
Stability and Likelihood of Views of ThreeDimensional ObjectsDaphna Weinshall1, Michael Werman1 and Naftali Tishby1?Institute of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, Israelcontact email: daphna@cs.huji.ac.ilAbstract. Can we say anything general about the distribution of twodimensional views of general three dimensional objects? In this paper wepresent a �rst formal analysis of the stability and likelihood of two dimen-sional views (under weak perspective projection) of three dimensionalobjects. This analysis is useful for various aspects of object recognitionand database indexing. Examples are Bayesian recognition; indexing to athree dimensional database by invariants of two dimensional images; theselection of \good" templates that may reduce the complexity of corre-spondence between images and three dimensional objects; and ambiguityresolution using generic views.We show the following results: (1) Both the stability and likelihood ofviews do not depend on the particular distribution of points inside theobject; they both depend on only three numbers, the three second mo-ments of the object. (2) The most stable and the most likely views arethe same view, which is the \attest" view of the object. Under ortho-graphic projection, we also show: (3) the distance between one image toanother does not depend on the position of its viewpoint with respectto the object, but only on the (geodesic) distance between the view-points on the viewing sphere. We demonstrate these results with realand simulated data.1 IntroductionModel-based object recognition is often described as a two stage process, whereindexing from the image into the database is followed by veri�cation. However,using noisy images and large databases, the indexing stage rarely provides a sin-gle candidate, and the veri�cation stage only reduces the ambiguity but cannoteliminate is altogether. Typically, therefore, we are left with a list of candidateobjects, from which we should choose the best interpretation. This problem isdemonstrated in Fig. 1, which could be the image of many di�erent objects, all? This research was sponsored by the U.S. O�ce of Naval Research under grantN00014-93-1-1202, R&T Project Code 4424341|01, and by the Israeli Science Foun-dation grant 202/92-2.



2of which could possibly be retrieved by the recognition system. How do we de-cide which object this really is? is it a bagel? maybe a plate? neither. The taskis easier when using more likely views of the object, such as those in Fig. 2.Fig. 1. Non generic (not probable) view ofan object.A plausible strategy is to select the model which obtains the highest con�-dence, or the highest conditional probability Prob(model/image). To accomplishthis, we �rst rewrite the conditional probability asProb(model=image) = Prob(image=model)PmPiwhere Pm and Pi denote the prior probabilities of the model and image respec-tively. From this we see that optimal object recognition requires knowledge ofthe conditional distribution of images given models. Thus, for example, this like-lihood measure is very small for the image of the water bottle shown in Fig. 1,and we therefore interpret the image as something else, such as a bagel or aplate.Surprisingly, this important question of image likelihood has been (almost)totally neglected. There is a single exception, a study of the distribution ofviews of simple \objects", speci�cally planar angles, reported by Ben-Arie [2]and later expanded by Burns et al. [3]. These papers analyzed (via simulations)the changes in the appearance of angles from di�erent points of views, andnumerically identi�ed stable images.Can we say anything general about the distribution of two dimensional viewsof general three dimensional objects? In this paper we present a �rst formalanalysis of this question. We �rst de�ne the problem generally, connecting theconcepts of stability and likelihood in the same framework. We then concentrateon geometry, to obtain (analytically) some simple and elegant characterizations,as well as some surprising properties, of image stability and likelihood of ob-jects composed of localized features. These results are summarized below, inSection 1.1. Similar analysis should be done for sources of image variation otherthen geometry, such as lighting.The theory developed here has many applications and can be used for ob-ject recognition in various ways, as described in Section 1.2. One result, wherewe show that the most stable view of an object is also its most likely view,has the following practical application: it implies that if we want to �nd andstore the most stable view(s) of an object, we do NOT need to know the three-dimensional structure of the object; rather, we can expect to �nd this view byrandom sampling of the views of the object. This theory is also motivated by



ECCV 94, Stockholm, May 1994, pp. 24-35 3and related to human perception, and some of the results reported here can beused to reinterpret psychophysical �ndings, as discussed below.1.1 Characterization of viewsConsider the viewing sphere, which is a sphere around the center of mass of theobject. This sphere contains all possible viewing angles, or camera orientationsrelative to the object. We characterize each view V by two numbers:�-likelihood: the probability (or the area on the viewing sphere) over whichviews of the object are within � of V (as pictures).� -stability: the maximal error obtained when view V is compared to neigh-boring views less than � away (in geodesic distance) from V on the viewingsphere.� -stability measures how stable a particular two dimensional view of a threedimensional object is with respect to change of camera position. �-likelihoodmeasures how often one should expect to see a particular view of a generalobject, if � error is tolerated, and assuming known prior distribution on theviewing sphere (or viewing orientations). Each number provides a somewhatdi�erent answer to a similar question: how representative is a two dimensionalview of a three dimensional object?For objects composed of distinct features, this analysis of the viewing spherecan be carried out relatively simply thanks to the following observation, whichis true within an aspect of the object2: Given an object composed of any num-ber of features, the three eigenvalues of the auto-correlation scatter matrix ofthe features' 3D coordinates are su�cient to compute the image di�erences be-tween any two di�erent views of the object. Therefore, these three numbers fullycharacterize the stability and likelihood of any viewpoint.For such objects we give in Section 3 explicit expressions for �-likelihoodand � -stability. We give expressions for the distance between any two viewsin terms of the three eigenvalues of the autocorrelation matrix. We show thatthe \attest" view is the most stable and the most likely. Under orthographicprojection we also demonstrate an elegant and surprising property of the viewingsphere: viewpoints which are at the same geodesic distance from a certain view onthe viewing sphere induce (very di�erent) images that are at the same distancein image space. In other words, if we �x a view V as the pole on the viewingsphere, all the viewpoints that are on the same latitude on the viewing sphereinduce images which are at the same distance from the image of V .1.2 What is it good for?The characterization of views by stability or likelihood can be useful for variousaspects of object recognition and spatial localization:2 We de�ne an aspect as the set of views of the object in which the same features arevisible.



4Bayesian recognition and image understanding: As explained above, inorder to select the most likely model from a set of models, each of which isa possible interpretation of an object in the scene, we need the conditionaldistribution of images given models. More generally, the probabilistic char-acterization of views, as de�ned below, measures how generic viewpoints are.In ambiguous cases, the interpretation which involves a more generic viewmay be preferable (see also [4]).Indexing by invariants: To �nesse correspondence, various algorithms lookfor indices which can be computed from 2D images, and directly point to theobject (or a family of objects) in the database [5]. To be useful, such indicesare typically invariant to some aspects of the imaging process. However,geometrical invariants for general 3D objects do not exist [3]. By identifyinga set of \representative" 2D views of an object, such that any other imageof the object is not too far from at least one image in this set, we can attachto each object a list of invariant indices which will have small errors.Viewer-based representations: The three dimensional structure of objectscan be represented in two fundamentally di�erent ways: a two dimensionalviewer-centered description, or a three dimensional object-centered descrip-tion. In a viewer-centered description three dimensional information is notrepresented explicitly. In employing this approach, an object is representedby a list of 2D views, that were acquired during a familiarization period. Anovel view of the object is recognized by comparing it to the stored views.A measure of image stability and likelihood can be used to select a set of\good" views for such a representation.Correspondence by two dimensional template matching: Various recog-nition methods of 3D objects, such as alignment, require correspondencebetween a 2D image and a library of 3D models. Image to model correspon-dence (or indexing) is computationally di�cult, and may require exponentialsearches. One solution is to use 2D templates for the direct matching of 2Dimages, which may reduce the complexity of search considerably from O(n3)to O(dn2), where d is the number of templates (see [1] for a discussion ofalgorithms for �nding all such matches). The two dimensional templates arepossibly grey-level images of the object, where distinctive features are usedto determine stability and likelihood.Our characterization will make it possible to select the \best" templates,which can be matched to the largest amount of di�erent views with thesmallest amount of error. Moreover, we will be able to identify local con�gu-rations which are particularly stable and therefore should be relied on moreheavily during the initial stage of correspondence.The rest of this paper is organized as follows: in Section 2 we de�ne the aboveconcepts more precisely. In Section 3 we show a simple computational schemeto compute viewpoint characterizations for the case of an object composed of aset of 3D features, and describe the basic results. In Section 4 we demonstratethese results with real and simulated data.



ECCV 94, Stockholm, May 1994, pp. 24-35 5Fig. 2. Left: a not verylikely view of an object;right: a likely view of awater bottle.2 De�nitions2.1 The viewing sphere
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Fig. 3. The viewing sphere of a 3Dobject. Two views on the viewingsphere, obtained by some combina-tion of rotations # and ', are illus-trated.We �x a coordinate system attached to the camera, where Z is the optical axisof the camera (assumed orthogonal to the image plane). The object is assumed�xed, and the camera (with the coordinate system) rotates around it on theviewing sphere. The viewing sphere is an imaginary sphere around the centroidof the object (see Fig. 3), representing all the possible di�erent viewpoints of theobject.The viewing sphere takes into account deformations in the appearance of anobject which are due solely to its 3D structure and orientation in space, when thecamera is allowed to translate and rotate relative to the object. We assume weakperspective projection and therefore translations of the camera can be ignored ifby default images are centered around the center of mass of an object. Thereforewithout loss of generality, the center of rotation is assumed to be the centroidof the object. With this convention the viewing sphere describes all the possibledi�erent images of an object, since there is a 1-1 mapping between a viewpointand a feasible image.With this de�nition, a view of the object corresponds to a point on theviewing sphere, which is completely de�ned by two angles of rotation. If weassume that all viewing angles are equally likely, areas on the viewing spherecorrespond to probability or likelihood. In the following (see also Fig. 3), theviewing sphere is parameterized by two angles: rotation ' around the Z axisfollowed by a rotation # around the X axis. This de�nes a spherical coordinate



6system whose pole is the optical axis of the camera (the Z axis), and where ' isthe azimuth (longitude) and # is the elevation (colatitude).2.2 Stability and likelihood of viewsConsider an object O and a point on the viewing sphere of O denoted by V#;'.The range # 2 [0; �2 ]; ' 2 [0; 2�] gives a parameterization of half the viewingsphere in spherical coordinates whose pole is the Z-axis, where ' is the azimuthand # is the elevation.Let V 0#;';�;� denote another view, corresponding to a rotation in sphericalcoordinates on the viewing sphere, where the point #; ' is now the pole, � 2 [0; �2 ]the elevation, and � 2 [0; 2�] the azimuth. The distance from V#;' to V 0#;';�;� onthe viewing sphere is parameterized by the elevation angle �. Let d(#; '; �; �)denote the image distance, as de�ned in Section 2.4, between the images obtainedfrom view V and view V 0.For each view V = [#; '] we measure the following:� -stability: the maximal error (di�erence) d, when compared to other views onthe viewing sphere separated from it by an elevation � < � : max���;� d(#; '; �; �)�-likelihood: the measure (on the viewing sphere) of the set f(�; �)j such thatd(#; '; �; �) � �g.We select the view V which represents an aspect of the object according toone of the following criteria:Most stable view: the view V = [#; '] which for all bounded movements ofthe viewing point from V the image changes the least:min#;' max���;� d(#; '; �; �) (1)Most likely view: the view V = [#; '] that has the largest number of viewsthat as are images close to it:max#;' Measure(f(�; �)jd(#; '; �; �) � �g) (2)2.3 Images of objects with �ducial pointsWe consider objects composed of n three dimensional �ducial points. Let fp̂i =(x̂i; ŷi; ẑi)gni=1 denote the coordinates of the object features in the camera coordi-nate system in R3. A three-dimensional representation of the object is the 3�nmatrix P̂, whose i-th column is p̂i, the vector describing the world coordinatesof the i-th feature of the object.An image of the object is obtained by a rigid transformation (of the object orthe camera), followed by weak perspective (or scaled orthographic) projectionfrom three dimensional space to the two dimensional image. An image of theobject is therefore the set of n image points fpi = (xi; yi)gni=1. An equivalent



ECCV 94, Stockholm, May 1994, pp. 24-35 7representation of the image is the 2�n matrixP, whose i-th column is the imagecoordinates of the i-th feature of the object. The use of matrix P to representan image of the object implies a correspondence between the image features andthe object features, where di�erent correspondences lead to permutations of thematrix' columns.2.4 How to compare two imagesGiven two images, or the two matrices P and Q, the question of comparing themis equivalent to matrix comparison.We are using the \usual" metric, which is theFrobenius norm of the di�erence matrix, and which is the same as the Euclideandistance between points in the images:kP�Qk2F =X(P[i; j]�Q[i; j])2 = tr[(P�Q) � (P�Q)T ] (3)(tr denotes the trace of a matrix). Henceforth we will omit the subscript F , anda matrix norm will be the Frobenius norm.Before taking the norm of the di�erence between the images, we want toremove di�erences which are due to irrelevant e�ects, such as the size of theimage (which is arbitrary under scaled orthography) or the exact location ofthe object (e.g., due to an arbitrary translation and rotation of the object inthe image). In particular, we may want to consider as equivalent all imagesobtained from each other by the group of 2D similarity transformations, whichincludes 2D rotations, translations, and scale. The equivalence under similaritytransformation is necessary, since under weak perspective projection, imagesthat di�er by image scale, rotation or translation can be obtained from the sameobject, and should therefore be considered the same image.It can be readily shown that the optimal translation when measuring distanceby sum of square distances, under the similarity equivalence, puts the centroid ofthe object in the origin of the image. We therefore assume w.l.g. that the imagesare centered on the centroid of the object, so that the �rst moments of the objectare 0. In [7] we de�ne image distance measures, which satisfy all the propertiesof a metric, and which compare the images P and Q while taking into accountthe desired image equivalence discussed above. We get the following expression:D2(P;Q) = 1� kQPTk2 + 2det(QPT )kPk2kQk2 (4)2.5 The \attest" viewLet R#' denotes a 3D rotation in spherical coordinates around the pole (0; 0; 1),with azimuth ' and elevation #. Consider the 3 � 3 symmetric autocorrelationscatter matrix of the object: S = P̂P̂T



8The scatter matrix of the object at view V#;', obtained by a rotation R#' onthe viewing sphere away from the initial view, is:S(V ) = R#'P̂P̂TRT#' = R#'SRT#'De�nition1. The attest view is the view Vf whose scatter matrix S(Vf )is diagonal, and where the eigenvalues (the diagonal elements) are ordered indecreasing order.It is straightforward to compute the orthogonal matrix L such that S = LTDL,where D is diagonal with diagonal elements in decreasing order (e.g., by comput-ing the SVD of the symmetric matrix S). L is the rotation matrix which rotatesthe object from its original orientation to Vf . Henceforth we will assume w.l.g.that the coordinate system is initially oriented so that V0;0 = Vf . Let S0 denotethe diagonal scatter matrix at V0;0:S0 = P̂0P̂T0 = 0@ a 0 00 b 00 0 c1Awhere a � b � c.3 Viewpoint characterizationConsider an object which is characterized by n �ducial points in three dimen-sional space, O = p̂1; p̂2; :::; p̂n. Let P̂ denote the 3�nmatrix whose i-th columnis p̂i.3.1 Stability and likelihood at each viewAs de�ned in Section 2.2, let V#;' denote a point on the viewing sphere of objectO, and let V 0#;';�;� denote another view of O. (Recall that the distance fromV#;' to V 0#;';�;� on the viewing sphere is parameterized by the elevation angle�.) Let d(#; '; �; �) = D(V; V 0) denote the image distance, de�ned in Section 2.4,between the appearance of object O from view V and its appearance from viewV 0. We can show that:Result 1: d(#; '; �; �) depends only on the diagonal matrix S0, regardless ofthe number of features in O or their distribution in space. We therefore denotethe distance by da;b;c(#; '; �; �).We computed da;b;c(#; '; �; �) by substituting V and V 0 into Eq (4), to get:D2 = d2a;b;c(#; '; �; �) = (1� cos(�)) (abs1 + acs2 + bcs3)u(at1 + bt2 + ct3) (5)



ECCV 94, Stockholm, May 1994, pp. 24-35 9wheres1 = 1� 2 cos(#)2 cos(�) + 2 cos(#) sin(�) sin(#) cos(�) + cos(�)s2 = 1� 2 cos(�) cos(')2 sin(#)2 � 2 cos(�) cos(')2 sin(�) sin(#) cos(#) +2 sin(�) sin(�) sin(') cos(') sin(#) + cos(�)s3 = 1 + 2 cos(�) sin(')2 cos(#)2 � 2 sin(�) sin(�) sin(') cos(') sin(#) �2 cos(�) sin(')2 sin(�) sin(#) cos(#)� cos(�) + 2 cos(�) cos(')2u = a �1� sin(')2 sin(#)2� + b �1� cos(')2 sin(#)2� + c sin(#)2t1 = �2 cos(�) cos(�) sin(�) cos(#) sin(#) sin(')2 � sin(#)2 cos(�)2 sin(')2 �2 cos(') sin(') cos(#) sin(�)2 cos(�) sin(�) � cos(')2 sin(�)2 sin(�)2 + 1�cos(#)2 sin(�)2 cos(�)2 sin(')2 � 2 cos(') cos(�) sin(�) sin(�) sin(#) sin(')t2 = 2 cos(') sin(') cos(#) sin(�)2 cos(�) sin(�) + sin(')2 sin(�)2 cos(�)2 +cos(')2 sin(�)2 � 2 cos(�) cos(�) sin(�) cos(#) sin(#) cos(')2 +cos(#)2 cos(�)2 cos(')2 + 2 cos(') cos(�) sin(�) sin(�) sin(#) sin(') +cos(�)2 sin(')2 � cos(#)2 sin(�)2 cos(�)2 cos(')2t3 = 1 + 2 cos(#) sin(�) sin(#) cos(�) cos(�) � cos(#)2 cos(�)2 �sin(#)2 sin(�)2 cos(�)23.2 The most stable and likely viewWe substituted da;b;c(#; '; �; �) into Eqs (1),(2), to compute the stability andlikelihood measures numerically for various objects, characterized by di�erentparameters a; b; c, and for various likelihood and stability thresholds � and � .The simulations lead us to conjecture the following result:Result 2: The attest view Vf = V0;0 is both the � -stable view and the �-likelyview for all � and �, and for every object parameterized by [a; b; c].
Fig. 4. Vf of a square pyramid and a cube.



10Examples:We computed Vf for two simulated familiar objects: a cube and a pyramid.For the cube we consider a certain aspect where 7 vertices are visible. For thepyramid we consider an aspect where 4 vertices are visible. Fig. 4 shows the Vfof each of these objects.4 Orthographic projection:In order to match images to the projections of a model, 2D similarity normal-ization was used. There are cases in which it is more appropriate to use 2Da�ne normalization or orthographic projection. In these cases the two resultsdescribed in the previous section still hold (see [6]).Under orthographic projection, the scale of the image is known and we wantto avoid normalization, but rather compare the model to the image as is. Wetherefore take the di�erence between the given image and the model, where themodel is aligned with an a�ne transformation to the image, and without anymanipulation permitted to be applied to the image. If we denote the model Pand the new imageQ, we get the following orthographic distance measure, whichreplaces the similarity metric given in Eq (4):D2(P;Q) = tr[QTQ(I � P+P)](I denotes the n � n unity matrix, and P+ denotes the pseudo-inverse of P).Eq (5) now becomes surprisingly simple:D2 = da;b;c(#; '; �; �) = abc sin(�)2ac sin(#)2 cos(')2 + bc sin(#)2 sin(')2 + ab cos(#)2and the following result immediately follows:Result 3: For all #; ', the distance between V#;' and V#;';�;� depends onlyon the geodesic distance � and does not depend on the azimuth �, although fordi�erent � the views V#;';�;� are not a�ne equivalent.In other words, if we �x a view V as the pole on the viewing sphere, all theviewpoints that are on the same latitude on the viewing sphere induce imageswhich are at the same distance from the image of V .Examples:To demonstrate the above results, we took an image Ptop of a toy tiger from anarbitrary angle, and then took a sequence of images, (P1, P2, Q1, Q2, Q3, S),at other orientations (see Fig. 5). We did not measure the orientations, but weknow that the images marked by (Pi) were taken at the same elevation relativeto Ptop, and that the images marked by (Qi) were taken at the same elevationrelative to Ptop. The elevation of the (Pi) images was smaller than the elevationof the (Qi) images, which in turn was smaller than the elevation of image S.
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Fig. 5. The pictures used in the experiment: �rst row, from left to right { Ptop; P1; P2;second row, from left to right { Q1; Q2; S.P1 P2 Q1 Q2 Q3 S0.125 0.163 0.195 0.233 0.205 0.346352 7122 11045 10964 10557 15312Table 1. The distances between the real images shown in Fig. 5. The �rst row givesthe similarity (metric) distance, and the second row gives the orthographic distance.Table 1 gives the distances of all the pictures from Ptop, (using ears, eyes,knees, tail and nose as features). As can be seen from the data, the distancesbetween images depend monotonically on the elevation, and the orthographicdistance does not depend on the azimuth.5 DiscussionThe analysis and results described above have many applications for geometry-based object recognition, as discussed in the introduction:{ It provides the basic tools for object recognition from noisy images andlarge databases, giving a measure to select the model that best �ts the datafrom a list of candidates obtained by \traditional" indexing and veri�cation.More generally, it can be used with a general Bayesian image interpretationapproach to select the most likely interpretation of a scene.



12{ It gives the framework within which an invariant recognition scheme suchas geometric hashing can be generalized to three-dimensional objects, bystoring invariant indices of a list of representative views. This framework alsoprovides a measure for the selection of \good" templates, for the purposeof model to image corresponednce, a computationally hard problem. Herewe see the signi�cance of result 2 above, since it tells us that if we wantto select the most stable view of an object (say, for a template), we neednot necessarily compute the complete three dimensional structure of theobject. Rather, since the most stable view is also the most likely view, wemay attempt to obtain this view using a learning algorithm that is given arandom sample of the views of the object.{ It provides the basic tools to de�ne and analyze aspect graphs such that thedi�erent aspects are not necessarily topologically distinct, rather they di�ermetrically. In this way we can choose a representative set of viewpoints sothat we cover every possible view of an object upto some error �, and we canuse the neighborhood information in the graph in order to track a movingobject.References1. E. M. Arkin, K. Kedem, J. S. B. Mitchell, J. Sprinzak, and M. Werman. Matchingpoints into pairwise disjoint noise regions: Combinatorial bounds and algorithms.ORSA Journal on Computing, special issue on computational geometry, 1992.2. J. Ben-Arie. The probabilistic peaking e�ect of viewed angles and distances withapplication to 3-d object recognition. T-PAMI, pages 760{774, 1990.3. J.B. Burns, R. Weiss, and E. Riseman. View variation of point-set and line seg-ment features. IEEE Transactions on Pattern Analysis and Machine Intelligence,15(1):51{68, 1993.4. W. T. Freeman. Exploiting the generic view assumption to estimate scene parame-ters. In Proceedings of the 4th International Conference on Computer Vision, pages347{356, Berlin, Germany, 1993. IEEE, Washington, DC.5. Y. Lamdan and H. Wolfson. Geometric hashing: a general and e�cient recognitionscheme. In Proceedings of the 2nd International Conference on Computer Vision,pages 238{251, Tarpon Springs, FL, 1988. IEEE, Washington, DC.6. D. Weinshall, M. Werman, and N. Tishby. Stability and likelihood of views of threedimensional objects. TR 94-1, Hebrew University, 1993.7. M. Werman and D. Weinshall. Similarity and a�ne distance between point sets.IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):810{814,1995.This article was processed using the LaTEX macro package with LLNCS style


