section 6 as the conclusion, we 
will mention the significance of this work, and present 
directions of further research. 

 
 

2. Related Work 
 
In this section, we will survey previous works relevant 

to this research, and point out their limitations. There exist 
other kinds of approaches to text categorization than 
machine learning based ones: heuristic and rule based 
approaches. Heuristic approaches were already applied to 
early commercial text categorization systems [9]. However, 
we count out the kind of approaches in our exploration, 
since they are rule of thumbs. Since rule based approaches 
have poor recall and require a time consuming job of 
building rules manually as mentioned in the previous 
section, they are not covered in this article, either. 
Therefore, this article counts only machine learning based 
approaches to text categorization considered as state of the 
art ones. 

Typical machine learning algorithms applied 
traditionally to text categorization are KNN (K Nearest 
Neighbor), NB (Naïve Bayes), SVM (Support Vector 
Machine), and BP (Back Propagation). The four 
approaches to text categorization have been used more 
popularly in previous literatures on text categorization than 
any other traditional approaches. Among them, the simplest 
approach is KNN. KNN is a classification algorithm where 
objects are classified by voting several labeled training 
examples with their smallest distance from each object. 
KNN was initially applied to classification of news articles 
by Massand et al, in 1992 [13]. Yang compared 12 
approaches to text categorization with each other, and 
judged that KNN is one of recommendable approaches, in 
1999 [21]. KNN is evaluated as a simple and competitive 
algorithm with Support Vector Machine for implementing 
text categorization systems by Sebastiani in 2002 [19]. Its 
disadvantage is that KNN costs very much time for 
classifying objects, given a large number of training 
examples because it should select some of them by 
computing the distance of each test object with all of the 
training examples.  

Another popular and traditional approach to text 
categorization is NB. Differently from KNN, it learns 
training examples in advance before given unseen 
examples. It classifies documents based on prior 
probabilities of categories and probabilities that attribute 
values belong to categories. The assumption that attributes 
are independent of each other underlies on this approach. 
Although this assumption violates the fact that attributes 
are dependent on each other, its performance is feasible in 
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text categorization [14]. Naïve Bayes is used popularly not 
only for text categorization, but also for any other 
classification problems, since its learning is fast and simple 
[4].  

In 1997, Mitchell presented a case of applying NB to 
text categorization in his textbook [14]. He asserted that 
NB was a feasible approach to text categorization, although 
attributes of numerical vectors representing documents 
were dependent on each other; this fact contradicts with the 
assumption underlying in NB. In 1999, Mladenic and 
Grobellink evaluated feature selection methods within the 
application of Naïve Bayes to text categorization [15]. 
Their work implied that NB is one of standard and popular 
approaches to text categorization. Androutsopoulos et al 
adopted NB for implementing a spam mail filtering system 
as a real system based on text categorization in 2000 [1]. It 
requires encoding documents into numerical vectors for 
using NB to text categorization. 

Another popular and traditional approach to text 
categorization is SVM. Recently, this machine learning 
algorithm becomes more popular than the two previous 
machine learning algorithms. Its idea is derived from a 
linear classifier, Perceptron, which is an early neural 
network. Since the neural network classifies objects by 
defining a hyper-plane as a boundary of classes, it is 
applicable to only linearly separable distribution of training 
examples. The idea of SVM is that if a distribution of 
training examples is not linearly separable, these examples 
are mapped into another space where their distribution is 
linearly separable, as illustrated in the left side of figure 1. 
SVM optimizes the weights of the inner products of 
training examples and its input vector, called Lagrange 
multipliers [2], instead of those of its input vector, itself, as 
its learning process. It defines two hyper-planes as a 
boundary of two classes with a maximal margin, as 
illustrated in the left side of figure 1. Refer to [8]or [2], for 
more detail description on SVM. 
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Fig. 1. Mapping Vector Space in SVM 
 

The advantage of SVM is that it is tolerant to huge 
dimensionality of numerical vectors; it addresses the first 
problem. Its advantage leads to make it very popular not 

only in text categorization, but also any other classification 
problems [2]. In 1998, it was initially applied to text 
categorization by Joachims [10]. He validated the 
classification performance of SVM in text categorization 
by comparing it with KNN and NB. Drucker et al adopted 
SVM for implementing a spam mail filtering system and 
compared it with NB in implementing the system in 1999 
[3]. They asserted empirically that SVM was the better 
approach to spam mail filtering than NB. In 2000, 
Cristianini and Shawe-Taylor presented a case of applying 
SVM to text categorization in their textbook [2]. In 2002, 
Sebastiani asserted in his survey paper that SVM is most 
recommendable approach to text categorization by 
collecting experimental results on the comparison of SVM 
with other approaches from previous works [19]. In spite 
of the advantage of SVM, it has two demerits. One is that it 
is applicable to only binary classification; if a multiple 
classification problem is given, it should be decomposed 
into several binary classification problems for using SVM. 
The other is that it is fragile to the problem in representing 
documents into numerical vectors, sparse distribution, 
since the inner products of its input vector and training 
examples generates zero values very frequently.  

The third popular and traditional approach to text 
categorization is BP. It is most popular supervised neural 
network and used for not only classification tasks but also 
nonlinear regression tasks [6]. It is also derived Perceptron, 
together with SVM. When a distribution of training 
examples is not linearly separable, in SVM, the given 
space is changed into another space where the distribution 
is linearly separable, whereas in back propagation,  a 
quadratic boundary is defined by adding one more layer, 
called hidden layer [7][6], as illustrated in the right side of 
figure 1. More detail explanation about back propagation is 
included in [7] or [6]. 

In 1995, BP was initially applied to text categorization 
by Wiener in his master thesis [20]. He used Reuter 21578 
as the test bed for evaluating the approach to text 
categorization and shown that back propagation is better 
than KNN in the context of classification performance. In 
2002, Ruiz and Srinivasan applied continually back 
propagation to text categorization [18]. They used a 
hierarchical combination of BPs, called HME (Hierarchical 
Mixture of Experts), to text categorization, instead of a 
single BP. They compared HME of BPs with a flat 
combination of BPs, and observed that HME is the better 
combination of BPs. Since BP learns training examples 
very slowly, it is not practical, in spite of its broad 
applicability and high accuracy, for implementing a text 
categorization system where training time is critical. 

Research on machine learning based approaches to text 
categorization has been progressed very much, and they 
have been surveyed and evaluated systematically. In 1999, 
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Yang evaluated 12 approaches to text categorization 
including machine learning based approaches directly or 
indirectly in text categorization [21]†. She judged the three 
approaches, LLSF (Linear Least Square Fit), K Nearest 
Neighbor, and Perceptron, worked best for text 
categorization. In 2002, Sebastiani surveyed and evaluated 
more than ten machine learning based approaches to text 
categorization [19]. He asserted that Support Vector 
Machine is best approach to text categorization with 
respect to classification performance. All approaches which 
were surveyed and evaluated in these literatures require 
encoding documents into numerical vectors in spite of the 
two problems. 

We explored and presented previous cases of applying 
one of the four traditional machine learning algorithms to 
text categorization. Although the traditional approaches are 
feasible to text categorization, they accompany with the 
two main problems from representing documents into 
numerical vectors. In the previous works, dimension of 
numerical vectors should reserve, at least, several hundreds 
for the robustness of text categorization systems. In order 
to mitigate the second problem, sparse distribution, a task 
of text categorization was decomposed into binary 
classification tasks in applying one of the traditional 
approaches. This requires classifiers as many as predefined 
categories, and each classifier judges whether an unseen 
document belongs to its corresponding category or not. 

There is a previous trial to solve the two problems. In 
2002, Lodhi et al proposed a string kernel for applying 
Support Vector Machine to text categorization [11]. In 
their solution, documents as raw data are used directly for 
text categorization without representing them into 
numerical vectors. String kernel is a function computing an 
inner product between two documents given as two long 
strings. An additional advantage of the solution is to 
process documents independently of a natural language in 
which documents are written. However, their solution was 
not successful in that it took far more time for computing 
string kernel of two documents and the version of SVM 
using the string kernel was not better than the traditional 
version. As presented in section 5, this research will be a 
successful attempt to solve the two problems by proposing 
string vectors and a new neural network.  

 
 

3. Strategies of Encoding Documents 
 
Since documents are unstructured data by themselves, 

they can not be processed directly by computers. They 
need to be encoded into structured data for processing them 
                                            
† In her study, direction evaluation means to evaluate approaches by 

performing experiments, while indirect evaluation means to evaluate 
them by collecting experimental results from other literatures. 

for text categorization. This section will describe the two 
strategies of encoding documents with the two subsections: 
the traditional strategy and the proposed strategy. The first 
subsection describes the former and points out its demerits, 
and the second subsection describes the latter and mentions 
its merits. 

 
3.1 Numerical Vectors 

 

A traditional strategy of encoding documents for tasks of 
text mining, such as text categorization is to represent them 
into numerical vectors. Since input vectors and weight 
vectors of traditional neural networks such as back 
propagation and RBF (Radial Basis Function) are given as 
numerical vectors, each document should be transformed 
into a numerical vector for using them for text 
categorization. Therefore, this subsection will describe the 
process of encoding documents into numerical vectors and 
what are their attributes and values. 

Figure 2 illustrates the process of extracting feature 
candidates for numerical vectors from documents. If more 
than two documents are given as the input, all strings of 
documents are concatenated into a long string. The first 
step of this process is tokenization where the string is 
segmented into tokens by white space and punctuations. In 
the second step, each token is stemmed into its root form; 
for example, a verb in its past is transformed into its root 
form, and a noun in its plural form is transformed into its 
singular form. Words which function only grammatically 
with regardless of a content are called stop words [5], and 
they correspond to articles, conjunctions, or pronouns. In 
the third step, stop words are removed for processing 
documents more efficiently and reliably for text 
categorization. Through the three steps illustrated in figure 
2, a collection of words are generated as feature candidates. 

Tokenization

Stemming and
Exception Handling

Remove Stop Words

Document or Documents

Feature
Candidates

 
Fig. 2. The process of encoding a document into a bag of 

words 
 
Since the number of the generated feature candidates is 

usually too big, using all of them is not feasible as features 
of numerical vectors. Therefore, only some of them are 
used as features of numerical vectors for efficiency. A 
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scheme of defining criteria for selecting some of them as 
features is called feature selection method [15]. Generally, 
features are selected from the generated collection by their 
frequencies in the corpus. Therefore, candidates with 
highest frequencies are used as features of numerical 
vectors. The number of selected candidates as features 
becomes the dimension of numerical vectors. There are 
other feature selection methods than the frequency based 
one, and they are described in detail in [15]and [19]. 
However, although only some of the candidates are used as 
features, the number of features is still large for robust text 
categorization‡.  

The selected features are given as attributes of numerical 
vectors and numerical information about attributes become 
elements of numerical vectors. In this article, we mention 
the three ways of defining elements as the representative 
ones, although others may exist. The first way is to assign a 
binary value indicating absence or presence of the 
corresponding word in the given document; one indicates 
its presence and zero indicates its absence. The second way 
is to define elements as frequencies of corresponding 
words in the given document; the elements become 
integers which are greater than or equal to zero. The third 
way is to assign weights computed from equation (1) to 
elements of numerical vectors; elements are real values. 

 
  )1)(log)(log()( 22 +−= kkiki wdfDwtfwweight     (1) 

 
where )( ki wtf  is the frequency of the word, 

kw , D  is the 

total number of documents in the corpus, and )( kwdf  is 

the number of documents including the word, 
kw  in the 

given corpus. Note that the first and second way does not 
require the reference to a corpus, where as the third way 
requires the reference for computing elements of numerical 
vectors using equation (1).  

Note that numerical vectors encoding documents have 
two main problems as mentioned in section 1. The first 
problem is that the dimension of numerical vectors is still 
large. This problems leads to high cost of time for 
processing each encoded document for training a classifier 
and to requirement of a very large number of training 
examples proportionally to the dimension. The second 
problem is that each numerical vector includes zero values, 
dominantly. Since the discrimination among numerical 
vectors over categories is lost, categorization performance 
is degraded. 

 
 

                                            
‡ Generally, several ten thousands feature candidates are generated from a 

particular corpus. Among them, several hundreds candidates are used as 
features. Therefore, the dimension of numerical vectors is several 
hundreds and is still high. 

3.2 String Vectors 
 

An alternative strategy of encoding documents for text 
categorization is to represent them into string vectors. In 
this subsection, we describe this strategy and its advantage 
in detail. However, this strategy is applicable to only NTC, 
while the previous one is applicable to any traditional 
machine learning algorithm. 

A string vector is defined as a finite ordered set of words. 
In other words, a string vector is a vector whose elements 
are words, instead of numerical values. Note that a string 
vector is different from a bag of words, although both of 
them are similar as each other in their appearance. A bag of 
words is an infinite unordered set of words; the number of 
words is variable and they are independent of their 
positions. In string vectors, words are dependent on their 
positions as elements, since words correspond to their 
features. Features of string vectors will be described in 
detail in the next paragraph. 

Features of string vectors are defined as properties of 
words to the given document. The features are classified 
into the three types: linguistic features, statistical features, 
and positional features. Linguistic features are features 
defined based on linguistic knowledge about words in the 
given document: the first or last noun, verb, and adjective, 
in a paragraph, title, or full text. Statistical features are 
features defined based statistical properties of words in the 
given documents; the highest frequent word and the 
highest weighted word using equation (1). Positional 
features are features defined based on positions of words in 
a paragraph or the full text: a random word in the first or 
last sentence or paragraph, or the full text. We can define 
features of string vectors by combining some of the three 
types, such as the first noun in the first sentence, the 
highest frequent noun in the first paragraph, and so on. 

We can define features of string vectors in various ways 
as mentioned above, but in this work, features of string 
vectors are defined based on only frequencies of words for 
implementing easily and simply the module of encoding 
documents into string vectors. A d dimensional string 
vector consists of d words in the descending order of their 
frequencies in the given entire full text; the first element is 
the highest frequent word, the second element is the second 
highest frequent word, and the last element is the d the 
highest frequent word. Figure 3 illustrates the process of 
encoding a document into its string vector with the simple 
definition of features. In the first step of figure 3, a 
document is indexed into a list of words and their 
frequencies. Its detail process of the first step is illustrated 
in figure 3. If the dimension of string vectors is set to d , 
d  highest frequent words are selected from the list, in the 
second step. In the third step, the selected words are sorted 
in the descending order of their frequencies. This ordered 
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list of words becomes a string vector representing the 
document given as the input. 

 

 
Fig. 3. The process of mapping a bag of words into a string 

vector 
 
This strategy of encoding documents for text 

categorization addresses the two main problems from the 
previous strategy. As presented in section 5, NTC using 50 
dimensional string vectors is compared with other 
traditional approaches using 500 dimensional numerical 
vectors. The classification performance of NTC is 
comparable with the best traditional approach with much 
smaller input size and number of iterations. The 
experiments show that string vectors represent documents 
more compactly and efficiently than numerical vectors; the 
first problem is addressed. Since sparse distribution can not 
exist in string vectors, the second problem is also 
addressed. 

Another advantage of string vectors is that string vectors 
represent documents more transparently than numerical 
vectors. Since each element of string vectors is symbolic 
data, it is possible to guess the content of the document by 
its surrogate; this is more user-friendly representation of 
documents than numerical vectors. Therefore, it is easier to 
trace why each unseen document is classified into a 
particular label in string vectors, than in numerical vectors. 

 
 

4. Text Categorization Systems 
 
This section describes the proposed neural network, 

NTC, in detail, with respect to its architecture, training, 
classification, and properties. The proposed neural network 
follows Perceptron in that synaptic weights are connected 
directly between the input layer and the output layer, and 

the weights are updated only when each training example 
is misclassified. However, note that NTC is different from 
Perceptron in context of its detail process of learning and 
classification, since it uses string vectors as its input 
vectors, instead of numerical vectors. The learning layer 
given as an additional layer to the input and the output 
layer is different from the hidden layer of back propagation 
with respect to its role. The learning layer determines 
synaptic weights between the input and the output layer by 
referring to the tables owned by learning nodes. The 
learning of NTC refers to the process of optimizing 
weights stored in the tables. 

Figure 4 illustrates the architecture of the proposed 
neural network, NTC. It consists of the three layers: input 
layer, output layer, and learning layer. The input layer 
receives an input vector given as a string vector. The 
learning layer determines weights between the input and 
the output layer corresponding to words of the given input 
vector by looking up in the tables owned by learning nodes. 
The output layer generates the categorical scores indicating 
memberships of the string vector in categories as the output. 
The conditions of designing the proposed neural network, 
NTC, for text categorization are defined as follows. 

 The number of the input nodes should be identical to 
the dimension of string vectors representing 
documents.  
 
This layer receives an input vector given as a string 

vector, so each node corresponds to each word in the 
string vector. 
 The number of the learning nodes should be 
identical to the number of predefined categories. 
 
Nodes of this layer own tables corresponding to 

predefined categories, and determine weights between 
the input and output layer, to each word in the input 
vector. 
 The number of the output nodes should be identical 
to the number of predefined categories. 
 
This layer generates categorical scores as the output, 

and they correspond to predefined categories. 
 

 

Fig. 4. The Architecture of NTC 



Taeho Jo                                       83 

The first step of NTC is the initialization of weights 
which is the process of filling the tables which are empty 
initially. Each table corresponds to a predefined category, 
and it consists of entries. Each entry consists of a word and 
its weight. In this step, each weight is filled with the 
frequency of the corresponding word in the category 
corresponding to the table. Therefore, all tables owned by 
the learning nodes are constructed in this step. 

The learning of NTC follows its initialization. An input 
vector given as a string vector is denoted by 

[ ]dttt ,...,, 21=x , where 
it , di ≤≤1 ,  is a word given as 

an element of the string vector, x , and d  is the 
dimension of the string vector, x . A set of the given 
predefined categories is denoted by [ ]

C
cccC ,...,, 21= . The 

weigh, jiw denote the weight connected between an input 

node, i , and an output node corresponding to the category, 

jc  Cj ≤≤1 . The value of the weight, 
jiw , is defined, using 

equation (2), 
 

⎩
⎨
⎧

=
otherwise     0

 tablein the  word theis  thereif  )( ij

ji

ttable
w      (2) 

 
where jtable  denotes the table owned by the learning 
node corresponding to the category, 

jc  and )( ic ttable  
means the weights of the word, 

it , stored in the table, 

jtable . The weight, 
jiw , means the membership of the 

word, it , in the category, 
jc . Therefore, if there is the 

word, it , in the table, 
jtable , the weight, 

jiw , is fetched 
from the table, 

jtable . Otherwise, the weight, 
jiw  

becomes zero. 
We compute the value of the output node, jo , the 

output node corresponding to the category, jc , using 
equation (3), 

  ∑
=

=
d

i
jij wo

1

              (3) 

The value of jo  means the membership of the given 
input vector, x  in the category, jc . Since values of  

output nodes are combined by linear combination of 
weights illustrated in equation (3), the proposed neural 
network is similar as Perceptron. This is the first property 
shared with Perceptron. 

As mentioned above, the learning of NTC is the process 
of optimizing weights between the input and output layer 
to minimize classification error in training examples. This 
learning is performed interactively to each training 
example. Each string vector in the training set has its own 
target label, jc . If its classified category, kc  is identical 

to its target category, c , the weights does not change, as 

expressed in equation (4),  
 

0,0  , if =Δ=Δ= jikikj wwcc           (4) 
 
Otherwise, weights are adjusted to reinforce weights for 

its target category and to inhibit weights for its 
misclassified category, to minimize the classification error, 
as illustrated in equation (5), 

 
jijikikikj wwwwcc ηη =Δ−=Δ≠ ,  , if        (5) 

 
where η  is the learning rate given as a parameter, like any 
other neural networks, such as Perceptron, back 
propagation, and Kohonen Networks. This learning is 
repeated until the weights converge. 

Figure 5 illustrates the process of learning sample 
documents and classifying unseen ones using NTC. A 
collection of sample labeled documents is given as the 
input, and the learning rate and the number of iterations are 
given as the parameters of NTC.  In its first step, NTC 
initializes the weights stored in the tables owned by the 
learning nodes. For each sample labeled document, it is 
classified using equation (3) and the weights are updated 
using equation (5) whenever it is misclassified. This 
process is repeated with the fixed number, given as a 
parameter. After training NTC, unseen documents are 
classified by encoding them into string vectors, computing 
values of output nodes with the optimized weights using 
equation (3), and assigning the category corresponding to 
the output node with the highest value to each unseen 
document. 

 

 
 

Fig. 5. Process of training NTC and classifying unseen 
documents 

Classifier Training 
Input: A Series of Sample Documents, Learning Rate, and Iteration 
Number 
Step 1: Encode these sample documents into string vectors  
Step 2: Design the architecture of NTC 
Step 3: Initialize weights in each learning node with its document 
frequency within its corresponding category 
Step 4: Repeat step 3-1 with the number of iteration 
Step 4-1: For each encoded sample document 
Step 4-1-1: Compute the values of output nodes of the encoded 
document with the current weight using the equation (3) 
Step 4-1-2: Classify each training string vector into the category 
corresponding to the output node with its highest value 
Step 4-1-3: If its classified category is different from its target 
category, update weights to every misclassification using the 
equation (5) 
Output: Optimized weights in each learning node  
Document Classification 
Input: An unseen document and the optimized weights in each 
learning node 
Step 1: Encode the unseen document into a string data 
Step 2: Compute the values of output nodes of the encoded 
document with the current weight using the equation (5) 
Step 3: Classify the unseen string vector into the category 
corresponding to the output node with its highest value 
Output: its classified label 
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Since NTC uses string vectors as its input vectors, the 
two main problems could be naturally avoided at same 
time. Each table owned by its corresponding learning node 
stores classification rules grained by training the NTC. 
These rules provide the basis of classifying documents 
more transparently than traditional machine learning 
algorithms using numerical vectors. Although string 
vectors used as input vectors in the proposed neural 
network address the two main problems, operations on 
string vectors are more restricted than those on numerical 
vectors. For example, we do not discover the method for 
finding a string vector representing a collection of string 
vectors, corresponding to a mean vector and a covariance 
matrix in numerical vectors. Therefore, NTC can not be 
trained in batch mode, because a mean vector can not be 
computed in string vectors. 

 
 

5. Experiment and Results 
 
This section concerns experimental results of evaluating 

traditional and proposed approaches to text categorization 
on three test beds. In the experiments, five approaches, 
SVM, NB, KNN, Back Propagation, and NTC are 
evaluated as the approaches to text categorization, and a 
collection of news articles, 20NewsGroups, is used as the 
test beds of text categorization. In two of three test beds, 
the five approaches are evaluated both with decomposing 
text categorization into binary classification problems and 
without decomposing it. 

In the experiments, documents are represented into 
string vectors for using NTC and numerical vectors for 
using the other methods. The dimensions of numerical 
vectors and string vectors representing documents are set 
as 500 and 50, respectively. In encoding documents into 
numerical vectors, most frequent 500 words from a given 
training set for each problem are selected as their features. 
The values of the features of numerical vectors are binary 
ones indicating the absence or presence of words in a given 
document; this is for using Naïve Bayes. In encoding 
documents into string vectors, the most frequent 50 words 
are selected from a given document and sorted in the 
descending order of their frequencies as values of its 
corresponding string vector.   

The parameters of the five approaches involved in this 
experiment are set by tuning them with a validation set, 
which is constructed by selecting 600 documents randomly 
from training documents, spanning the three test beds. 
Table 1 shows the definition of the parameters which is 
obtained through this tuning. With the parameters defined 
in table 10, the five approaches to text categorization will 
be applied to the three test beds. 

 

Table 1. Parameters of the Five Approaches 
Approaches to Text 

Categorization Definition of Parameters 

SVM Capacity = 4.0 
KNN #nearest number = 3 
NB N/A 
Back Propagation Hidden Layer: 10 hidden nodes 

Learning rate: 0.3 
#Iteration of Training: 1000 

NTC Learning rate: 0.3 
#Iteration of Training: 100 

 
This experiment is to evaluate the five approaches on 

another test bed, called ‘20NewsGroups’. This test bed is 
obtained by downloading it from the web site, 
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgrou
ps.html. This test bed consists of 20 categories and 20,000 
documents; each category contains 1,000 documents. This 
test bed is partitioned into the training set and the test set 
with the ratio, 7:3; there are 700 training documents and 
300 test documents per each category. Hence, 20,000 
documents are partitioned into 14,000 training documents 
and 6000 test documents. 

In this experiment, the task of text categorization on this 
test bed is decomposed into 20 binary classification 
problems, consistently with the number of predefined 
categories. A training set of each binary classification 
problem consists of 700 positive documents and 7000 
negative documents. These negative documents are 
selected at random from 13,300 documents subtracted by 
700 positive documents from 14,000 training documents. 
For a test set of each binary classification problem, 300 
negative documents are allocated by selecting them 
randomly from 5,700 negative documents within the test 
set, in order to maintain the class balance in the test set. 

Figure 6 shows the result of evaluating the five 
approaches on the test bed, 20NewsGroup. Since each 
category contain identical number of test documents, 
micro-averaged and macro-averaged F1 are same as each 
other. Therefore, their performances are presented in an 
integrated group, instead of two separated groups, in figure 
8. This result shows that back propagation is also the best 
approach, while NB is the worst approach with the 
decomposition of the task on this test bed. Like the 
previous experiment set, NTC is comparable and 
competitive with back propagation. 
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Fig. 6. Result of evaluate the five text classifiers in 

20Newsgroup with decomposition 
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Figure 7 shows the result of evaluating the four 
classifiers except the SVM without the decomposition on 
this test bed. In this case, a classifier answers to each test 
document by providing one of 20 categories. This result 
shows that there exits two groups: better group and worse 
group. The former contains back propagation and NTC, 
and the latter contains NB and KNN. 
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Fig. 7. Result of evaluating four Text Classifiers in 

20NewsGroups without decomposition 
 
Like the previous set of this experiment, NTC is 

competitive with back propagation with smaller size of 
input data and lower number of training iterations. The 
result of this set is similar as that of the previous set, with 
respect to the trend. 

 
 

6. Conclusion 
 
This research used a full inverted index as the basis for 

the operation on string vectors, instead of a restricted sized 
similarity matrix. It was cheaper to build an inverted index 
from a corpus than a similarity matrix, as mentioned in 
section 1. In the previous attempt, a restricted sized 
similarity matrix was used as the basis for the operation on 
string vectors. Therefore, information loss from the 
similarity matrix degraded the performance of the modified 
version. This research addresses the information loss by 
using a full inverted index, instead of a restricted sized 
similarity matrix. 

Note that there is trade-off between the two bases for the 
operation on string vectors. Although it is cheaper to build 
an inverted index from a corpus, note that it costs more 
time interactively for doing the operation expressed in 
equation (3). Let’s the numbers of words, documents, and 
elements in each string vector be N , M , and d . In using the 
inverted index, the complexity for doing the operation is 

)( 2dMO  in worst case, while in using the similarity matrix, 
the complexity is )(dO . When we try to compute semantic 
similarities of all possible pairs, the complexity 
is )( 22 dMNO , whether we use a similarity matrix or an 
inverted index.  

Other machine learning algorithms such as Naïve Bayes 
and back propagation are considered to be modified into 
their adaptable versions to string vectors. The operation 
may be insufficient for modifying other machine learning 
algorithms. For example, it requires the definition of a 
string vector which is representative of string vectors 
corresponding to a mean vector in numerical vectors for 
modifying a k-means algorithm into the adaptable version. 
Various operations on string vectors should be defined in a 
future research for modifying other machine learning 
algorithms. 
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