
Computer Physics Communications 177 (2007) 566–583

www.elsevier.com/locate/cpc

Symplectic and multi-symplectic methods for coupled nonlinear
Schrödinger equations with periodic solutions

A. Aydın a, B. Karasözen b,∗

a Department of Mathematics, Atılım University, 06836 Ankara, Turkey
b Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, 06531 Ankara, Turkey

Received 20 July 2006; received in revised form 18 May 2007; accepted 22 May 2007

Available online 5 June 2007

Abstract

We consider for the integration of coupled nonlinear Schrödinger equations with periodic plane wave solutions a splitting method from the class
of symplectic integrators and the multi-symplectic six-point scheme which is equivalent to the Preissman scheme. The numerical experiments
show that both methods preserve very well the mass, energy and momentum in long-time evolution. The local errors in the energy are computed
according to the discretizations in time and space for both methods. Due to its local nature, the multi-symplectic six-point scheme preserves the
local invariants more accurately than the symplectic splitting method, but the global errors for conservation laws are almost the same.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The nonlinear Schrödinger equation (NLS) arises as model equation with second-order dispersion and cubic nonlinearity for
describing the dynamics of slowly varying wave packets in nonlinear optics and fluid dynamics. If there are two or more modes
the coupled nonlinear Schrödinger (CNLS) system would be the relevant model. The two coupled nonlinear Schrödinger (CNLS)
equations are given by

i
∂ψ1

∂t
+ α1

∂2ψ1

∂x2
+ (

σ1|ψ1|2 + v12|ψ2|2
)
ψ1 = 0,

(1)i
∂ψ2

∂t
+ α2

∂2ψ2

∂x2
+ (

σ2|ψ2|2 + v21|ψ1|2
)
ψ2 = 0,

where ψ1(x, t) and ψ2(x, t) are complex amplitudes or ‘envelopes’ of two wave packets, i is the imaginary number, x and t are the
space and time variables, respectively. The CNLS system has many applications including nonlinear optics [1,2] and geophysical
fluid dynamics [3,4]. The parameters αj are the dispersion coefficients, σj the Landau constants which describe the self-modulation
of the wave packets, and v12 and v21 are the wave–wave interaction coefficients which describe the cross-modulations of the wave
packets [5,6].

Analytical solutions can be obtained only for a few special integrable cases, like the Manakov model [1] where the self-
modulation and wave–wave interaction coefficients are equal, i.e. α1 = α2 = 1, σ1 = σ2 = v12 = v21. Other integrable cases are:
α1 = α2, σ1 = σ2 = v12 = v21 and α1 = −α2, σ1 = σ2 = −v12 = −v21 which can be solved by the inverse scattering method [7].
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For nonintegrable cases, where the parameters are different, numerical methods have to be used in order to understand different
nonlinear phenomena that arise by the interaction of stable and unstable wave packets in the CNLS system.

There has been a lot work done for the solitary wave solutions of (1). Symplectic and multi-symplectic methods are also used
for the numerical solution of soliton collision [8,9]. Little attention has been paid to plane wave solutions under periodic boundary
conditions. In this work we will consider the plane wave solutions of (1) under periodic boundary conditions with period L

ψ1(x, t) = ψ10e
i(k1x−ω1t), ψt (x, t) = ψ20e

i(k2x−ω2t)

with the dispersion relations

ω1 = α1k
2
1 − (

σ1a
2
1 + v12a

2
2

)
, ω2 = α2k

2
1 − (

σ2a
2
1 + v21a

2
2

)
,

where the amplitudes ψ10 and ψ20 are assumed to be real [5,6]. We take v12 = v21 = v because this choice of the parameters allows
a multi-symplectic formulation of the CNLS system.

Besides the Manakov’s case which corresponds to elliptical polarization we consider two other polarizations [5,6]:

• linear polarization: v12 = v21 = 2/3,
• circular polarization: v12 = v21 = 2

with α1 = α2 = 1, σ1 = σ2 = 1.
Several numerical studies have been carried out in recent years in order to understand the behavior of the periodic plane wave

solutions of the CNLS system. In [5] a pseudospectral discretization was used in the space variables and the resulting system of
ordinary differential equations (ODEs) were integrated using the standard fourth-order Runge–Kutta method. Because the method
used in [5] is not conservative, no indication is given about the preservation of the conserved quantities of the CNLS system. In [6]
the CNLS system with periodic boundary conditions was discretized in space using second-order finite differences and the resulting
system of ordinary differential equations (ODEs) are integrated in time using the so-called Hopscotch method, a mixture of an
explicit and an implicit method. The accuracy of the solutions were checked only using the norm conservation of each amplitude of
the CNLS system. The choice of particular initial conditions may affect the preservation of some invariants. As mentioned in [10]
in the context of multi-symplectic integrators usually symmetric initial conditions are used in the literature. Unsymmetric initial
conditions may lead to an increase of errors in preserving some invariants like momentum over time [10].

The numerical solution of nonlinear wave equations using symplectic and multi-symplectic geometric integrators has been
the subject of many studies in recent years (see for a recent review [11]). The NLS and CNLS systems represent an infinite-
dimensional Hamiltonian system. After semi-discretization in the space variables one usually obtains a system of Hamiltonian
ordinary differential equations, for which various symplectic integrators can be applied [8,12,13]. In Section 2 we give a symplectic
integrator based on the splitting of the semi-discretized Hamiltonian system in linear and nonlinear parts. Another way is to use
the multi-symplectic structure of the NLS and CNLS equations and apply multi-symplectic integrators [9,14,15]. A brief review of
multi-symplectic integrators and their application to the CNLS system given in Section 3. In Section 4 numerical results obtained
with the symplectic splitting method and multi-symplectic six-point Preissman scheme are compared with results found in the
literature for symmetric and unsymmetric initial conditions. Section 5 is devoted to concluding remarks.

2. Symplectic splitting method

PDEs are usually discretized first in space resulting in a large system of ODEs. The resulting system of ODEs is then integrated
by an appropriate time-stepping method. Infinite-dimensional Hamiltonian systems can be also discretized by ensuring that the
resulting finite-dimensional system is also Hamiltonian. The infinite-dimensional Hamiltonian system can be discretized in space
either starting from the Lagrangian functional or from the Hamiltonian functional with the Poisson bracket. Here we apply the
second approach. A summary of semi-discretization methods for Hamiltonian systems is given in [11,16].

By decomposing the complex functions ψ1, ψ2 of (1) into real and imaginary parts

ψ1(x, t) = q1(x, t) + iq2(x, t), ψ2(x, t) = q3(x, t) + iq4(x, t)

the CNLS systems (1) can be written as a system of real-valued equations

∂q1

∂t
+ α1

∂2q2

∂x2
+ (

σ1
(
q2

1 + q2
2

) + v
(
q2

3 + q2
4

))
q2 = 0,

∂q2

∂t
− α1

∂2q1

∂x2
− (

σ1
(
q2

1 + q2
2

) + v
(
q2

3 + q2
4

))
q1 = 0,

∂q3 + α2
∂2q4

2
+ (

v
(
q2

1 + q2
2

) + σ2
(
q2

3 + q2
4

))
q4 = 0,
∂t ∂x
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(2)
∂q4

∂t
− α2

∂2q3

∂x2
− (

v
(
q2

1 + q2
2

) + σ2
(
q2

3 + q2
4

))
q3 = 0.

These equations represent an infinite-dimensional Hamiltonian system in the phase space z = (q1, q2, q3, q4)
T

(3)zt = J−1 δH
δz

, J =
⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠ ,

where the Hamiltonian is

(4)H(z) =
∫ {

W − α1

2

((
∂q1

∂x

)2

+
(

∂q2

∂x

)2)
− α2

2

((
∂q3

∂x

)2

+
(

∂q4

∂x

)2)}
dx,

with W = 1
4 (σ1(q

2
1 + q2

2 )2 + σ2(q
2
3 + q2

4 )2) + v
2 (q2

1 + q2
2 )(q2

3 + q2
4 ).

An efficient way of time discretization of semi-discretized PDEs in symplectic form is by splitting. The basic idea of splitting is to
decompose the original problem into subproblems which are easier to solve then recompose them. Splitting can be performed either
on the Hamiltonian or on the vector field. Splitting techniques which are originally developed for multi-dimensional PDEs have
been successfully applied to geometric integrators (for a review see [17], Chapter II and [18]). If each vector field resulting from the
splitting happens to be integrable for the solution of ODEs, then a numerical integration scheme is obtained as the concatenation of
the flows of the individual subsystems. However the splitting depends on the particular problem. For nonlinear wave equations like
shallow water equations, the Boussinesq equation and the KdV equation different splitting are used for the space variables in [19].
For the generalized nonlinear Schrödinger equation a linear–nonlinear splitting was used in [20] and the resulting system of ODEs
is integrated in time by a symplectic composition method.

In [8] the space variables were discretized by a second-order central difference operator and was shown that the resulting semi-
discretization is a Hamiltonian system for a CNLS system. The time derivative was discretized by the implicit midpoint rule and
constructed a symplectic integrator of the CNLS system. After elimination of some variables, a symplectic six-point scheme was
obtained. The symplectic six-point scheme was tested for the evolution of the solitary waves of the CNLS system. It was shown
that the symplectic six-point scheme preserves the discrete analog of the mass conservation exactly.

In this section a semi-implicit symplectic scheme for the CNLS equation will be derived by splitting the vector field (2) into
linear and nonlinear parts. The linear vector field for (2) can be written as

∂q1

∂t
= −α1

∂2q2

∂x2
,

∂q2

∂t
= α1

∂2q1

∂x2
,

(5)
∂q3

∂t
= −α2

∂2q4

∂x2
,

∂q4

∂t
= α2

∂2q3

∂x2

and the nonlinear vector field for (2) can be written as

∂q1

∂t
= −(

σ1
(
q2

1 + q2
2

) + v
(
q2

3 + q2
4

))
q2,

∂q2

∂t
= (

σ1
(
q2

1 + q2
2

) + v
(
q2

3 + q2
4

))
q1,

∂q3

∂t
= −(

v
(
q2

1 + q2
2

) + σ2
(
q2

3 + q2
4

))
q4,

(6)
∂q4

∂t
= (

v
(
q2

1 + q2
2

) + σ2
(
q2

3 + q2
4

))
q3.

Notice that the linear subproblem (5) and nonlinear subproblem (6) can be written as an infinite-dimensional Hamiltonian system (3)
for H(z) =HLin and H(z) =HNon with

(7)HLin = −
∫ {

α1

2

((
∂q1

∂x

)2

+
(

∂q2

∂x

)2)
+ α2

2

((
∂q3

∂x

)2

+
(

∂q4

∂x

)2)}
dx,

and

(8)HNon =
∫ {

1

4

(
σ1

(
q2

1 + q2
2

)2 + σ2
(
q2

3 + q2
4

)2) + v

2

(
q2

1 + q2
2

)(
q2

3 + q2
4

)}
dx.

Consequently, splitting the vector field (2) into linear subproblem (5) and nonlinear subproblem (6) corresponds to splitting the
Hamiltonian (4) as H =HLin +HNon.
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2.1. Hamiltonian discretization

Using a forward difference approximation for the first-order derivatives in the Hamiltonian (4), we obtain a finite-dimensional
Hamiltonian system (see, for example, [19]). In (7) the first-order derivatives qix , i = 1, . . . ,4, are discretized using the mesh points
xm, xm+1. The space mesh size will be denoted by �x = xm+1 − xm with �x = L/N , where N is the number of mesh points. For
simplicity, we will use the notation qim = qi(mL/N, t), as finite difference approximations to the exact solutions qi at the mesh
points. The discretized Hamiltonian (4) is then

H�x = �x

N∑
m=1

[
1

4

(
σ1

(
q2

1m
+ q2

2m

)2 + σ2
(
q2

3m
+ q2

4m

)2) + V (qm)

]

− �x

N∑
m=1

α1

2

[(
q1m+1 − q1m

�x

)2

+
(

q2m+1 − q2m

�x

)2]

(9)− �x

N∑
m=1

α2

2

[(
q3m+1 − q3m

�x

)2

+
(

q4m+1 − q4m

�x

)2]
,

where V (qm) := 1
2v(q2

1m
+ q2

2m
)(q2

3m
+ q2

4m
).

2.2. Splitting

The Hamiltonian H�x can be split into linear and nonlinear parts:

Hlin = −�x

N∑
m=1

α1

2

[(
q1m+1 − q1m

�x

)2

+
(

q2m+1 − q2m

�x

)2]

(10)− �x

N∑
m=1

α2

2

[(
q3m+1 − q3m

�x

)2

+
(

q4m+1 − q4m

�x

)2]
,

(11)Hnon = �x

N∑
m=1

[
1

4

(
σ1

(
q2

1m
+ q2

2m

)2 + σ2
(
q2

3m
+ q2

4m

)2) + V (qm)

]
.

We notice that (10) corresponds to the discretization of (7) and (11) corresponds to the discretization of (8).
A standard discretization of the linear subproblem (5) by means of the method of lines consists of discretization first in space

and then in time. After the discretization in space using the central difference approximation for the second-order derivatives, we
get the semi-discretized linear subproblem

dq1m

dt
= −α1

q2m−1 − 2q2m + q2m+1

2�x2
,

dq2m

dt
= α1

q1m−1 − 2q1m + q1m+1

2�x2
,

(12)
dq3m

dt
= −α2

q4m−1 − 2q4m + q4m+1

2�x2
,

dq4m

dt
= α2

q3m−1 − 2q3m + q3m+1

2�x2
.

This system of ODEs can be formulated as a finite-dimensional Hamiltonian system with linear and nonlinear parts. The linear part
is given as

(13)
dZ

dt
= J−1∇Hlin(Z), with Z := (Q1,Q2,Q3,Q4)

T,

where Qi := (qi1, qi2, . . . , qiN ), i = 1, . . . ,4, and

J :=
⎛
⎜⎝

0 −I 0 0
I 0 0 0
0 0 0 −I

0 0 I 0

⎞
⎟⎠ .

The semi-discretized nonlinear subproblem for (6) is

∂q1m

∂t
= −[

σ1
(
q2

1m
+ q2

2m

) + v
(
q2

3m
+ q2

4m

)]
q2m,

∂q2m = [
σ1

(
q2

1m
+ q2

2m

) + v
(
q2

3m
+ q2

4m

)]
q1m,
∂t
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∂q3m

∂t
= −[

v
(
q2

1m
+ q2

2m

) + σ2
(
q2

3m
+ q2

4m

)]
q4m,

(14)
∂q4m

∂t
= [

v
(
q2

1m
+ q2

2m

) + σ2
(
q2

3m
+ q2

4m

)]
q3m.

The systems (13) and (14) are solved by the symplectic implicit mid-point rule. After applying the implicit mid-point rule to the
linear part (13)

(15)
Zn+1 − Zn

�t
= J−1∇Hlin

(
Zn+1 + Zn

2

)
,

the discrete system of linear equations can be written as

(16)

⎛
⎜⎝

I A1 0 0
−A1 I 0 0

0 0 I A2
0 0 −A2 I

⎞
⎟⎠

⎛
⎜⎜⎝

Qn+1
1

Qn+1
2

Qn+1
3

Qn+1
4

⎞
⎟⎟⎠ =

⎛
⎜⎝

I −A1 0 0
A1 I 0 0
0 0 I −A2
0 0 A2 I

⎞
⎟⎠

⎛
⎜⎜⎜⎝

Qn
1

Qn
2

Qn
3

Qn
4

⎞
⎟⎟⎟⎠ ,

where

Ai = αi

�t

2�x2

⎛
⎜⎜⎜⎜⎝

−2 1 1
1 −2 1

. . .

1 −2 1
1 1 −2

⎞
⎟⎟⎟⎟⎠ .

However, the nonlinear subsystem (14) requires a nonlinear solver for which we have used the simplified Newton method.
We notice that the semi-discretized system in space considering the formulas (12) and (14), is symmetric so that the results given

in [10] for the single Schrödinger equation can be compared with ours.

2.3. Composition method

The idea of the composition method is based on either the splitting of the vector field of a differential equation dx/dt = X(x)

or the Hamiltonian. Then each Xj is integrated exactly or approximately. These solutions are composed in an appropriate way
to obtain an integrator for the vector field X(x). Since the vector fields Xj ’s are usually noncommutative, the composition yields
an error. This splitting error can be analyzed by the Baker–Campbell–Haussdorff (BCH) formula (see Chapter III.5.3–4 in [17],
and [18]).

The solutions of (13) and (14) by the mid-point rule can be composed by the second-order symmetric integrator [17,18,20]

(17)ϕ2(�t) = e
�t
2 Hnon ◦ e�tHlin ◦ e

�t
2 Hnon

which results a symplectic integrator for the CNLS system (1). Higher-order compositions can be obtained by suitable composition
of the second-order integrator [17,18,20].

3. Multi-symplectic structure of coupled nonlinear Schrödinger equation

3.1. Multi-symplectic formulation of Hamiltonian PDEs and of the CNLS system

Multi-symplectic Hamiltonian PDEs can be written in canonical form

(18)Mzt + Kzx = ∇zS(z), z ∈ Rn,

where M and K are skew-symmetric matrices on Rn (n � 3) and S is a smooth function of the state variable z(x, t), and ∇z denotes
the gradient operator in Rn [11,15,21]. A system of the form (18) preserves symplectic structure in space and time

(19)ωt + κx = 0 with ω := 1

2
dz ∧ M dz, κ := 1

2
dz ∧ K dz,

where ∧ denotes the wedge product.
When S is independent of x and t , the system (18) has local energy and momentum conservation laws

Et + Fx = 0, E(z) = S(z) − 1
zTKzx, F (z) = 1

zTKzt ,

2 2
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(20)It + Gx = 0, G(z) = S(z) − 1

2
zTMzt , I (z) = 1

2
zTMzx.

Introducing the canonical momenta pj , j = 1, . . . ,4,

p1 + ip2 = α1
∂ψ1

∂x
, p3 + ip4 = α2

∂ψ2

∂x

or in explicit form:

(21)p1 = α1
∂q1

∂x
, p2 = α1

∂q2

∂x
, p3 = α2

∂q3

∂x
, p4 = α2

∂q4

∂x
,

the CNLS system can now be formulated as a multi-symplectic form of type (18) with the state variable z = (q1, q2, q3, q4,p1,p2,

p3,p4)
T

(22)M =
(−J 0

0 0

)
, K =

(
0 −I

I 0

)
,

where

S(z) = W + 1

2α1

(
p2

1 + p2
2

) + 1

2α2

(
p2

3 + p2
4

)
with

(23)W = σ1

4

(
q2

1 + q2
2

)2 + σ2

4

(
q2

3 + q2
4

)2 + v

2

(
q2

1 + q2
2

)(
q2

3 + q2
4

)
,

J as defined in (3), 0, I denote the 4 × 4 zero and identity matrices, respectively. The local energy and momentum conservation
laws (20) are given with

E(z) = W − 1

2α1

(
p2

1 + p2
2

) − 1

2α2

(
p2

3 + p2
4

)
,

F (z) = p1
∂q1

∂t
+ p2

∂q2

∂t
+ p3

∂q3

∂t
+ p4

∂q4

∂t
,

I (z) = 1

2

(
1

α1
(q1p2 − q2p1) + 1

α2
(q3p4 − q4p3)

)
,

(24)G(z) = S(z) − 1

2

(
q1

∂q2

∂t
− q2

∂q1

∂t
+ q3

∂q4

∂t
− q4

∂q3

∂t

)
,

where W is defined in (23). We have for the CNLS system additionally norm conservation which results from the phase invariance
of the solutions [22]

(25)Nt + Mx = 0, N = 1

2

(
q2

1 + q2
2 + q2

3 + q2
4

)
, M = q1p2 − q2p1 + q3p4 − q4p3.

Integrating E(z), I (z) and N(z) over the spatial domain with periodic boundary conditions [14,15] lead to global conservation
of energy, momentum and norm

(26)
d

dt
E(z) = 0,

d

dt
I(z) = 0,

d

dt
N (z) = 0,

where E(z) = ∫ L

0 E(z)dx, I(z) = ∫ L

0 I (z)dx, N (z) = ∫ L

0 N(z)dx. Under periodic boundary conditions we have also mass conser-
vation:

(27)C1 =
L∫

0

|ψ1|2 dx, C2 =
L∫

0

|ψ2|2 dx.

We notice that 2N = C1 + C2, hence the conserved quantities N , C1 and C2 are dependent.

3.2. Multi-symplectic discretization of the CNLS system

Bridges and Reich introduced in [21], the concept of multi-symplectic integration. One of the most popular multi-symplectic
integrator is the Preissman scheme, which corresponds to mid-point discretization in space and time variables. The Preissman
scheme for (18) is given

M
zn+1
m+1/2 − zn

m+1/2 + K
z
n+1/2
m+1 − z

n+1/2
m = ∇zS

(
z
n+1/2
m+1/2

)
,

�t �x
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Fig. 1. Preissman scheme (left) and six-point difference scheme (right) for the CNLS equation.

with

zn
m+1/2 = zn

m + zn
m+1

2
, z

n+1/2
m = zn

m + zn+1
m

2
, ẑ = z

n+1/2
m+1/2 = zn

m + zn
m+1 + zn+1

m + zn+1
m+1

4
,

where �t , �x are time and space steps, zn
m is an approximation to z(n�t,m�x). The Preissman scheme preserves the discrete

form of the multi-symplecticity (19) exactly and is second-order accurate in the time and space variables [21].
The Preissman scheme is one of the most successful multi-symplectic integrators and is applied for modeling wave propagation

(e.g., for the KdV equation [23,24], for Klein–Gordon equation [25], particularly to the NLS equation [9,14,15,26]).
The multi-symplectic Preissman scheme for the CNLS equation is given as

q2
n+1
m+1/2 − q2

n
m+1/2

�t
+ p1

n+1/2
m+1 − p1

n+1/2
m

�x
= (

σ1
(
(q̂1)

2 + (q̂2)
2) + v

(
(q̂3)

2 + (q̂4)
2))q̂1,

−q1
n+1
m+1/2 − q1

n
m+1/2

�t
− p2

n+1/2
m+1 − p2

n+1/2
m

�x
= (

σ1
(
(q̂1)

2 + (q̂2)
2) + v

(
(q̂3)

2 + (q̂4)
2))q̂2,

q4
n+1
m+1/2 − q4

n
m+1/2

�t
+ p3

n+1/2
m+1 − p3

n+1/2
m

�x
= (

σ2
(
(q̂3)

2 + (q̂4)
2) + v

(
(q̂1)

2 + (q̂2)
2))q̂3,

−q3
n+1
m+1/2 − q3

n
m+1/2

�t
− p4

n+1/2
m+1 − p4

n+1/2
m

�x
= (

σ2
(
(q̂3)

2 + (q̂4)
2) + v

(
(q̂1)

2 + (q̂2)
2))q̂4,

q1
n+1/2
m+1/2 − q1

n+1/2
m

�x
= p̂1

α1
,

q2
n+1/2
m+1/2 − q2

n+1/2
m

�x
= p̂2

α1
,

q3
n+1/2
m+1/2 − q3

n+1/2
m

�x
= p̂3

α2
,

q4
n+1/2
m+1/2 − q4

n+1/2
m

�x
= p̂4

α2
.

where q̂1 = q1
n+1/2
m+1/2, etc. However, for the numerical solution of the CNLS system (1) we need only the values of ψ1 and ψ2. There-

fore from the equation above the canonical momenta pj can be eliminated and one obtains a new scheme. The multi-symplectic
six-point scheme (MS6) can be written explicitly as

i
(ψ1

n+1
m−1 + 2ψ1

n+1
m + ψ1

n+1
m+1) − (ψ1

n
m−1 + 2ψ1

n
m + ψ1

n
m+1)

4�t

+ α1
(ψ1

n+1
m−1 − 2ψ1

n+1
m + ψ1

n+1
m+1) + (ψ1

n
m−1 − 2ψ1

n
m + ψ1

n
m+1)

2�x2

(28)+ (
σ1|ψ̃1|2 + ν|ψ̃2|2

)
ψ̃1 + (

σ1|ψ̂1|2 + ν|ψ̂2|2
)
ψ̂1 = 0,

i
(ψ2

n+1
m−1 + 2ψ2

n+1
m + ψ2

n+1
m+1) − (ψ2

n
m−1 + 2ψ2

n
m + ψ2

n
m+1)

4�t

+ α2
(ψ2

n+1
m−1 − 2ψ2

n+1
m + ψ2

n+1
m+1) + (ψ2

n
m−1 − 2ψ2

n
m + ψ2

n
m+1)

2�x2

(29)+ (
ν|ψ̃1|2 + σ2|ψ̃2|2

)
ψ̃2 + (

ν|ψ̂1|2 + σ2|ψ̂2|2
)
ψ̂2 = 0,

where ψ̃ = ψ
n+1/2
m−1/2 and ψ̂ = ψ

n+1/2
m+1/2. We remark that the scheme couples two time levels in contrast to Preissman scheme, which

involves three time levels (see Fig. 1). For the single NLS equation, the six-point difference scheme is derived in [12] and later
applied to the CNLS system in [9].

When S(z) is quadratic, which corresponds to the linear PDE in multi-symplectic form, using the Preissman scheme the local
discrete energy and discrete momentum would be preserved exactly. For the CNLS system, only the local norm (25) which contains
quadratic terms is preserved exactly. From the global invariants momentum I and N containing quadratics terms are also preserved
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exactly; in numerical experiments up to machine accuracy. Otherwise the local discrete energy and momentum, global energy are
not preserved exactly, but numerical results and backward error analysis show that they are very well preserved over long time
[14,15,27,28]. Backward error analysis with modified equations provides more information about the behavior of the numerical
solutions and preservation of modified energy and momentum conservation laws. It was shown for the NLS equation by using
Preissman scheme that the modified conservation laws are satisfied to a high-order by the numerical solution in [27]. Similar results
are obtained for the nonlinear wave equation and Sine–Gordon equation in [28].

In [9] the same multi-symplectic six-point scheme (28)–(29) is used for the simulation of soliton collisions of the CNLS system.
Energy and norm conservation properties of the scheme are shown analytically and for the global errors numerical results are
presented.

This multi-symplectic formulation characterizes the Hamiltonian PDEs more deeply than the symplectic formulation, because
the multi-symplectic conservation law is completely local whereas in the symplectic formulation the symplectic form is global and
its variations over the spatial domain are not reflected.

4. Numerical results

In this section, we will present numerical results for the symplectic splitting method (SPL) (17) and six-point integrator (MS6)
(28)–(29). The accuracy of both integrators are tested by looking at their conservation properties of energy, momentum and norm.

We consider the discrete nonlinear Hamiltonian (11) and the semi-discretized nonlinear subproblem (14). We define the discrete
energy density (see p. 328 in [16])

Em = 1

4

(
σ1

(
q1

2
m + q2

2
m

)2 + σ2
(
q3

2
m + q4

2
m

)2) + V (qm),

and find

d

dt
Em = σ1

(
q1

2
m + q1

2
m

)(
q1mq̇1m + q2mq̇2m

) + σ2
(
q2

3m
+ q2

4m

)(
q3mq̇3m + q4mq̇4m

)
+ v

(
q1mq̇1m + q2mq̇2m

)(
q2

3m
+ q2

4m

) + v
(
q2

1m
+ q2

2m

)(
q3mq̇3m + q4mq̇4m

) = 0

which shows that the energy is preserved for the semi-discretized nonlinear subproblem (14). Now we consider the discrete linear
Hamiltonian (10) and the semi-discretized linear subproblem (12). We define the discrete energy density

Em = −α1

2

[(
q1m+1 − q1m

�x

)2

+
(

q2m+1 − q2m

�x

)2]
− α2

2

[(
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+
(
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)2]
,

and find

d

dt
Em = −α1

[(
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�x

)]
.

Here we see that the difference (qj m+1 −qj m
)/�x is forward difference approximation to the canonical momenta pj , j = 1, . . . ,4,

in (21). Thus substituting pj m
= (qj m+1 − qj m

)/�x, j = 1, . . . ,4, in the previous equality, we have obtained the semi-discrete
energy conservation law

d

dt
Em + Fm+1 − Fm

�x
,

where

Fm = p1mq̇1m + p2mq̇2m + p3mq̇3m + p4mq̇4m.

Applying the implicit midpoint rule in time, we can use as residual

(30)Rse = En+1
m − En

m

�t
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n+1/2
m

�x

of a fully discretized local energy conservation of the symplectic splitting integrator (17) (see [12]) with
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and

F
n+1/2
m = p

n+1/2
1m

(
qn+1

1m
− qn

1m

�t

)
+ p

n+1/2
2m

(
qn+1

2m
− qn

2m

�t

)
+ p
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.

For the multi-symplectic six-point integrator the residual in the energy conservation is given by (see, for example, [15])

(31)Rms = En+1
m+1/2 − En

m+1/2

�t
+ F

n+1/2
m+1 − F

n+1/2
m

�x
.

The residuals in the momentum and norm conservation laws are defined analogously for both integrators.
The global energy error for both integrators is given by

GE = �x

N∑
j=1

(
En

j − E0),
where E0 is the initial energy. Global error in momentum and norm conservation laws can be define analogously.

We notice that for the invariant (31), we need the terms pn
i which have been turn up in the elimination process of the Preissman

scheme. The canonical momenta pj , j = 1, . . . ,4, in (21) are approximated by using the forward difference and implicit midpoint
rule for the SPL and MS6, respectively, to obtain the discrete terms pn

jm
.

4.1. Symmetric initial conditions

As symmetric initial conditions two initially perturbed periodic waves

(32)ψ1(x,0) = ψ10
(
1 − ε cos(lx)

)
, ψ2(x,0) = ψ20

(
1 − ε cos l(x + θ)

)
are used, where the parameter ε � 1 describes the strength of the perturbation, l is the wave number of the perturbation and θ

represents the initial phase difference between two perturbations [6]. The phase difference θ is set to zero in [5]. In both papers,
the wave numbers k1 and k2 have been taken to zero only for the purpose of showing the evolution of the solution clearly. In the
numerical experiments we choose l = 1/2 and ε = 0.1. As boundary conditions, periodic boundary conditions u(x, t) = u(x +L, t)

with L = 8π are used. The initial conditions (32) are symmetric, i.e.

ψ1(x,0) = ψ1(L − x,0), ψ2(x,0) = ψ2(L − x,0).

When the initial conditions are symmetric, the solutions ψ1(x, t) and ψ2(x, t) are symmetric too (see [10]).
The time initial was taken as T = [0,100]. For both integrators we have taken �x = L/128 and as time step size �t = 0.05.

The nonlinear equations arising in both integrators are solved using the simplified Newton method at each time step with an error
tolerance 10−5.

From the linear stability analysis [5], it follows that the plane wave solution is linearly stable if the wave number of perturbation
l is greater than the critical value lc depending on the initial amplitudes ψ10 and ψ20 of the unperturbed periodic waves, otherwise
it is unstable.

In the following we consider three different cases corresponding to elliptic, linear and circular polarizations as in [5,6].

4.1.1. Elliptic polarization (v = 1)

This is the integrable case that Manakov [1] studied. The critical value for the elliptic polarization is given by lc =√
2(ψ2

10 + ψ2
20). For the choice of ψ10 = ψ20 = 0.5, lc = 1, l = 0.5 which implies that the plane wave is unstable.

Fig. 2 provides the results with ψ10 = ψ20 = 0.5 and θ = 0. We see that, within that length there are two peaks which is called
as two-hump state and the amplitude of ψ1 and ψ2 undergoes oscillations between the near-uniform state and the two-hump state
as in the Hopscotch method [6] which is basically a Fermi–Pasta–Ulam recurrence phenomenon [29].

Fig. 3 shows the errors in local energy (30)–(31) and momentum conservation laws, for MS6 and SPL integrators. We see that
the local energy, momentum and the norm are well preserved for both integrators and they do not grow with time. But the data in
case of MS6 is noisy; a chekerboard instability arises. The errors are concentrated in the regions of the solutions where there are
two peaks.

In Fig. 4 global errors of energy, momentum and norm (26) are plotted. Momentum and norm are preserved up to the machine
accuracy for MS6 and SPL because both are quadratic invariants [10]. The global errors in the energy are almost the same for MS6
and SPL.
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Fig. 2. Elliptic polarization, v = 1: Destabilized wave solutions with ψ10 = 0.5, ψ210 = 0.5, ε = 0.1, θ = 0. Left plots: surface of |ψ1|. Right plots: surface of |ψ2|.
(a) and (b) for MS6, (c) and (d) for SPL.

4.1.2. Linear polarization (e = 2/3)

This is an non-integrable case. The critical value

lc =
√

ψ2
10 + ψ2

20 +
√(

ψ2
10 + ψ2

20

) − 20

9
ψ2

10ψ
2
20

which is lc = 0.91 for ψ10 = ψ20 = 0.5. Again the plane waves are unstable for l = 0.5.
Figs. 5(a), (b) and 6(a), (b) show that the initial phase difference in ψ2(x,0) effects the evolution of ψ1(x, t). From these figures

we see that, the spatial location of peaks in |ψ1(x, t)| is affected by those in |ψ2(x, t)|. We also notice that, within the introduction
of a phase difference between the initial conditions, the period of oscillation increases. To see this effect one can compare Figs. 5
and 6.

On the other hand, as for the Hopscotch method [6], a phase difference between the perturbations has no effect on the spatial
locations of peaks of ψ1 and on the periodicity of the evolution of ψ1. Figs. 5(c) and 6(c) shows the local energy errors. From
Figs. 5 and 6 one can see that the errors for the energy remain bounded. The errors are concentrated in the region where there are
two peaks as for the elliptic polarization. We see that within an introduction of a phase difference, the local energy error in MS6
increased whereas in the SPL it remains almost same. The local and global errors for the other invariants are almost same as in the
case of the elliptic polarization, which are not shown here.

4.1.3. Circular polarization (e = 2)

In nonlinear optics, this is the circular polarization mode case. This case is also nonintegrable. The interaction between perturbed
periodic waves is very strong since the wave–wave interaction coefficient v is two times the dispersion coefficients α1 = α2 = 1.
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Fig. 3. Elliptic polarization, v = 1: Local errors for destabilized wave solutions with ψ10 = 0.5, ψ20 = 0.5, ε = 0.1, θ = 0. Left plots for MS6. Right plots for SPL.

The critical perturbation wave number is

lc =
√

ψ2
10 + ψ2

20 +
√(

ψ2
10 + ψ2

20

)2 + 12ψ2
10ψ

2
20.

For ψ10 = ψ20 = 0.5, lc = 1.23 which is larger than l = 0.5, the plane waves are again unstable.
First we consider mass conservation (27), which is a quadratic invariant. For comparison our results with those in [6] obtained

by the Hopscotch method, we consider three different cases



A. Aydın, B. Karasözen / Computer Physics Communications 177 (2007) 566–583 577
Fig. 4. Elliptic polarization, v = 1: Global errors for destabilized wave solutions with ψ10 = 0.5, ψ20 = 0.5, ε = 0.1, θ = 0. Left plots for MS6. Right plots for SPL.

Table 1
Errors in mass conservation for circular polarization

(a) (b) (c)

C1(ψ1) C2(ψ2) C1(ψ1) C2(ψ2) C1(ψ1) C2(ψ2)

MS6 t = 50 0.6E–2 0.6E–2 0.5E–2 0.5E–2 0.6E–2 0.5E–2
100 3.6E–2 3.6E–2 7.7E–2 7.7E–2 1.9E–2 0.3E–2

SPL t = 50 0.1E–7 0.1E–7 6.7E–7 6.7E–7 0.2E–7 0.3E–7
100 0.2E–7 0.2E–7 0.1E–7 0.1E–7 0.5E–7 0.8E–7

(a) ψ10 = 0.5, ψ20 = 0.5, θ = 0,
(b) ψ10 = 0.5, ψ20 = 0.5, θ = 3π/2,
(c) ψ10 = 0.78, ψ20 = 0.2, θ = 0.

The integrals (27) are approximated by the trapezoidal rule in Table 1. They agree for the MS6 up to two first digits with the
exact values as for the Hopscotch method [6]. We notice that SPL gives more accurate results than the Hopscotch method and MS6.

The Hopscotch methods uses alternatively explicit and implicit Euler method over two time steps. Therefore it can be interpreted
as first-order symplectic Euler method for the semi-discretized Hamiltonian system (9) over two time steps. Hopscotch method is
conditionally stable, i.e. for some time step sizes �t it can lead to unstable solutions [30].

From Fig. 7 we can see, when the initial amplitudes are equal ψ10 = ψ20 = 0.5 and with no phase difference initially, the
evolution for the circular polarization is more complex than the elliptic and linear polarization cases. The results obtained using
MS6 integrators show that one peak splits into two peaks and two peaks emerge again. This phenomenon repeats itself throughout
the evolution. The same results were obtained in the Hopscotch method. However, the results obtained using the SPL integrator
show that after a period of time the separated peaks coupled together, remain stationary and oscillating in their strength. The local
errors in energy conservation for the MS6 scheme grow in time. But this growth is less than for the SPL scheme which shows a
chaotic behavior in long time dynamics.
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Fig. 5. Linear polarization, v = 2/3: Destabilized wave solutions with ψ10 = 0.5, ψ20 = 0.5, ε = 0.1, θ = 0. (a) and (b) Surfaces of |ψ1| and |ψ2|: (a) For MS6,
(b) for SPL. (c) Local energy errors: left plot for MS6; right plot for SPL.

4.2. Nonsymmetric initial conditions

We integrate now the CNLS (1) with the unsymmetric initial conditions

ψ1(x,0) =
√

2ζ

1 + e
sech

(√
2ζx

)
exp i

(
(ρ − δ)(x + 20)

)
,
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Fig. 6. Linear polarization, v = 2/3: Destabilized wave solutions with ψ10 = 0.5, ψ20 = 0.5, ε = 0.1, θ = 3π/2. (a) and (b) Surfaces of |ψ1| and |ψ2|: (a) For MS6,
(b) for SPL. (c) Local energy errors: left plot for MS6; right plot for SPL.

ψ2(x,0) =
√

2ζ

1 + e
sech

(√
2ζx

)
exp i

(
(ρ + δ)(x + 20)

)
,

where ζ , e and v are real constants [31]. This solution represents a solitary wave initially at x = −20. We compute the solitary wave
solution for α1 = α2 = 0.5, σ1 = σ2 = 1 and v = 2 with ρ = 1.0 and ζ = 1.0 on the interval −40 � x � 40. The spatial domain
have been chosen large enough so that the boundaries do no effect the solitary wave propagation.

Fig. 8 shows that the evolution of a single soliton is well simulated by MS6 and SPL. From the figure we see that the single
soliton is moving to the right with the velocity v = 2 for different times as in [31]. We notice that the errors in global energy
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Fig. 7. Circular polarization, v = 2: Destabilized wave solutions ψ10 = 0.5, ψ20 = 0.5, ε = 0.1, θ = 0. (a) For MS6; Left plot: Contour plot of wave |ψ1|, right plot:
Local energy error. (b) For SPL; Left plot: Contour plot of wave |ψ1|, right plot: Local energy error.

and momentum are bounded, whereas in errors of global norm are increasing similarly to the symmetric initial conditions given in
Fig. 4. The global energy is also well preserved as in case of symmetric initial conditions. We have discretized the odd derivatives in
the momentum using pseudo-spectral approximation like in [10]. The errors in the momentum are increasing with time like in [10]
where the single nonlinear Schrödinger equation was considered. But the errors in the momentum are almost negligible compared
to the errors in energy and norm.

Our results differ from those in [10] where for a single nonlinear Schrödinger equation with nonsymmetric initial conditions,
the momentum errors are increasing over time. We have to mention that in [10] the semi-discretized Hamiltonian system (9) was
integrated using the standard symplectic mid-point rule, whereas we have used a symplectic splitting composition method based on
the mid-point rule.

As a summary we can state that the qualitative behavior of the numerical solutions obtained here are similar to those in [5,6,10].
In addition to this, their accuracy can be controlled by looking at the conservation properties of the energy, momentum and norm,
which were not displayed in [5,6], because both methods used there are not structure-preserving.

4.3. Computational efficiency and higher-order generalizations

Both methods require solution of 4N ×4N linear systems of equations which results from the simplified Newton method at each
time step. MS6 requires approximately two times less computing time than SPL, because the SPL requires two nonlinear system of
equations due to composition (17).

Higher-order symplectic methods are based on the formula (17). For example, the fourth-order composition method can be given
as (see, for example, [18,20])
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Fig. 8. Circular polarization: One soliton solution with v = 2. Evolution of the wave ψ1 and global errors. Left plots for MS6. Right plots for SPL.

ϕ4(�t) = ϕ2(ω�t)ϕ2
(
(1 − 2ω)�t

)
ϕ2(ω�t),

where ω = (2 + 21/3 + 2−1/3)/3. The fourth-order composition method requires three times more computing time than the second-
order one.

Gauss–Legendre collocation methods are the higher-order generalization of the Preissman scheme, which were developed as
multi-symplectic integrators in [32]. Gauss–Legendre methods require coupled system of nonlinear equations for computing the
stage vectors. Multi-symplectic integrators based on Gauss–Legendre Runge–Kutta methods require to solve a system of s2N

equations. For higher-order schemes they can be computationally more costly than the composition methods based on symplectic
splitting.
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5. Conclusions

In this paper, a system of coupled nonlinear Schrödinger equations with unstable periodic plane wave solutions are integrated by
two special methods from the class of symplectic and multi-symplectic integrators. Both integrators preserve the energy, momentum
very well in long-time. Because the mass, norm and the global momentum are quadratic invariants, they are preserved by both
methods very accurately for long times. Although the multi-symplectic integrators possess a local nature, the numerical results
indicate that the symplectic scheme has very similar local preservation properties as the multi-symplectic six-point scheme. The
global invariants are preserved for both methods with almost the same accuracy. The local and global preservation properties of
the invariants of both methods are reflected in the plane wave solution like in Fig. 8(a) and (b) which are very close to each other.
Both methods are structure-preserving and the qualitative behavior of the solution can be checked by looking at the local and global
conservation of the invariants like energy, momentum, norm and mass. Therefore they are more favorable than those methods used
recently for plane waves with periodic solution in [5,6].

Due to the splitting of the Hamiltonian in linear and nonlinear parts and using the composition (17) in time, the symplectic
method requires more computing time than the multi-symplectic integrator. One could discretize the Hamiltonian using the cen-
tral difference approximation for space derivatives to obtain a finite-dimensional Hamiltonian system and without splitting the
Hamiltonian, discretize the time derivatives using a symplectic Gauss–Legendre Runge–Kutta method like in [12]. But as stated
in Section 4.3, higher-order generalizations of the implicit mid-point rule, the symplectic Gauss–Legendre Runge–Kutta methods
would require more computing time than the higher-order composition methods.

The residuals in the local energy are calculated for both methods using the formulas (30)–(31) which reflect the discretization in
time and space. We have observed almost the same local error behavior for the local energy for the splitting method using

Rse = En+1
m − En

m

�t
+ Fn

m+1 − Fn
m

�x

instead of using (30).
The choice of particular initial conditions like symmetric or nonsymmetric can affect the preservation of the invariants differently.

This should be investigated in future more in detail.
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