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A dynamic interactive theory of person construal is proposed. It assumes that the perception of other 

people is accomplished by a dynamical system involving continuous interaction between social 

categories, stereotypes, high-level cognitive states, and the low-level processing of facial, vocal, and 

bodily cues. This system permits lower-level sensory perception and higher-order social cognition to 

dynamically coordinate across multiple interactive levels of processing to give rise to stable person 

construals. A recurrent connectionist model of this system is described, which accounts for major 

findings on a) partial parallel activation and dynamic competition in categorization and stereotyping; 

b) top-down influences of high-level cognitive states and stereotype activations on categorization; c) 

bottom-up category interactions due to shared perceptual features; and d) contextual and cross-modal 

effects on categorization. The system’s probabilistic and continuously evolving activation states 

permit multiple construals to be flexibly active in parallel. These activation states are also able to be 

tightly yoked to ongoing changes in external perceptual cues and to ongoing changes in high-level 

cognitive states. The implications of a rapidly adaptive, dynamic, and interactive person construal 

system are discussed. 
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If humans treated every new stimulus as a unique 

experience, we would quickly drown in a bewildering 

amount of redundant information. To improve the situation, 

the cognitive system groups stimuli that share similar 

characteristics into meaningful categories (Murphy, 2002; 

Rosch, 1978). In general, such categorization has numerous 

benefits. The brown, four-legged, wooden flat surface 

appearing before your eyes is instantly rendered “table,” 

something to put things on, and not “chair,” something to sit 

on. This saves time in making sense of the object and leads 

to adaptive behavior (e.g., that you do not sit on a table). 

This is but one example of how, in sorting through an 

impossibly complex world, categorization provides an 

efficient cognitive strategy to make the perceiver’s job far 

easier. 

The benefit of streamlining mental resources by 

categorizing other people rather than furniture, however, is 

not so straightforward. Indeed, social psychologists 

recognized the tremendous implications of person 

categorization early on. Seminal writers, such as Allport 

(1954), Sherif (1967), and Tajfel (1969), converged on the 

argument that categorizing other people was an inevitable 

economizing strategy used to simplify the cognitive 

demands of dealing with others. Their work had wide-

sweeping influences on person perception research, and for 

nearly half a century their arguments set the stage for work 

on social categorization. Mere exposure to another person, it 

was thought, automatically triggered a relevant social 

category (e.g., sex, race, age), and along with that category, 

its corresponding knowledge structure. Activating category 

knowledge, it was shown, spontaneously triggered a variety 

of cognitive, affective, and behavioral outcomes. Countless 

studies documented how a White person’s exposure to a 

Black man, for instance, unleashes a specific cascade of 

events. Encountering a Black man automatically activates 

the category, Black, which molds subsequent judgments and 

impressions (e.g., “he’s aggressive”), triggers evaluations 

(e.g., “I don’t like him”), and elicits patterns of behavior 
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(e.g., increases in aggression; Bargh, 1994; Bargh, 1999; 

Brewer, 1988; Devine, 1989; Dovidio, Kawakami, Johnson, 

Johnson, & Howard, 1997; Fazio, Jackson, Dunton, & 

Williams, 1995; Fiske & Neuberg, 1990; Gilbert & Hixon, 

1991; Sinclair & Kunda, 1999). It became clear that social 

categorization influenced stereotyping and prejudice and 

had a powerful role in shaping interpersonal interaction. 

Given the implications, social psychological research placed 

a great deal of focus on the downstream dynamics of 

categorization, on the ways that categorical thinking shapes 

interpersonal outcomes. 

Until quite recently, person perception research by and 

large investigated how perceivers make judgments and 

evaluations from written behavioral descriptions (but see 

McArthur & Baron, 1983). Real-world social targets, 

however, are not generally encountered through behavioral 

descriptions. Rather, in real life perceivers encounter other 

people first through sensory cues of the face, voice, and 

body. The theoretical and empirical work examining the 

links between lower-level perceptual processing and higher-

order social cognition began only recently (see 

Bodenhausen & Macrae, 2006; Zebrowitz, 2006). Although 

it was long understood that perceivers frequently categorize 

other people along a variety of dimensions (e.g., sex, race, 

age) from mere exposure to their face (Brewer, 1988; Fiske 

& Neuberg, 1990; Strangor, Lynch, Duan, & Glas, 1992), 

the mechanisms and perceptual determinants underlying 

these categorizations received considerably less attention.    

While social psychologists were documenting the 

downstream implications of perceiving others, cognitive 

psychologists and neuroscientists were examining person 

perception from a different perspective. They were 

concentrating their efforts on investigating the perceptual 

mechanisms of face processing (Bruce & Young, 1986; 

Burton, Bruce, & Johnston, 1990; Calder & Young, 2005; 

Farah, Wilson, Drain, & Tanaka, 1998; Haxby, Hoffman, & 

Gobbini, 2000). Recently, by integrating the social cognitive 

framework of person perception with insights from the 

cognitive literature on face processing, a growing body of 

research has begun to link lower-level perceptual processing 

with higher-order social cognition. This emerging body of 

work has come to be referred to as “person construal” 

research. Traditional social cognition research focused on 

the relatively high-level cognitive processes involved in 

person categorization and individuation, especially how 

these shape downstream phenomena (e.g., stereotyping, 

behavior). Person construal research, on the other hand, 

seeks to understand the lower-level perceptual mechanisms 

that produce these social cognitive phenomena in the first 

place.  

 

Purpose of the Article 

 

Social cognition researchers have developed a number of 

models of person perception, including models that explain 

how we reason about other people and infer their personality 

traits, how we categorize and individuate, and how explicit 

knowledge and memory of other people is learned, stored, 

and accessed (Bodenhausen & Macrae, 1998; Brewer, 1988; 

Chaiken & Trope, 1999; Fiske, Cuddy, Glick, & Xu, 2002; 

Fiske & Neuberg, 1990; Higgins, 1996; Kunda & Thagard, 

1996; Read & Miller, 1998b; Smith & DeCoster, 1998; 

Srull & Wyer, 1989; van Overwalle & Labiouse, 2004). 

These models tend to place categorization as a starting 

point, after which subsequent interpersonal phenomena are 

richly explained (e.g., impressions, memory, behavior). 

Thus, the focus of these models is not to explain the 

categorization process; it is to explain the higher-order 

social cognitive processing that comes after. 

Person construal research seeks to examine the lower-

level perceptual mechanisms and determinants of 

categorization, including how categories and stereotypes are 

activated from cues of the face, voice, and body. To our 

knowledge, there has yet to be a comprehensive framework 

that details how such lower-level perceptual processing 

contributes to higher-order social cognitive phenomena. 

Here, we introduce such a framework, which utilizes 

increasingly popular approaches to cognition, namely 

connectionism and dynamical systems theory (Kelso, 1995; 

Port & van Gelder, 1995; Rogers & McClelland, 2004; 

Rumelhart, Hinton, & McClelland, 1986; Smolensky, 1989; 

Spivey, 2007). Recently, researchers have applied 

connectionist models to understand social cognitive 

phenomena as well (e.g., Kunda & Thagard, 1996; Read & 

Miller, 1993, 1998a; Read, Vanman, & Miller, 1997; Smith 

& DeCoster, 1998, 1999; van Overwalle, 2007; van 

Overwalle & Labiouse, 2004; Zebrowitz, Fellous, Mignault, 

& Andreoletti, 2003). In the present article, we apply 

connectionism and dynamical systems theory to 

comprehensively explain the process of person construal. 

Thus, we aim to provide a framework that explains social 

categorization processes at a perceptual level and links these 

processes to the higher-order social cognitive phenomena 

emphasized in prior models of person perception.  

In the past decade, person construal research has 

documented a number of fascinating effects that have yet to 

be comprehensively accounted for by theoretical models. 

These range from findings of partial parallel activation, 

dynamic competition and continuous temporal dynamics, 

contextual and cross-modal effects on categorization, 

bottom-up category interactions due to shared perceptual 

features, and top-down effects on categorization, such as 

influences of motivational state, stereotype activation, and 

prejudice, among others (e.g., Becker, Kenrick, Neuberg, 

Blackwell, & Smith, 2007; Eberhardt, Dasgupta, & 

Banaszynski, 2003; Freeman & Ambady, 2009, in press; 

Freeman, Ambady, Rule, & Johnson, 2008; Freeman, 

Pauker, Apfelbaum, & Ambady, 2010b; Hugenberg & 

Bodenhausen, 2003, 2004; Pauker et al., 2009). Together, 

these emerging findings suggest that person construal is a 

dynamic and highly interactive process. Here, we will offer 
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a framework for person construal that can explain these 

recent advances. 

First, we will describe our dynamic interactive theory of 

person construal. Then, we will introduce a computational 

model that captures our theoretical claims. We will then 

explain how a number of recent findings are consistent with 

the model, and we will conduct several simulations to 

demonstrate this. Lastly, we will discuss how the theory and 

model compare with extant accounts, and we will discuss 

several important implications for present understandings of 

person construal. 

 

A Dynamic Interactive Theory of Person Construal 

 

We view the task of perceiving others as a dynamic 

interactive process, and we expound on this view below. 

 

Top-Down and Bottom-Up Interactivity 
In perceiving the world, we are continually extracting 

sensory information to guide our attempts in discerning 

what it is that lies before us. Even with the most mundane 

kinds of construal, such as perceiving objects or 

environments, we bring a great deal of knowledge to the 

perceptual process. This is only truer in the case of 

perceiving other people. Our rich set of prior experiences 

with another person or the regularities in our experience 

with whole groups of people (e.g., sex, race, age) 

undoubtedly provide a lens through which we construe 

others. Beyond the prior knowledge that might contextualize 

perception, our everyday encounters with others are also 

replete with complex affective and motivational states. 

Though there is much prior knowledge about the objects or 

environments we might encounter, this only pales in 

comparison to what is brought to the table when perceiving 

other people. We may have stereotypic beliefs about people 

of a certain sex, we may feel disdain for someone who has 

made us cry, or we may be motivated to make a good 

impression in order to land the job. In short, there is an 

enormity of prior knowledge and high-level states that may 

be brought to bear on the perception of our social world. 

Although traditionally it was long assumed that perception 

is primarily a bottom-up phenomenon and insulated from 

any top-down influence of higher-order processes (e.g., 

Fodor, 1983; Marr, 1982), it is becoming increasingly clear 

that perception arises instead from both bottom-up and top-

down influences, likely mediated by large-scale neural 

oscillations (e.g., Engel, Fries, & Singer, 2001; Gilbert & 

Sigman, 2007). Even the earliest of responses in primary 

visual cortex, for example, are altered by top-down factors 

(Li, Piëch, & Gilbert, 2004). We argue, therefore, that our 

prior knowledge and expectations about people, our 

stereotypes, and our affective and motivational states may 

all dynamically interact with incoming sensory information 

in the perceptual process to shape person construal.  

The person construal process invites another form of 

interactivity as well, one that is driven directly by the 

incoming sensory information itself. Whereas the perception 

of an object, for example, generally affords only one focal 

type of construal (e.g., “that’s a table”), multiple construals 

are simultaneously availed to person perceivers, including 

sex, race, age, emotion, or inferences of personality 

characteristics, to name a few. Given how many construals 

are available, sometimes the perceptual cues supporting 

certain construals will, by chance, overlap. For instance, the 

cues specifying another person’s sex and emotional state 

can overlap (Becker et al., 2007). An adult’s facial features 

might by chance happen to overlap with the facial features 

more common in babies or with the facial features of 

another person we know, in turn shaping our inferences of 

his or her personality characteristics (Zebrowitz & 

Montepare, 2008). Thus, certain person construals may be 

thrown into interaction with one another because they are 

directly confounded in the bottom-up sensory information 

itself. 

 

Time Dependence and Continuous Temporal Dynamics 

We argue that the process of person construal is 

dynamic, in the sense that it takes time and fluctuates over 

time, and that representations triggered during this process 

are inherently time-dependent. For instance, recent evidence 

shows that, after catching sight of another person, 

representations of social categories and stereotypes 

dynamically evolve across hundreds of milliseconds until 

stabilizing over time (Freeman & Ambady, 2009; Freeman 

et al., 2008; Freeman et al., 2010b; also see Kunda, Davies, 

Adams, & Spencer, 2002). Thus, at each moment during the 

categorization process, representations are varying as a 

function of time, making time-dependent transitions 

between, for instance, ~0% activation and ~100% activation 

(Dale, Kehoe, & Spivey, 2007; Freeman et al., 2008). This 

is not particularly surprising when considering how a social 

categorization would be implemented in an actual human 

brain.  

For instance, there is now a great deal of evidence 

suggesting that mental representations, as realized in the 

brain, are neuronal populations that convey information 

(e.g., “he’s a man!”) through patterns of activity distributed 

across many neurons (Rogers & McClelland, 2004; Spivey, 

2007; Spivey & Dale, 2004). This was confirmed with 

regard to representations of the face by studies that recorded 

populations of temporal cortex neurons in nonhuman 

primates (Rolls & Tovee, 1995; Sugase, Yamane, Ueno, & 

Kawano, 1999). Thus, most modern-day accounts assume 

that mental representations, such as a representation of a 

social category, involve continuous changes in a pattern of 

neuronal activity (e.g., Rogers & McClelland, 2004; Smith 

& Ratcliff, 2004; Spivey, 2007; Spivey & Dale, 2004; Usher 

& McClelland, 2003). For instance, about 50% of a face’s 

identity is transiently represented in macaque temporal 

cortex as early as only 80 ms after a face’s presentation, but 

the remaining 50% of its representation gradually 

accumulates over the following hundreds of milliseconds 
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(Rolls & Tovee, 1995). Thus, in early moments of 

processing representations of a face’s category memberships 

would reflect a rough “gist,” because the initial rough sketch 

of the face is partially consistent with multiple 

interpretations (e.g., both male and female). As the ongoing 

accrual of more and more information continues, however, 

the pattern of neuronal activity gradually sharpens into an 

increasingly clear interpretation (e.g., male) while other 

competing, partially-active representations (e.g., female) are 

pushed out (Freeman, Ambady, Midgley, & Holcomb, in 

press; Freeman et al., 2008; Smith & Ratcliff, 2004; Spivey 

& Dale, 2004; Usher & McClelland, 2003). 

Indeed, by tracking the categorization process as it 

unfolds in real-time (through measuring the trajectory of 

hand movements en route to category responses on a 

screen), such a dynamic competition between multiple 

partially-active representations has been observed (Dale et 

al., 2007; Freeman & Ambady, 2009; Freeman et al., 2008; 

Freeman et al., 2010b). These findings suggest that a single 

category representation (e.g., male) does not discretely 

activate at an instantaneous moment after a target’s 

presentation, nor does a single category representation 

transition from zero activation to full activation across time. 

Instead, such findings suggest that person construal involves 

alternative, competing categories that are simultaneously 

and partially active, and these evolve over time until 

stabilizing onto ultimate construals. Given such continuous 

dynamics, we argue that person construal is a temporally 

dynamic process and that person construal phenomena (e.g., 

a social categorization; activation of a stereotype) are best 

understood as gradual time-dependent transitions between 

mental states (e.g., from state A, the initial sight of another 

person, transitioning to state B, the ~100% confident 

recognition that the person is a White man). Further, we 

argue that during this time-dependent process, 

representations of a person’s category memberships (e.g., 

male, White) as well as other candidate category 

memberships (e.g., female, Black, Asian) are rapidly 

fluctuating over time until achieving a stable, steady state.  

 

Complex Integration 

Person construal routinely involves complex integration. 

Even the simplest of construals, such as categorizing a 

person’s sex, requires simultaneous integration of an 

enormous amount of information. For instance, all the 

various cues of the internal face in addition to peripheral 

cues such as hair must be integrated into a coherent 

interpretation of a target’s sex. In many person construal 

tasks of the laboratory, this may be the only information 

available to perceivers—and even these simple tasks require 

already a substantial integration among cues. In everyday 

person construal and more complicated laboratory tasks, 

however, the integration is even more complex. For 

instance, perceivers receive information from multiple 

sensory modalities at the same time. Thus, to perceive the 

sex of real-world social targets, sex-specifying cues of the 

face and body arriving in the visual system must be 

integrated together with the vocal cues arriving in the 

auditory system. Moreover, not only does bottom-up 

sensory information need to be integrated, so too do top-

down informational sources, as described earlier. For 

instance, high-level motivational states influence the 

perception of a face’s race (Pauker et al., 2009). Moreover, 

priming context, expectations, stereotypes, cultural 

knowledge, among many other top-down factors, shape 

basic perceptions (e.g., Balcetis & Dunning, 2006; 

Eberhardt et al., 2003; Hugenberg & Bodenhausen, 2004; 

Johnson, Pollick, & McKay, 2010; MacLin & Malpass, 

2001; Pauker, Rule, & Ambady, 2010). Thus, there is a 

complexity of information involving many sources—some 

bottom-up, some top-down—that must be integrated 

together in a very short amount of time to perceive others.  

 

Theoretical Claims 

In consideration of the above, we propose that 

perceptions of other people are accomplished by a 

dynamical system in which they gradually emerge through 

ongoing cycles of interaction between categories, 

stereotypes, high-level cognitive states, and the low-level 

processing of facial, vocal, and bodily cues. As such, this 

system permits lower-level sensory perception and higher-

order social cognition to continuously coordinate across 

multiple interactive levels of processing to give rise to stable 

person construals. We capture this dynamic interactive 

theory of person construal with a computational model, 

which is introduced below. 

 

The Integrative Power of a Recurrent Connectionist 

Network 

Dynamical systems, such as a recurrent connectionist 

network or the human brain, are powerful in their ability to 

integrate multiple simultaneous sources of information. In a 

recurrent connectionist network, there are a number of 

nodes with connections that can be positive (excitatory) or 

negative (inhibitory). These nodes are not intended to 

represent individual neurons, but the overall structure of a 

network is often intended to be approximately neurally 

plausible. Arguably, nodes may operate like large 

populations of neurons and the connections between them 

operate like synapses (Smolensky, 1989). The critical 

feature of a recurrent connectionist network, which 

distinguishes it from other (feedforward) connectionist 

networks, is that many of these connections are 

bidirectional. Thus, as one node’s activation tends to excite 

the nodes connected to it, the excitation of the nodes 

connected to it send feedback to the original node. Thus, 

many nodes in a recurrent network experience feedback, 

where they both influence and are influenced by the other 

nodes connected to them. Indeed, it is now clear that many 

neuronal projections in the human brain are bidirectional, 

producing recurrent feedback loops across both local and 

large-scale neural networks (e.g., Brefczynski & DeYoe, 
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1999; Dragoi, Sharma, & Sur, 2000; Lamme & Roelfsema, 

2000, also see Spivey, 2007). Thus, recurrent connectionist 

networks have relatively high neural plausibility 

(Smolensky, 1989). It is this feedback among nodes that 

leads to the powerfully integrative nature of a recurrent 

network. Initially, a network is stimulated by external input. 

This input could come from bottom-up sources (e.g., facial 

or vocal cues) as well as top-down ones (e.g., motivation, 

task demands, prejudice). Activation then spreads among all 

nodes simultaneously (as a function of their connection 

weights). Because many of the nodes receive feedback, 

complex feedback loops are produced within the system. 

This causes the system to dynamically converge on an 

overall stable pattern of activation that best fits the input. 

This convergence involves the network’s flows of activation 

gradually settling into a stable, steady state, where the 

activation of each node reaches an asymptote (Smolensky, 

1989).  

Dynamic constraint satisfaction. Because a node’s 

activation is a function of all the positive and negative 

connections to other nodes that are activated in parallel, the 

final activation of a node (i.e., when the system stabilizes on 

a steady state) can be thought of as the satisfaction of 

multiple constraints. Each connection between nodes is a 

constraint. For instance, a node representing the category 

MALE might excite and be excited by another node 

representing the stereotype AGGRESSIVE. When these two 

nodes are incorporated in a larger recurrent network that is 

stimulated by, for instance, a male face, this MALE–

AGGRESSIVE between-node connection serves as a 

constraint on the network. That is, for the network to ever 

achieve a stable state, activation must flow through that 

connection and incorporate it into an overall stable pattern 

(in addition to all other connections). Thus, the steady states 

that a recurrent network eventually stabilizes on are end-

solutions that maximally satisfy all the constraints in the 

network, including between-node connections (e.g., MALE–

AGGRESSIVE) and the input (e.g., facial cues, vocal cues, 

task demands, prejudice). As such, nodes in a recurrent 

network constrain each other in finding a best overall 

pattern that fits the input. In person construal, therefore, the 

stable states that a recurrent network achieves could be 

thought of as the satisfaction (i.e., integration) of many 

pieces of potentially conflicting information, including 

bottom-up sources (e.g., facial cues), in addition to top-

down ones (e.g., motivational factors, task demands). This 

property of recurrent connectionist networks—dynamic 

constraint satisfaction—makes these networks powerfully 

integrative, much like the person construal process itself. A 

thorough explanation of how a dynamical system with 

feedback leads to the emergent ability to stabilize on steady 

states that maximally satisfy system constraints is beyond 

the scope of this article, but extensive discussions may be 

found elsewhere (e.g., Hopfield, 1982; Rumelhart et al., 

1986; Smolensky, 1989).  

Attractor dynamics. The stable states that a recurrent 

network settles into may be described as attractors (see 

Churchland & Sejnowski, 1989), in the sense that the 

network is attracted to be in that activation pattern (because 

it maximally satisfies all the constraints). Given different 

initial conditions (e.g., different faces, different high-level 

cognitive states), a network has many attractive overall 

patterns of activation (attractors) that it will gravitate 

towards. The mathematical properties of the phenomenon of 

attraction, which is inherent to nonlinear dynamical systems 

across nature (including cognitive and neural systems), has 

been studied extensively (with respect to cognitive and 

neural systems, see Churchland & Sejnowski, 1989; 

Izhikevich, 2006; Kelso, 1995; Rumelhart et al., 1986; 

Spivey, 2007).  

If we modeled sex categorization in a recurrent 

connectionist network, for instance, eventual judgments 

(e.g., “that’s a man!”) would simply correspond with the 

person construal system gradually stabilizing on a state of 

activation that best fits the input (e.g., a male face). Thus, 

we can conceive person construal as the process by which 

the person construal system settles into an attractor state—

the overall pattern of activation that provides the best global 

and integrated solution for the various inputs. These inputs 

would include visual cues of the face, but also potentially 

many other simultaneous inputs, such as visual cues of the 

body, vocal cues, motivations, task demands, among many 

others. Thus, the attractor dynamics of a recurrent 

connectionist network allow multiple sources of 

information—both bottom-up cues and top-down factors—

to powerfully interact and integrate over time to produce 

stable person construals.  

 

Structure of the Model 

A diagram of the dynamic interactive model of person 

construal appears in Figure 1. It provides a general 

description of what specific instantiations of the model 

would involve, although specific instantiations of the model 

need not (and often will not) involve all elements appearing 

in Figure 1. The model has a recurrent connectionist 

architecture that may be classified as a stochastic interactive 

activation network (McClelland, 1991; Rumelhart et al., 

1986). How the activation of a node changes over time is 

determined by three factors: the node’s prior activation, how 

quickly this activation decays, and the net input of 

activation into the node from other nodes. We assume that 

excitation and inhibition summate algebraically, and that the 

influence of input on a node is dependent on the node’s 

prior history of activation. We also assume that processing 

is stochastic rather than deterministic (see McClelland, 

1991). On each iteration, therefore, the input to every node 

is altered by normally distributed random noise. Thus, the 

system’s activation states are inherently probabilistic. 

Before the presentation of each stimulus, activations of 

all nodes in the network are set equal to a resting activation 

value (zero), and external inputs are presented to certain 
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Figure 1. A general diagram of the dynamic interactive model of person construal. 
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nodes for processing. When at resting activation level, a 

node is inactive and therefore assumed to not be represented 

in the processing landscape. Processing occurs over a 

number of iterations. On each iteration, each node computes 

its net input from the nodes connected to it based on their 

latest activation. Specifically, the net input to node i is: 

 

 
 

where wij is the connection weight to node i from node j, oj 

is the greater of 0 and the activation of node j, exti is any 

external input to node i, and ε
σ
 is a small amount of 

normally distributed random noise with mean 0 and 

standard deviation σ. Once the net input into all nodes has 

been computed, the activation of node i is updated as: 

 

If neti > 0: 

 
 

If neti ≤ 0: 

 

such that M is the maximum activation, m is the minimum 

activation, r is the resting activation level, I is a constant 

that scales the influence of external inputs on a node, and D 

is a constant that scales a node’s tendency to decay back to 

rest. In all instantiations of our model, the parameters are as 

follows: M = 1, m = –0.2, r = 0, I = 0.4, D = 0.1, and σ = 

0.01. These are standard values used in connectionist 

networks of this type (McClelland, 1991; Rumelhart et al., 

1986).  Connection weights will be specified for each 

instantiation of the model later.  

We assume that the person construal system is organized 

into 4 interactive levels of processing: cue level, category 

level, stereotype level, and a higher-order level. Within each 

of these levels are one or several pools of nodes (Figure 1). 

Most nodes represent some feature or micro-hypothesis. For 

instance, the RACE pool would include a node for WHITE 

category and another node for BLACK category. Most of 

these pools are competitive in the sense that all the nodes 

are mutually exclusive and related by inhibitory 

connections. However, this is not necessarily the case for all 

pools. For instance, in the STEREOTYPES pool would be 

many nodes for different stereotypes. Some of these may 

inhibit one another (and thus be competitive), such as 
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AGGRESSIVE and NICE, whereas others might have no 

relationship with one another, and some others might excite 

one another, such as AGGRESSIVE and DANGEROUS.  Nodes 

that excite another node have a positively weighted 

connection, nodes that do not influence another node have 

no connection (zero weight), and nodes that inhibit another 

node have a negatively weighted connection.  

Each node has a transient level of activation at every 

moment in time. This level of activation corresponds with 

the strength of a tentative interpretation or hypothesis that 

the node is represented in the input (e.g., a face). Thus, in 

situations where a face is presented, the activation level of 

the MALE category node could be said to represent, at every 

moment in time, the strength of the hypothesis that the face 

is male. A node whose activation level exceeds a threshold 

excites other nodes with which it has an excitatory 

connection and inhibits other nodes with which it has an 

inhibitory connection. Importantly, most of the connections 

in our model are bidirectional, producing feedback and 

making the network highly interactive.  

In simulations, the network’s ultimate response is given 

by the response alternative associated with the node with the 

largest activation in a pool after a given amount of iterations 

(once the network has stabilized). The network’s reaction 

time is given by the number of iterations it takes to for the 

winning node to reach 90% of its final activation state, 

which is then scaled by and added with constants to 

approximate human reaction time data (ms). 

Cue level. The cue level contains a set of detectors for 

visual features (facial and bodily cues) and auditory features 

(vocal cues), which are directly stimulated by bottom-up 

sensory information of another person. The cue level 

contains two pools: a FACE/BODY CUES pool and a VOICE 

CUES pool. Sensory information of another person arriving 

in the visual system (facial and bodily cues) directly 

activates nodes in the FACE/BODY CUES pool. Sensory 

information arriving in the auditory system (vocal cues) 

directly activates nodes in the VOICE CUES pool. Depending 

on specific modeling interests, these pools have the 

flexibility to contain different arrangements of nodes. For 

instance, the FACE/BODY CUES pool could contain one node 

corresponding with all male facial features and another node 

corresponding with all female facial features. However, 

different strategies could be used. For instance, one node 

could describe a specific feature (e.g., LONG HAIR or DARK 

SKIN). Similarly, the VOICE CUES pool could contain a node 

corresponding with all male vocal features or it could 

contain a node corresponding with something specific such 

as FORMANT RATIO.  

Nodes for cues that are along the same dimension (e.g., 

MALE CUES and FEMALE CUES) are related by mutually 

inhibitory connections because they compete for the same 

visual/auditory input. Thus, excitation of the MALE CUES 

node will inhibit the FEMALE CUES node, and vice-versa. 

Nodes that have no direct relationship with one another 

(e.g., LONG HAIR and DARK SKIN) have no connection 

between them. Cue nodes excite all category nodes 

consistent with them and inhibit all of those inconsistent 

with them. For instance, the cue node for male facial 

features would activate the MALE category node and inhibit 

the FEMALE category node. Similarly, the cue node for 

female facial features would activate the FEMALE category 

node and inhibit the MALE category node. Note that the 

connections between cue nodes and category nodes are 

bidirectional. Thus, cue nodes both influence and are 

influenced by category nodes. This produces feedback and a 

recurrent flow of activation, as discussed earlier. 

Category level. The category level contains a number of 

competitive pools that correspond with social category 

dimensions. For instance, in Figure 1, we have 4 pools: SEX, 

RACE, AGE, and EMOTION. Any number of different 

categories could be used, however (e.g., SOCIAL CLASS, 

SEXUAL ORIENTATION, OCCUPATION, ETHNICITY). These 

could include categories that are relatively static (e.g., sex) 

as well as categories that are dynamic (e.g., emotion).
 1
 Each 

of these pools contain category nodes. The pool for SEX 

would include a MALE node and a FEMALE node; the pool 

for RACE would include, for example, a WHITE node, a 

BLACK node, and an ASIAN node. Nodes within a pool 

compete with one another through mutual inhibition. In the 

broad model depicted in Figure 1, bidirectional connections 

exist between all 4 of the category pools. This is not 

required for all instances of the model, but they are depicted 

because in some instances category nodes may be directly 

related to one another. For instance, if perceivers have 

learned in their lifetime that women tend to be happy and 

men tend to be angry (see Fabes & Martin, 1991), then the 

node for MALE (in the SEX pool) may have a bidirectional 

excitatory connection with ANGRY (in the EMOTION pool). 

Similarly, the node for FEMALE may have a bidirectional 

excitatory connection with HAPPY.  

Category nodes receive input from cue nodes (which 

directly receive bottom-up sensory information) and they 

also send feedback to cue nodes. Category nodes activate 

stereotype nodes (e.g., MALE excites AGGRESSIVE and 

FEMALE excites DOCILE), and they also receive feedback 

from these nodes as well. Thus, not only will the category 

node, MALE, tend to activate the stereotype node, 

AGGRESSIVE, but activation of AGGRESSIVE will tend to 

activate the MALE category. This type of feedback is 

important, and we will discuss it in detail later. Finally, 

category nodes may activate and be activated by higher-

order nodes.  

Stereotype level. The stereotype level contains one pool 

including nodes for all category-related stereotypes (e.g., 

AGGRESSIVE or DOCILE). Within this, nodes could mutually 

1Although a dynamic characteristic, such as emotion, changes 

over time, it exhibits categorical perception effects similar to 

those of static characteristics, and the perception of emotion is a 

form of perceptual categorization (Calder, Young, Perrett, Etcoff, 

& Rowland, 1996; Etcoff & Magee, 1992). 
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inhibit or mutually excite one another. For instance, 

AGGRESSIVE and DANGEROUS would mutually excite one 

another, but AGGRESSIVE and DOCILE may mutually inhibit 

one another. Stereotype nodes receive input from category 

nodes and send feedback to them. Stereotype nodes also 

receive input from higher-order nodes and send feedback to 

them as well.  

Higher-order level. Nodes in this level may correspond 

with any number of high-level cognitive states, depending 

on what is being modeled. They could include factors such 

as prejudice, motivations, processing goals, task demands, 

among others. We assume that these nodes receive direct 

input from higher levels of mental processing (e.g., 

motivational systems or top-down attentional systems). 

Higher-order nodes may influence category nodes or 

stereotype nodes, or both. Moreover, they may have a 

bidirectional connection with these nodes or simply a 

unidirectional top-down connection only.  

For instance, higher-order nodes could be used to model 

high-level task demands in a particular context. One higher-

order node could denote SEX TASK DEMAND and another 

node could denote RACE TASK DEMAND. During a sex 

categorization task, the higher-order SEX TASK DEMAND 

node would be directly activated by higher-level input (e.g., 

top-down attentional systems, driven by memory of task 

instructions). Activation of this higher-order node would 

then have top-down excitatory connections with sex-related 

category nodes (MALE and FEMALE), but have top-down 

inhibitory connections with race-related category nodes 

(WHITE, BLACK, ASIAN), since the task demand compels 

attention to sex and away from race. As such, attentional 

effects due to task demands (e.g., placing attention on sex 

and away from race in a sex categorization task) emerge out 

of the flows of activation between these higher-order task-

demand nodes and the category nodes, consistent with other 

computational models accounting for task demands (e.g., 

Cohen & Huston, 1994). This is one example of how the 

higher-order level could be used to model top-down effects 

from internal cognitive states, such as task demands, 

memory, affect, motivations, expectations, situational 

context, among others. 

 

An Example 
We now consider a specific instantiation of the model 

involving the category and stereotype activation of sex and 

race (Figure 2). We only use a select amount of the pools 

from the general model (Figure 1). Namely, we only use the 

FACE/BODY CUES pool, the SEX category pool, RACE 

category pool, STEREOTYPES pool, and HIGH-LEVEL pool. 

Solid-line connections with arrows are excitatory (positive 

weight) and dashed-line connections with dots are inhibitory 

(negative weight). Arrows and dots indicate the direction of 

influence (in this instantiation, all influences are 

bidirectional). 

Let us consider the dynamics of the network when it is 

presented with a face. Visual input of the face directly 

activates nodes in the cue level. For simplicity, we use 

individual cue nodes to represent all facial features 

associated with a category. Thus, there is a cue node for 

MALE CUES, FEMALE CUES, BLACK CUES, WHITE CUES, 

and ASIAN CUES. The cue nodes specifying a target’s sex 

(MALE CUES and FEMALE CUES) nodes mutually inhibit one 

another, and the cue nodes specifying a target’s race 

(BLACK CUES, WHITE CUES, and ASIAN CUES) also 

mutually inhibit one another. Cue nodes excite category 

nodes consistent with them and inhibit category nodes 

inconsistent with them. They also receive feedback from 

category nodes. At the same time that cue nodes receive 

input from visual processing, higher-level input directly 

activates higher-order nodes. Here, we use one node to 

denote a task-induced state that compels excitation of the 

sex-category dimension and another node to denote a task-

induced state that compels excitation of the race-category 

dimension. The higher-level input in this case would 

originate from top-down attentional systems driven by 

memory of the task instructions. These higher-order SEX 

TASK DEMAND and RACE TASK DEMAND nodes mutually 

inhibit one another. Moreover, they excite category nodes 

consistent with them, inhibit category nodes inconsistent 

with them, and are also activated by category nodes as well. 

Thus, activation of the RACE TASK DEMAND node would 

facilitate activation of race categories (BLACK, WHITE, 

ASIAN) and inhibit activation for sex categories (MALE, 

FEMALE), and vice-versa for the SEX TASK DEMAND node.  

As category nodes are activated by cue nodes and 

higher-order nodes, they also excite stereotype nodes 

consistent with them and inhibit stereotype nodes 

inconsistent with them. Here we use two stereotype nodes: 

AGGRESSIVE and DOCILE. These nodes mutually inhibit one 

another. Further, as category nodes excite and inhibit 

stereotype nodes, they are also updated by feedback from 

the stereotype nodes. Many more stereotype nodes could be 

included in the model to capture the full gamut of a 

category’s stereotype contents, but for simplicity we use 

AGGRESSIVE as one example of male-related and Black-

related stereotypes and DOCILE as one example of female-

related and Asian-related stereotypes. We will describe 

simulations of this model that can predict several 

phenomena found in human perceivers. Before this, 

however, first we describe important properties of the 

general model (Figure 1). 

 

Properties of the Model 

Dynamic, probabilistic, and mutually interactive 

representations. The representations in our model are 

interactive, rather than rigid and independent. This is 

because our model assumes the person construal system 

experiences large ongoing cycles of interaction between 

each representation in the system. Thus, the activation of 

one representation influences all other representations in the 

system, as one node’s activation influences the activation of 

all other nodes. For example, consider the presentation of a 
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Figure 2. An instantiation of the model, used for simulations to account for Phenomena 1 and 3. 
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male face. Direct stimulation of the MALE CUES node will 

facilitate the MALE category, which will inhibit the FEMALE 

category, which will inhibit the stereotype, DOCILE, in turn 

inhibiting the category, ASIAN, in turn facilitating the 

category, BLACK, in turn facilitating the stereotype, 

AGGRESSIVE, which facilitates the category, MALE, which 

facilitates the MALE CUES node, and so on and so forth. 

Thus, the system is highly interactive. These influences 

gradually taper off as all nodes in the system come to settle 

into an attractor state. Before the system stabilizes, however, 

representations are in continuous interaction over time, not 

encapsulated and independent.  

The representations in our model are dynamically and 

probabilistically reconstructed in every new instance, rather 

than remaining static and independent. Their real-time 

development is in continuous interaction with other 

activations across the system, both dynamically influenced 

by these activations and a source of influence over them. 

For example, there is no stand-still, discrete symbol-like 

representation of the “male” category. Rather, the system 

will gravitate toward an attractor state that involves stable, 

strong activation of MALE and weak activation of FEMALE, 

but this state is not a discrete symbol identically activated 

every time the system encounters a male target. Instead, the 

system’s prior history, external inputs, simultaneous 

activations, internal constraints, and a bit of random noise 

all work to determine the probabilistic activation of the 

MALE and FEMALE categories. Thus, the system may 

frequently visit a similar attractor state involving strong 

activation of MALE and weak activation of FEMALE every 

time it encounters a male target. But this is a dynamically 

reconstructed state of activation that could only approximate 

an idealized, linguistically identifiable representation of the 

“male” category (Spivey & Dale, 2006). Even if the system 

did reach, for example, some idealized attractor state 

involving 100% MALE and 0% FEMALE, the system does 

not have much time to dwell there since the ongoing accrual 

of new sensory information (e.g., facial, vocal, bodily cues) 

already begins pushing the system into different attractor 

states to which it must start gravitating. Thus, our model 

assumes that internal representations of categories and 

stereotypes as dynamic, probabilistic, and mutually 

interactive.
2 

Perceiving in a noisy social environment and partial 
fit. A noteworthy property of a dynamic interactive model is 

that external stimuli do not need to directly contain all the 
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perceptual cues required to correctly identify a target’s 

characteristics. Instead, just a few cues can lead the system 

to generate automatic hypotheses about the stimulus and, 

under certain conditions, to “run” with those hypotheses. 

For instance, a fleeting glimpse of a person’s face at an 

obscure angle on a busy street flooded with other people 

may not directly contain all the cues necessary to discern 

with confidence whether the person is a man or woman. 

Nonetheless, the meager amount of cues that are processed 

by the visual system will activate relevant cue nodes, which 

will thereafter place excitatory and inhibitory pressures on 

category nodes. If these pressures are sufficient and if 

network constraints permit, the MALE and/or FEMALE 

categories will be pushed above their resting level. If both 

categories are pushed above their resting level, they will 

compete with one another to stabilize onto one. Random 

noise could easily bias the competition toward one category 

or the other, given the ambiguity in the bottom-up input. If 

just enough perceptual cues were processed, however, and 

one category received greater excitation over the other, the 

system could settle into the correct interpretation. Thus, a 

mere partial fit in a target’s available perceptual cues may 

be sufficient for the system to generate automatic 

hypotheses and then potentially commit to them. 

Our social environment is rife with these situations 

involving partial fit. On a busy street, just enough visual 

information of a target’s face might activate relevant cue 

nodes that then put slight pressure on category nodes, in 

turn triggering “best guess” partially-active representations 

of the target’s category memberships. As one’s eyes rapidly 

move on to the next passing face, a similar process would 

occur. Indeed, previous work has shown that minimal, 

isolated category-specifying perceptual cues (e.g., long hair 

or short hair) are sufficient to trigger category 

representations (e.g., female or male, respectively; Macrae 

& Martin, 2007).  

Partial parallel activation and dynamic competition. 

A central feature of a dynamic interactive model of person 

construal is that processing involves dynamic competition 

between partially-active and parallel representations. This is 

due to the continuous dynamics intrinsic to the person 

construal system. Perceptual processing triggers partially-

active category representations (e.g., “he’s [tentatively] 

male”) that continuously compete. Ongoing changes of 

partially-active, competing category representations, in turn, 

continuously update stereotype knowledge and higher-order 

states (while also returning feedback to lower levels of 

processing). Eventually, these partially-active category 

representations settle into an attractor state, which in 

experimental settings (e.g., a sex categorization task) often 

results in a single, stable categorical outcome (e.g., “that’s a 

man!”).  

Such continuous dynamics are inherent in our model’s 

structure. For instance, when a face is presented to the 

network, its visual input begins activating cue nodes, which 

in turn places excitatory pressures on category nodes 

consistent with those cues and inhibitory pressures on 

category nodes inconsistent with them. Importantly, these 

pressures operate gradually and continuously over time. On 

each iteration, activated cue nodes update the activation of 

category nodes by either strengthening or weakening them. 

At the same time, category nodes are also strengthened or 

weakened by higher-order nodes and stereotype nodes. They 

also engage in mutual inhibition with other category nodes 

(e.g., MALE and FEMALE category nodes compete for 

activation). Thus, for instance, it might take 60 iterations for 

the MALE category node to achieve its maximum asymptotic 

level of activation. But for the vast majority of processing 

(iterations) prior to that, the MALE category would be 

partially-active and continuously evolving over time. During 

this evolution, the MALE category would be continuously 

incorporating excitatory and inhibitory inputs from a variety 

of lower nodes (cue nodes), higher nodes (stereotype and 

higher-order nodes), and other category nodes (e.g., FEMALE 

category), while also, in turn, feeding activation back to 

those nodes as well.  

Further, these continuously fluctuating and partially-

active representations are activated in parallel. For instance, 

imagine that the face of a feminine-looking man (e.g., .55 

male, .45 female) is presented to the network. Visual input 

will activate the node for MALE CUES and also the node for 

FEMALE CUES. Activation of cue nodes will begin placing 

excitatory and inhibitory pressures on category nodes. In 

this case, both the MALE and FEMALE category nodes will 

rise above their resting level and become partially-active. 

These parallel and partially-active category representations 

will then compete with one another through mutual 

inhibition. For the system to settle into a stable state (e.g., 

for sex categorization, either predominantly MALE being 

active or predominantly FEMALE being active), the parallel 

and partially-active MALE and FEMALE category nodes must 

2 A caveat is due regarding our model’s use of localist 

representations (i.e., that each node corresponds with one 

linguistically identifiable representation, e.g., male category). 

While many connectionist models use distributed representations, 

there are some advantages to using localist representations. In 

contrast to localist models, distributed models map a single 

identifiable representation (e.g., male category) not to a single 

local node, but to a particular pattern of activation distributed 

across several nodes. Indeed, we acknowledge that using localist 

representations is one step further away from neural plausibility. 

It is certainly our assumption that representations in the human 

brain are inherently distributed, with any identifiable 

representation (e.g., male category) corresponding to a pattern of 

firing rates—or population code—involving a large number of 

neurons (Olshausen & Field, 2004; Rumelhart et al., 1986). 

However, localist representations provide reasonable 

approximations of distributed representations while also being 

more intuitive to understand for the purposes of modeling 

(Grainger & Jacobs, 1998; Smolensky, 1989). Thus, we employ 

localist representations here for the sake of simplicity, but we 

assume that these are only useful approximations of actual 

distributed representations found in neural systems.  
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engage in a dynamic competition, with one gradually 

gaining activation and the other gradually dying off, as they 

strangle each other’s activation through inhibition. In such a 

case, the system is simultaneously attracted to be in two 

different states (i.e., attractor states): one state involving 

~100% MALE/~0% FEMALE and another involving ~0% 

MALE/~100% FEMALE. Such states are highly stable 

(leading the system to be attracted to them), whereas a state 

such as ~55% MALE/~45% FEMALE is highly unstable. 

Although in most cases the system would come to settle into 

an attractor state involving ~100% MALE/~0% FEMALE 

activation, thereby achieving a male categorization, along 

the way it could not help but continually meander near the 

other attractor (~0% MALE/~100% FEMALE) while the 

competition is still resolving itself. In short, a dynamic 

interactive model of person construal assumes many 

representations are partially active in parallel. Further, 

conflicts within the same pool (e.g., sex categories; race 

categories) are resolved through dynamic competition, 

where all nodes within the pool mutually inhibit one 

another. 

 

Overview 

 

Across 5 simulations, we show how a dynamic 

interactive model naturally accounts for a wide range of 

person construal phenomena. First, we show how it 

replicates effects of continuous dynamics, partial parallel 

activation, and dynamic competition in categorization and 

stereotyping (Phenomenon 1). We then show how it 

replicates effects of top-down influences of high-level 

cognitive states and stereotype activation on categorization 

(Phenomena 2 and 3) as well as bottom-up influences on 

categorization due to shared perceptual features 

(Phenomenon 4). Finally, we show how the model replicates 

contextual and cross-modal effects on categorization 

(Phenomenon 5). These recently documented phenomena 

provide converging evidence for our theory that person 

construal is a dynamic interactive process. The simulations 

that follow will show how our model captures this process. 

 

Dynamics of Social Categorization and Stereotyping 

 

 Faces have been found to trigger simultaneously and 

partially-active sex categories (Freeman et al., 2008), race 

categories (Freeman et al., 2010b), and stereotypes 

(Freeman & Ambady, 2009), which gradually resolve into 

stable categorical perceptions through dynamic competition. 

To capture these simultaneously conflicting representations, 

the person construal process has been examined on-line by 

recording participants’ computer mouse movements en 

route to responses on the screen. For instance, in one series 

of studies, participants categorized the sex of male and 

female faces by moving the computer mouse from the 

bottom-center of the screen to either the top-left or top-right 

corners, which were marked “male” and ‘‘female” (Freeman 

et al., 2008). Participants were asked to click on the correct 

sex category. Meanwhile, their mouse movements were 

recorded. When categorizing sex-atypical male and female 

faces (those that contained partial cues of the opposite sex), 

participants’ mouse movements were continuously attracted 

toward the opposite sex-category (on the opposite side of 

the screen). For instance, when categorizing a male face that 

contained some feminine features, participants’ mouse 

movements gravitated a bit closer to the ‘‘female” response 

than when categorizing a male face without feminine 

features. This indicated that sex categorization involved 

partially-active category representations (male and female), 

which simultaneously competed over time to gradually 

stabilize on one categorical outcome.  

Such a pattern of results obtained also for race 

categorization (Freeman et al., 2010b) and stereotype 

activation (Freeman & Ambady, 2009). The main mouse-

tracking results from the stereotype activation study appear 

in Figure 3. Participants were presented with sex-typical and 

sex-atypical faces and were instructed to move the mouse 

and click on the adjective that was stereotypically 

appropriate for the face (one was always masculine and one 

always feminine). For sex-atypical faces (which bore a 

mixture of masculine and feminine cues) the mouse was 

continuously attracted toward the opposite sex stereotype 

(e.g., “docile” for a male target) before settling into the 

correct stereotype (e.g., “aggressive” for a male target), as 

seen in Figure 3. This finding provided evidence that faces 

trigger parallel and partially-active stereotypes tied to 

alternate social categories. These stereotypes then 

dynamically compete over time to settle onto one (Freeman 

& Ambady, 2009). Below, we demonstrate how a dynamic 

interactive model of person construal naturally accounts for 

these findings. We ran simulations using the instantiation of 

the model introduced earlier (Figure 2). 

 

Phenomenon 1: The Partial and Parallel Activation of 

Social Categories and Stereotypes 
First, we consider how the model categorizes faces by 

sex. We consider categorization of two types of targets: a 

sex-typical White male face and a sex-atypical White male 

face. Connection weights for this instantiation of the model 

(Figure 2) are provided in Table S1 of the supplementary 

materials.
3 

Because this is a sex categorization task and the 

demands of the task compel attention to sex, higher-level 

input would directly activate the SEX TASK DEMAND node. 

We set the higher-level input into the SEX TASK DEMAND 

node at .9 and higher-level input into the RACE TASK 

DEMAND node at .1 (see Footnote 3). This simulates the task 

context of sex categorization, where perceivers would be 

focusing on targets’ sex over their race. This thus facilitates 

activation of MALE and FEMALE category nodes, and 

inhibits activation of BLACK, WHITE, and ASIAN nodes. In 

the cue level, the MALE CUES and FEMALE CUES nodes both 

receive direct input from visual processing of the face. To 



                                                                        FREEMAN AND AMBADY 12 

 

  

  

Figure 3. In one study, Freeman and Ambady (2009) found that when stereotyping sex-atypical faces (e.g., a man 

with feminized cues), participants’ computer mouse trajectories were continuously attracted to the stereotype of the 

opposite sex (e.g., docile) before settling into their ultimate response (e.g., aggressive). The figure depicts mean 

mouse trajectories (aggregated across male and female targets). The feminine and masculine stereotype labels 

appeared in the top -left and top-right corners of the screen (docile and aggressive, shown here, are examples of the 

stereotype words that were displayed). In this figure, trajectories for all targets were remapped rightward, with the 

opposite-sex stereotype on the left and the stereotype label consistent with the target’s sex on the right. Sample male 

face stimuli are also displayed. A typical male face is shown on the right, next to the mean trajectory for typical 

targets. Its atypical (feminized) counterpart is shown on the left, next to the mean trajectory for atypical targets. 

During an actual trial, a single face was centered at the bottom of the screen. The bar graph shows trajectories’ 

maximum deviation toward the opposite-sex stereotype from a direct line between trajectories’ start and end points, 

separately for typical and atypical targets (error bars denote standard errors of the mean). 

 

simulate the presentation of a sex-typical White male face, 

we set visual input into the MALE CUES node at .95 and 

visual input into the FEMALE CUES node at .05. Thus, this 

face is inherently 95% masculine and 5% feminine. Because 

the face is White, we set visual input into the WHITE CUES 

node at .95 and visual input into the BLACK CUES and 

ASIAN CUES nodes at .025 each. We ran the simulation 100 

times each time for 150 iterations, and plotted the average 

activation level of each category node over time, appearing 

in Figure 4A. 

The presentation of a sex-typical White male face sets a 

process into motion, in which visual processing of the face 

directly activates cue nodes. Cue nodes inconsistent with 

one another, such as the MALE CUES and FEMALE CUES 

nodes, compete for the visual input. The activation of cue 

nodes, in turn, immediately places excitatory and inhibitory 

pressures on category nodes (Figure 2). In this case, the 

highly activated MALE CUES node places strong excitatory 

pressure on the MALE category node and inhibitory pressure 

on the FEMALE category node. The highly activated WHITE 

CUES node places strong excitatory pressure on the WHITE 

category node and inhibitory pressure on the BLACK and 

ASIAN category nodes. At the same time, the higher-order 

SEX TASK DEMAND node places excitatory pressures on the 

MALE and FEMALE category nodes and inhibitory pressures 

on the BLACK, WHITE, and ASIAN category nodes. These 

simultaneous pressures cause the activation levels of some 

3 In all simulations, we set connection weights and input values 

according to our intuitions regarding stimulus and task features. It 

may be possible in future work to derive these values empirically. 

However, we are confident given previous studies that our 

parameters are in accord with participant judgments and task 

features in these contexts, and we chose parameters that best reflect 

these intuitions. In this sense, the current simulations serve as 

existence proofs for the kind of dynamic interactive processing that 

may take place during construal, though we acknowledge that 

future work may advance these simulations by deriving network 

parameters empirically. 
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Figure 4. (A) The activation level of the MALE and FEMALE category nodes as a function of time (iterations) 

following the presentation of a sex-typical male face (solid lines) and sex-atypical male face (dashed lines). (B) The 

activation level of the AGGRESSIVE (male-related stereotype) and DOCILE (female-related stereotype) nodes are 

plotted as a function of time (iterations) following the presentation of a sex-typical male face (solid lines) and sex-

atypical male face (dashed lines). 

 

category nodes to be pushed above their resting levels, 

whereas others are inhibited and pushed below their resting 

levels. Excitatory pressure from both the MALE CUES node 

and the higher-order SEX TASK DEMAND node leads the 

MALE category node to rise above its resting level. Positive 

feedback is then produced between these nodes, which 

causes the MALE category node to rapidly gain activation 

until gradually settling into a stable state. Because a small 

amount of feminine features were presented to the network 

(the FEMALE CUES node was initialized with .05 visual 

input), the FEMALE category node also becomes slightly 

active for a very brief moment early on, and then succumbs 

to strong inhibition from the MALE CUES node and the 

MALE category node, resulting in it being pushed below its 

resting level. Excitatory pressure from the WHITE CUES 

node leads the WHITE category node to rise above its resting 

level, but the WHITE category node is also inhibited by the 

SEX TASK DEMAND node. This leads the WHITE category 

node to gain a meager amount of activation until eventually 

settling into a stable state (and thus MALE is more strongly 

active than WHITE). Finally, inhibitory pressures from the 

WHITE CUES node and the SEX TASK DEMAND node lead the 

BLACK and ASIAN category nodes to be rapidly pushed 

below their resting levels. These dynamics are apparent in 

Figure 4A.  

Note how each category node gradually works over time 

to settle into a stable attractor state, such that its activation 

reaches some asymptotic level and tapers off. This stable 

state would correspond with the fully confident 

categorization of the target as male. However, before that 

100% confident categorization is achieved, bear in mind that 

partial, tentative evidence for that categorization actually 

accumulates gradually over time (the dynamics of the MALE 

category activation).  

Now let us consider how the person construal system 

settles into a stable state when presented with a sex-atypical 

White male face in a sex categorization task. To simulate 

this, we set visual input into the MALE CUES node at .55, 

input into the FEMALE CUES node at.45, input into the 

WHITE CUES node at .95, and input into the BLACK CUES 

and ASIAN CUES nodes at .025 each. As done previously, we 

set higher-level input into the SEX TASK DEMAND node at .9 

and input into the RACE TASK DEMAND node at .1. This 

simulates attention on sex induced by the task context of sex 

categorization. The simulation was run 100 times, and the 

averaged activation level of each category node over 150 

iterations appears in Figure 4A. 

The activated MALE CUES node begins exciting the 

MALE category and inhibiting the FEMALE category, while 

the FEMALE CUES node begins exciting the FEMALE 

category and inhibiting the MALE category (Figure 2). The 

MALE CUES and FEMALE CUES nodes also begin inhibiting 

one another as well. The highly activated WHITE CUES node 

excites the WHITE category and inhibits the BLACK and 

ASIAN categories. At the same time, the higher-order SEX 

TASK DEMAND node excites the MALE and FEMALE 

categories and inhibits the BLACK, WHITE, and ASIAN 

categories. The excitatory pressure from both the MALE 

CUES node and the higher-order SEX TASK DEMAND node 

leads the MALE category to rise above its resting level. The 

excitatory pressure from the FEMALE CUES node and the 

SEX TASK DEMAND node also leads the FEMALE category to 

rise above its resting level. Pressures from the cue nodes and 

higher-order nodes cause the WHITE category to gain a 

meager amount of activation and the BLACK and ASIAN 

categories to be rapidly pushed below their resting levels. 
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With the MALE and FEMALE categories now simultaneously 

activated, they begin competing with one another through 

mutual inhibition. Over time, this mutual inhibition between 

competing MALE and FEMALE categories, in addition to 

feedback with the cue nodes, leads the FEMALE category to 

gradually decay while the MALE category gradually rises in 

activation until a stable state is achieved. This results in the 

MALE category winning the competition, whereas the 

FEMALE category dies off and stabilizes on a very weak 

level of activation. Thus, simultaneously and partially-active 

sex categories dynamically compete over time to settle onto 

a single categorical outcome (in this case, a male 

categorization).  

Indeed, such temporally dynamic competition has been 

shown to underlie sex and race categorization, as described 

earlier. For instance, when categorizing a sex-atypical male 

face (bearing partial feminine features), participants’ mouse 

trajectories showed a continuous attraction toward the 

“female” response before settling into the “male” response. 

Thus, a female category representation was simultaneously 

and partially active across construal, which led the mouse to 

partially curve toward the “female” response on its way to 

correctly clicking on the “male” response (Freeman et al., 

2008). This is precisely what is reflected in Figure 4A, 

which shows that the FEMALE category node was partially 

active, simultaneously with the MALE category’s activation, 

until the system settled into a stable state involving strong 

MALE category activation and the FEMALE category below 

resting level.  

The different stable states that the system settles into in 

construing a sex-typical versus a sex-atypical male face is 

noteworthy. When presented with a sex-typical male face, 

the MALE category stabilized at .52 activation and the 

FEMALE category at –.03 activation. When presented with a 

more ambiguous sex-atypical male face, however, the MALE 

category stabilized at a weaker level of activation (.48) and 

the FEMALE category at a relatively stronger level of 

activation (.02). Thus, although the system took an 

ambiguous mixture of masculine and feminine facial cues 

and, over time, slotted it into a single categorical outcome 

(male) through dynamic competition, the outcome is 

nonetheless graded. A sex-typical male face resulted in 

stronger activation of the MALE category and weaker 

activation of the FEMALE category, whereas a sex-atypical 

male face resulted in less strong activation of the MALE 

category and less weak activation of the FEMALE category. 

Indeed, recent findings in person construal research have 

suggested that steady-state category representations are 

graded (Blair, Chapleau, & Judd, 2005; Blair, Judd, & 

Fallman, 2004b; Blair, Judd, Sadler, & Jenkins, 2002; 

Freeman et al., 2008; Freeman et al., 2010b; Locke, Macrae, 

& Eaton, 2005; Maddox & Gray, 2002). As the presence of 

category-specifying facial cues increase (i.e., become more 

prototypical of a social category), steady-state category 

representations increase in strength. That representations of 

social categories are inherently graded has been additionally 

suggested by neuroimaging work (Freeman, Rule, Adams, 

& Ambady, 2010c). Further, once triggered these graded 

representations thereafter influence evaluation and behavior 

in graded fashion as well (Livingston & Brewer, 2002). For 

instance, in court trials, individuals with more Black-

specifying features are punished more severely and more 

likely to be sentenced to death (Blair, Judd, & Chapleau, 

2004a; Johnson, Eberhardt, Davies, & Purdie-Vaughns, 

2006). Thus, a dynamic interactive model naturally accounts 

for such findings.
4 

What are the implications of the partial and parallel 

activation of social categories for the activation of 

stereotypes? Figure 4B shows the level of activation of the 

masculine stereotype, AGGRESSIVE, and the feminine 

stereotype, DOCILE (averaged from 100 simulations), across 

150 iterations when the network is presented with a sex-

typical versus a sex-atypical White male face. As category 

nodes become activated through excitatory pressures of cue 

nodes and higher-order nodes, they immediately start 

placing excitatory and inhibitory pressures on stereotype 

nodes. For a sex-typical male face, activation of the MALE 

category in turn activates the AGGRESSIVE stereotype and 

inhibits the DOCILE stereotype. Positive feedback between 

the AGGRESSIVE stereotype and MALE category then leads 

the system to rapidly converge on a stable state involving 

strong activation of the AGGRESSIVE stereotype and the 

DOCILE stereotype pushed below resting level. When 

presented with a sex-atypical male face, however, the 

activated MALE category node excites the AGGRESSIVE 

stereotype and inhibits the DOCILE stereotype. However, the 

simultaneously activated FEMALE category also excites the 

DOCILE stereotype and inhibits the AGGRESSIVE stereotype. 

With both masculine and feminine stereotypes activated, 

4 Whereas it is sometimes acknowledged in the literature that faces 

trigger category representations that are graded (Locke et al., 2005), 

it is often not considered that alternate categories may be partially-

active at the same time and that these partially-active representations 

are graded as well. For instance, as a face becomes less 

prototypically male (and starts featuring some feminine cues), our 

model predicts that not only will a representation of the male 

category become weaker, but also that a simultaneously active 

representation of the female category will become stronger. This is 

evident in the results of our simulation (Figure 4A) and also with 

experimental investigations. For instance, in one study, participants 

categorized the race (White versus Black) of real faces that varied 

along a continuum of racial ambiguity (Freeman et al., 2010b). As 

the amount of Black-specifying features on faces which were 

ultimately judged as White linearly increased, the hand’s 

simultaneous attraction toward the “Black” response (before settling 

into the “White” response) increased as well. Similarly, as the 

amount of White-specifying features on faces which were ultimately 

judged as Black linearly increased, the hand’s simultaneous 

attraction toward the “White” response (before settling into the 

“Black” response) increased. Thus, as perceptual cues of an alternate 

social category increase, the partial activation of that alternate 

category increases as well, due to the dynamic competition inherent 

to social categorization. 
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they then compete with one another through mutual 

inhibition. Thus, as seen in Figure 4B, a sex-atypical male 

face leads to the partial and parallel activation of masculine 

(AGGRESSIVE) and feminine (DOCILE) stereotypes, which 

dynamically compete until the system achieves a stable 

state. Indeed, precisely this effect has been empirically 

demonstrated in human perceivers (Freeman & Ambady, 

2009). 

In summary, our model accounts for the partial and 

parallel activation of social categories and stereotypes, as 

well as the dynamic competition required to resolve these 

simultaneously conflicting activations into stable person 

construals.  

 

Top-Down Interactivity in Social Categorization 

 

A dynamic interactive theory of person construal 

assumes that processing in the category level and stereotype 

level are interactive, such that, beyond categories obviously 

feeding forward activation to stereotypes, stereotypes can 

also feed back activation to categories, thereby exerting top-

down pressure on categorization. Recent studies have 

highlighted several top-down effects on social 

categorization.  

For instance, explicitly labeling a target as “White” or 

“Black” influences the perception of faces, and this is more 

strongly the case for perceivers who believe race is fixed 

rather than malleable (Eberhardt et al., 2003). The 

perception of a face’s race and the subsequent memory of it 

is also contingent on perceivers’ motivation to include 

ambiguous group members into their in-group or to exclude 

them from it (Castano, Yzerbyt, Bourguignon, & Seron, 

2002; Pauker et al., 2009). 

Racial prejudice has numerous top-down effects on race 

perception. For instance, it moderates the manner by which 

facial emotion (angry or happy) shapes processing of race 

(Hugenberg & Bodenhausen, 2004). Moreover, high levels 

of prejudice lead to less efficient categorizations of racially-

ambiguous faces (Blascovich, Wyer, Swart, & Kibler, 

1997), and a bias to categorize racially-ambiguous faces as 

part of the out-group rather than in-group (Pettigrew, 

Allport, & Bartnett, 1958). How much an individual 

identifies with his or her in-group also exerts an influence 

on race categorization. For instance, individuals who 

strongly identify with their in-group are more likely to 

exclude racially-ambiguous faces from their in-group and 

are less efficient in race categorization (Castano et al., 

2002). 

In categorizing a face’s emotion, top-down knowledge 

(e.g., knowing that a target is watching a horror film vs. 

comedy show) is readily utilized to resolve ambiguous 

fearful-happy emotional expressions (Trope & Cohen, 

1989). Other top-down knowledge, such as an explicit label, 

also constrains the activation of emotion categories. In one 

study, participants encoded emotionally ambiguous faces 

while given an explicit label such as “angry” or “happy” 

(Halberstadt & Niedenthal, 2001). Faces that were paired 

with an angry label were subsequently remembered as more 

angry, just as faces paired with a happy label were 

remembered as more happy. Further data ruled out the 

possibility that these influences of top-down semantic 

context were due to post-perceptual processes such as 

memory reconstruction (Halberstadt, 2005).  

More recently, Halberstadt, Winkielman, Niedenthal, 

and Dalle (2009) used facial electromyography (EMG) to 

demonstrate that explicit labels of “angry” or “happy” 

induced spontaneous emotion-specific mimicry during on-

line face processing, and that EMG activity predicted 

subsequent memory bias. This suggests activation of 

emotion categories are flexibly shaped by top-down cues 

even early in processing. One’s social expectations also 

exert a top-down influence on the perception of facial 

emotion. For instance, women who were stigma conscious 

(i.e., who chronically expect to be rejected by men) reported 

seeing a greater amount of contempt on male faces than 

female faces, in contrast to women who were low in stigma 

consciousness (Inzlicht, Kaiser, & Major, 2008). The 

perception of facial emotion can also be constrained by 

individuals’ emotional states. For instance, participants who 

were induced to feel happy reported seeing happiness for a 

longer period of time when viewing dynamic face morphs 

transitioning between happiness and sadness (Niedenthal, 

Halberstadt, Margolin, & Innes-Ker, 2000). In short, a 

growing body of research finds that high-level factors can 

exert a variety of top-down influences on the perception of 

other people. 

 

Phenomenon 2: Top-down effects of racial prejudice and 

facial emotion on race perception 
An excellent illustration of top-down interactivity in 

person construal is the influence of racial prejudice and 

emotion category on race perception. As described earlier, 

Black individuals are stereotyped as hostile (Devine, 1989). 

Hugenberg and Bodenhausen (2004) reasoned that this 

“Black is hostile” stereotype would lead perceptions of race 

to be susceptible to influences of emotion category. 

Specifically, they argued that faces should be more likely to 

perceived as Black when displaying a hostile emotional 

expression (e.g., anger) relative to a non-hostile one (e.g., 

happy). Further, because individuals with higher levels of 

racial prejudice more readily activate and apply stereotypes 

(Lepore & Brown, 1997; Wittenbrink, Judd, & Park, 1997), 

this stereotype-mediated race-emotion interaction should be 

stronger in high-prejudice individuals (who would more 

readily activate the “Black is hostile” stereotype) and should 

be weaker in low-prejudice individuals. Clearly, emotion 

category would not dramatically alter the perception of race 

on faces for which race is quite obvious. However, when 

racial cues are substantially ambiguous, this bottom-up 

ambiguity opens up the opportunity for top-down factors 

(e.g., stereotypes) to exert a strong bias on race-category 

activation. Indeed, Hugenberg and Bodenhausen (2004) 
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Figure 5. An instantiation of the model, used for simulations to account for Phenomenon 2. 

 

found that, for high-prejudice individuals, racially-

ambiguous faces were more likely to be categorized as 

Black (relative to White) when displaying anger (hostile 

emotion) than when displaying happiness (non-hostile 

emotion). For low-prejudice individuals, however, emotion 

category did not reliably modulate race categorization 

(presumably because the “Black is hostile” stereotype was 

not substantially activated for low-prejudice individuals). 

This finding is a compelling example of the interactive 

nature of person construal, showing how activation of one 

category dimension (emotion) fluidly interacts with another 

category dimension (race), and how these cross-category 

interactions may be driven by higher-level social cognitive 

processes, such as stereotype activation and prejudice. 

 To account for these effects, we developed another 

instantiation (Figure 5) of our general model (Figure 1). 

Connection weights are provided in Table S2 of the 

supplementary materials. As in the previous instantiation of 

the model (Figure 2), for simplicity, we use individual cue 

nodes to represent all facial features associated with a 

category. The cue, category, and higher-order levels are 

modeled in a similar fashion as the previous instantiation, 

except here with race and emotion. In this instantiation, 

however, there is a third higher-order node: RACIAL 

PREJUDICE. This node is a simplified way of simulating the 

complex set of memory and affect structures involved in 

racial prejudice. For high-prejudice individuals, this node 

will be strongly activated; for low-prejudice individuals, this 

will be weakly activated. This RACIAL PREJUDICE node has 

unidirectional excitatory connections with two stereotype 

nodes: the HOSTILE BLACK node and the NEUTRAL WHITE 

node. The HOSTILE BLACK node represents the “Black is 

hostile” stereotype, and the NEUTRAL WHITE node 

represents the “White is neutral [non-hostile]” stereotype. 

Thus, for high-prejudice individuals, the RACIAL PREJUDICE 

node will be strongly activated, which will excite the 

HOSTILE BLACK and NEUTRAL WHITE stereotype nodes. For 

low-prejudice individuals, however, the RACIAL PREJUDICE 

node will be weakly activated, and in turn, the stereotype 

nodes will be considerably less active (since low-prejudice 

individuals are less likely to activate stereotypes; Lepore & 

Brown, 1997; Wittenbrink et al., 1997). The stereotype 

nodes are excited by the RACIAL PREJUDICE node (and also 

excited by category nodes consistent with them and 

inhibited by category nodes inconsistent with them). 

 Let us consider how the system would categorize the 

race of racially-ambiguous angry and happy faces, both for 

high-prejudice and low-prejudice individuals. To simulate a 

race categorization task, we set higher-level input into the 

RACE TASK DEMAND node at .9 and input into the EMOTION 

TASK DEMAND node at .1. We ran 4 race-categorization 

simulations: a high-prejudice individual categorizing a 

racially-ambiguous angry face and happy face, and a low-

prejudice individual categorizing a racially-ambiguous 

angry face and happy face. We ran each simulation 100 

times. Each time, we set visual input at .5 for the WHITE 
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Figure 6. The proportion of times that the network 

categorized a racially-ambiguous happy face and 

racially-ambiguous angry face as Black (i.e., when the 

BLACK category node won the competition), both for a 

high prejudice individual (darker gray bars) and low 

prejudice individual (lighter gray bars). 

CUES node and at .5 for the BLACK CUES node, thus making 

the faces perfectly ambiguous with respect to bottom-up 

racial cues. For angry faces, we set visual input at .9 for the 

ANGRY CUES node and at .1 for the HAPPY CUES node, and 

vice-versa for happy faces. For high-prejudice individuals, 

we set higher-level input at 1 for the RACIAL PREJUDICE 

node. This is a simplistic simulation of the activation of 

complex memory and affect structures that mediate an 

individual’s racial prejudice. In contrast, for low-prejudice 

individuals, we set higher-level input at 0 for this node. 

After 150 iterations, we selected the race-category node 

with the highest activation as the network’s categorization 

response. 

Figure 6 shows the proportion of times the network 

categorized the face as Black, separately for a high-

prejudice and low-prejudice individual, and separately for 

angry and happy faces. For happy faces, the network was 

50% likely to categorize the face as Black for a low-

prejudice individual and 48% for a high-prejudice 

individual. Thus, happy race-ambiguous faces appeared to 

be categorized as Black or White due to random noise (50% 

chance), and uninfluenced by level of prejudice. In contrast, 

the network was biased toward categorizing angry race-

ambiguous faces as Black, with a low-prejudice individual 

having a greater than chance likelihood of Black 

categorization (69%), and the likelihood of Black 

categorization was even stronger for a high-prejudicial 

individual (88%). Thus, the network appeared to use the 

emotion category to disambiguate a face’s race category, 

and this was exacerbated with a high level of racial 

prejudice (thus more readily activating the “Black is hostile” 

stereotype). How was this prejudice-mediated race-emotion 

interaction accomplished?  

For a high-prejudice individual, presentation of a 

racially-ambiguous angry face sets a process into motion 

where ambiguous racial cues push the WHITE and BLACK 

category nodes above their resting levels, leading them to 

compete with one another. At the same time, the highly 

activated ANGRY CUES node strongly excites the ANGRY 

category node, but this is simultaneously inhibited by the 

RACE TASK DEMAND node (because this is a race 

categorization task). Activation of the BLACK category 

excites the HOSTILE BLACK stereotype node, whereas the 

WHITE category inhibits it. Similarly, activation of the 

WHITE category excites the NEUTRAL WHITE stereotype 

node, whereas the BLACK category inhibits it. Strong 

activation of the ANGRY category node also excites the 

HOSTILE BLACK stereotype, leading the HOSTILE BLACK 

stereotype to become more active than the NEUTRAL WHITE 

stereotype. Activation of the HOSTILE BLACK stereotype, in 

turn, feeds back excitation to the BLACK category and 

inhibition to the WHITE category. Moreover, because of the 

strongly activated RACIAL PREJUDICE higher-order node 

(because this is a high-prejudice individual), which has 

excitatory connections with the stereotype nodes, the 

stereotype nodes are already primed to be quite active. 

Stronger activation of the HOSTILE BLACK stereotype then 

feeds back activation to the WHITE and BLACK category 

nodes, causing the BLACK category to become more active 

and the WHITE category to become suppressed. In such a 

way, stereotypes exerted a top-down effect on race 

categorization through interactions with the anger category.   

For a racially-ambiguous happy face, however, the 

influence of emotion category on race categorization was 

not obtained because the happy category is not involved in 

stereotypic associations with race category. As seen in 

Figure 6, for a happy face, the proportion of Black 

categorizations appeared generally the same for low- and 

high-prejudice individuals (at chance: 50%). Finally, for 

low-prejudice individuals, the effect of the ANGER category 

node exciting the HOSTILE BLACK stereotype, which in turn 

caused the race category nodes to diverge in activation 

(leading BLACK to win), was not as strong as it was for 

high-prejudice individuals. This is because the higher-order 

RACIAL PREJUDICE node primed activation of the stereotype 

nodes in high-prejudice individuals. Interestingly, 

Hugenberg and Bodenhausen (2003) also showed that the 

converse interactive effect holds as well. In categorizing 

facial emotion, racial prejudice exerts an analogous top-

down influence, causing race category to interact with 

emotion category. High levels of racial prejudice lead White 

perceivers to activate the anger category more strongly for 

emotionally-ambiguous Black faces than White faces, 

whereas this is not as readily seen in perceivers with low 

levels of prejudice.  
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Phenomenon 3: Category Interactions due to 

Overlapping Stereotype Content 

The interactive nature of category and stereotype 

activation suggests that many categorizations may interact 

due to stereotype contents that happen to overlap. For 

instance, particular social categories in one dimension (e.g., 

race) may facilitate and inhibit the activation of categories 

in another dimension (e.g., sex) due to shared activations in 

the stereotype level. Stereotypes associated with the sex 

category, male, include aggressive, dominant, athletic, and 

competitive, and these are also associated with the race 

category, Black. Similarly, stereotypes of shy, family-

oriented, and soft-spoken apply not only to the sex category, 

female, but also to the race category, Asian (Bem, 1974; 

Devine & Elliot, 1995; Ho & Jackson, 2001). Thus, there is 

some overlap in the stereotypes belonging to the Black and 

male categories and in the stereotypes belonging to the 

Asian and female categories. 

What would our model predict regarding this overlap? It 

would predict that category activation along one dimension 

(e.g., sex) would be constrained by feedback from 

stereotype activations triggered by the other dimension (e.g., 

race). Sex categorization, for example, could be potentially 

constrained by race-triggered stereotype activations. 

Because the stereotypes of Black and male categories 

happen to partially overlap, Black men would be 

categorized more efficiently relative to White and Asian 

men. This overlap is represented in our previous 

instantiation of the model (Figure 2), as AGGRESSIVE 

happens to be positively linked and DOCILE happens to be 

negatively linked with both BLACK and MALE categories. 

This overlap would lead the race-triggered excitation of 

AGGRESSIVE and race-triggered inhibition of DOCILE to feed 

back excitation to the MALE category and inhibition to the 

FEMALE category. This would facilitate a male 

categorization or, in cases of sex-ambiguous targets, bias 

categorizations toward male (rather than female). A similar 

effect would occur with the ASIAN and FEMALE categories, 

where race-triggered excitation of DOCILE and race-

triggered inhibition of AGGRESSIVE would come to facilitate 

a female categorization or bias categorizations toward 

female. Thus, a dynamic interactive model predicts that 

incidental overlap in stereotype contents could powerfully 

shape the perception of another category dimension. 

To demonstrate how the feedback from stereotype 

activation could disambiguate categorization of an alternate 

dimension, we ran a simulation of sex categorization using 

our earlier instantiation of the model (Figure 2). As done 

previously to simulate a sex-categorization task context, we 

set higher-level input at .9 for the SEX TASK DEMAND node 

and at .1 activation for the RACE TASK DEMAND node. We 

ran 3 simulations, one for each race: a sex-ambiguous Black 

face, a sex-ambiguous White face, and a sex-ambiguous 

Asian face. For each, we set visual input at .5 for both the 

MALE CUES and FEMALE CUES nodes (thus making sex-

specifying cues completely ambiguous). We set visual input 

at .95 for the cue node consistent with the face’s race, and at 

.025 for the cue nodes corresponding with the other two 

races. Thus, for a sex-ambiguous Black face, we set visual 

input at .95 for the BLACK CUES node, at .025 for the WHITE 

CUES and ASIAN CUES nodes, and at.5 for the MALE CUES 

and FEMALE CUES nodes. We ran each of the 3 simulations 

100 times. After 150 iterations we selected the network’s 

sex-category response (male or female) based on whichever 

node had the highest activation. Figure S1 in the 

supplementary materials shows the proportion of female 

responses for each race.  

When a sex-ambiguous face was Black, the network was 

biased towards male categorization, with a 26% likelihood 

to categorize it as female. When White, random noise 

seemed to be driving the sex-category competition one way 

or the other, with a 52% likelihood (random chance: 50%) 

of female categorization. When Asian, however, the 

network was biased towards female categorization, with a 

75% likelihood of female categorization. Thus, a dynamic 

interactive model predicts that perceivers would be biased to 

perceive sex-ambiguous Black faces as men and, 

conversely, to perceive sex-ambiguous Asian faces as 

women. This is because the presumably task-irrelevant race 

category placed excitatory and inhibitory pressures on 

stereotype nodes which were incidentally shared with sex 

categories. Thus, the activation of stereotypes from 

presumably task-irrelevant categories (e.g., race) can 

powerfully shape the activation of other social categories 

(e.g., sex). Initial evidence for these sex–race interactive 

effects, due to incidental stereotype overlap, were recently 

reported (Goff, Thomas, & Jackson, 2008; Johnson, 2009; 

Johnson, Freeman, & Pauker, invited revision).  

 

Bottom-up Interactivity in Social Categorization 

 

A dynamic interactive model of person construal permits 

not just top-down interactions in social categorization, but 

also bottom-up ones as well. Above, we described how 

social categories may interact with one another through top-

down processes. But such interactions may also be mediated 

at lower levels in the system as well. For instance, different 

social categories may interact because they are confounded 

directly in perceptual cues themselves. Indeed, the face is an 

extremely complex stimulus that affords many opportunities 

for bottom-up interactions. The mere fact that so many 

social categories (e.g., sex, race, age, emotion) are 

registered through the single percept of a face makes it 

highly unlikely that each set of category-specifying features 

is independent. Black individuals have considerably darker 

skin than White individuals, but also men have darker skin 

than women. Thus, skin tone, while strongly utilized for 

discriminating race, is also utilized for discriminating sex 

(Hill, Bruce, & Akamatsu, 1995). In all likelihood, multiple 

social categories share a great deal of the face’s visual real 

estate. If correct, the variation in facial features specifying 

one category (e.g., sex) will partially overlap with the 
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Figure 7. An instantiation of the model, used for simulations to account for Phenomenon 4. 
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variation in features specifying another category (e.g., 

emotion). Certain social categories may therefore be directly 

confounded due to bottom-up featural overlap. 

For instance, the facial features specifying anger appear 

to overlap with the features specifying maturity, whereas the 

features specifying fear appear to overlap with the features 

specifying babyishness (Marsh, Adams, & Kleck, 2005). 

Becker, Kenrick, Neuberg, Blackwell, and Dylan (2007) 

made a compelling case for the confounded nature of sex 

and emotion categories from shared bottom-up perceptual 

cues. In a series of studies, they found that categorizations 

of sex and emotion were facilitated for faces of happy 

women and angry men, relative to happy men and angry 

women. Further, studies using faces displaying neutral 

emotion provided evidence for direct overlap in male-

specifying cues and angry expressions, as well as overlap in 

female-specifying cues and happy expressions (see also 

Hess, Adams, Grammer, & Kleck, 2009; Oosterhof & 

Todorov, 2009). These studies suggest that a portion of the 

cues that make a face more masculine are the same cues that 

make a face angrier. Similarly, a portion of the cues that 

make a face more feminine are the same cues that make a 

face happier. 

For instance, anger displays involve the center of the 

brow drawn downward, a compression of the mouth, and 

flared nostrils. These cues also distinguish sex categories. 

Men have larger brows which may cause them to appear 

drawn downward. They also have a more defined jaw and 

thinner lips, which may make the mouth to appear more 

compressed, and they have larger noses, which may lead to 

the appearance of flared nostrils. A similar overlap exists for 

happy displays and the female face (Becker et al., 2007). 

For instance, women have rounder faces than men, and the 

appearance of roundness increases when displaying 

happiness (i.e., a smile draws out the width of the face). 

Previous studies suggest that it is this direct, physical 

overlap in the cues signaling maleness and anger and in the 

cues signaling femaleness and happiness that leads to more 

efficient perceptions of angry men and happy women 

(relative to happy men and angry women). 

 

Phenomenon 4: Facial emotion shapes sex categorization 

through shared bottom-up cues 

To account for these bottom-up interactive effects, we 

developed another instantiation (Figure 7) of our general 

model (Figure 1). Connection weights are provided in Table 

S3 of the supplementary materials. Differing from previous 

instantiations, here nodes in the cue level represent a single 

perceptual cue (e.g., defined jaw, smile). We did not use the 

stereotype level for this instantiation.  

The mechanism underlying the bottom-up sex–emotion 

interaction is modeled in the cue level. Note that one cue 

node, FACIAL HAIR, has an excitatory connection with 

MALE and inhibitory connection with FEMALE, whereas 

another cue node, ROUND EYES, has an excitatory 

connection with FEMALE and inhibitory connection with 

MALE. Similarly, one cue node, TENSED EYELIDS, has an 

excitatory connection with ANGER and inhibitory 
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connection with HAPPY, and vice-versa for the cue node, 

SMILE. These four cue nodes represent the perceptual cues 

that independently relate to sex categories and 

independently relate to emotion categories. However, also 

note that one cue, FURROWED BROW, has an excitatory 

connection both with ANGER and with MALE (since a 

furrowed brow conveys both categories, described earlier). 

Similarly, another cue, ROUND FACE, has an excitatory 

connection both with HAPPY and with FEMALE (since a 

rounder face conveys both categories, described earlier). 

Thus, these two cue nodes represent the bottom-up overlap 

in the perceptual cues conveying sex and emotion. Note that 

the particular cues used in this simulation were chosen 

arbitrarily; they are merely intended to simulate the set of 

non-overlapping and overlapping perceptual cues that 

convey sex and emotion. 

To simulate a sex categorization task, we set higher-

level input at .9 for the SEX TASK DEMAND node and at .1 

for the EMOTION TASK DEMAND node. We ran 4 

simulations: sex categorization of an angry male, angry 

female, happy male, and happy female. For each simulation, 

we set visual input at 1 for the cue nodes that would be 

apparent on a given face stimulus. For instance, to simulate 

the presentation of an angry male face, visual input was set 

at 1 for the FACIAL HAIR node (independently cueing MALE 

category), TENSED EYELIDS node (independently cueing 

ANGER category), and FURROWED BROW node (cueing both 

ANGER and MALE categories). Or, to simulate the 

presentation of an angry female face, visual input was set at 

1 for the ROUND EYES node (independently cueing FEMALE 

category), TENSED EYELIDS node (independently cueing 

ANGER category), FURROWED BROW node (cueing ANGER 

category, but also MALE category), and ROUND FACE node 

(cueing FEMALE category, but also HAPPY category). Each 

simulation was run 100 times, each time for 75 iterations, 

and an activation time course was averaged for each of the 4 

simulations. Reaction times were calculated as the number 

of iterations it took for the sex-category node with highest 

activation (the network’s response) to reach 90% of its final 

activation state. This number was then multiplied by a 

constant of 12 and added to a constant of 480 to 

approximate the human reaction time data (ms) of Becker et 

al. (2007). 

Figure S2 in the supplementary materials shows the 

averaged activation time courses for the 4 simulations. 

When a male face was angry, the MALE category’s 

activation grew more quickly and stabilized on a stronger 

state, relative to when a male face was happy. Conversely, 

however, when a female face was angry, the FEMALE 

category’s activation grew more slowly and stabilized on a 

weaker state, relative to when a female face was happy. This 

sex–emotion interaction is reflected in the reaction time 

data, shown in Figure S3 of the supplementary materials. 

Categorization of angry men and happy women was 

facilitated, relative to categorization of angry women and 

happy men. This is the pattern of results observed in human 

perceivers (Becker et al., 2007). Thus, categorizing one 

dimension (e.g., sex) is shaped by direct bottom-up overlap 

with the perceptual features supporting another dimension 

(e.g., emotion). This highlights bottom-up interactivity in 

social categorization and shows how it is naturally 

accounted by a dynamic interactive model of person 

construal. 

 

Contextual and Cross-Modal Interactivity in Social 

Categorization 

 

One of the most remarkable features of perceiving other 

people, as compared with everyday objects, is that 

perceptions of people are frequently grounded in multiple 

sensory modalities and embedded in a rich set of contexts. 

The human voice, for example, always contextualizes the 

human face, continuously over time. The body’s motion, for 

instance, contextualizes the perception of its shape. A 

growing number of studies have shown that these prevalent 

contextual and cross-modal cues powerfully constrain the 

perception of the social percepts under the focus of 

perceivers’ attention. 

Hair, for instance, is a cue that may appear 

stereotypically Black or Hispanic. In a series of studies, 

racially ambiguous faces were readily disambiguated by 

their hair, with Black-like hair biasing categorizations 

toward Black and Hispanic-like hair biasing categorizations 

toward Hispanic (MacLin & Malpass, 2001). Thus, an 

identical face was perceived as Black or Hispanic depending 

on the hair cue that contextualized it. Other cues that 

contextualize the face, such as cues of the body, also 

constrain the face’s perception. For instance, perceivers’ 

categorization of a face’s emotion slows down when the 

face is coupled with incongruent emotional body cues 

(Meeren, van Heijnsbergen, & de Gelder, 2005). Aviezer et 

al. (2008) presented participants with identical faces that 

were embedded in different body contexts that suggested 

particular emotions. Perceptions of identical facial 

expressions were strikingly influenced by contextualizing 

body cues. Thus, visual contexts surrounding a face, such as 

emotional body cues, powerfully bias perceptions of facial 

emotion.  

Emotional body cues—whether the body is moving 

angrily or sadly—heavily bias the perception of the body’s 

sex. Point-light displays depicting angry body motions are 

more likely to be judged as men and those depicting sad 

body motions more likely to be judged as women (Johnson 

et al., 2010). One likely reason for this is that emotion 

expression is sex-stereotyped, such that men are stereotyped 

as angry and women stereotyped as sad.  

The power of a social percept’s context is not limited to 

visual cues. Cues from other sensory modalities that 

contextualize the face can also alter its perception. For 

instance, incongruence between facial and vocal cues (e.g., 

a slightly feminine male’s voice with a male face; a happy 

voice with a sad face) alters perceptions of the face and 
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Figure 8. In a series of studies, Freeman and Ambady (in press) found that when categorizing a face’s sex, the 

simultaneous processing of a sex-atypical voice led participants’ computer mouse trajectories to be continuously 

attracted to the opposite sex-category response before settling into the response consistent with the face’s correct sex. 

Mean mouse trajectories from this study are depicted (aggregated across male and female targets). In this figure, 

trajectories for all targets were remapped rightward, with the opposite sex-category on the left and the sex-category 

consistent with the face’s sex on the right. A sample male face stimulus is displayed (all male and female face stimuli 

were somewhat sex-ambiguous). A voice stimulus typical for the face’s sex (masculine) is shown on the right (audio 

waveform depicted in blue), next to the mean trajectory for sex-typical trials. Its atypical (feminine) counterpart is 

shown on the left, next to the mean trajectory for sex-atypical trials (audio waveform depicted in purple). During an 

actual trial, a single face was centered at the bottom of the screen while the voice stimulus played. The bar graph 

shows trajectories’ maximum deviation toward the opposite sex-category from a direct line between trajectories’ start 

and end points, separately for sex-typical and sex-atypical trials (error bars denote standard error of the mean). 

 

induces longer face-categorization latencies (Campanella & 

Belin, 2007; Freeman & Ambady, in press). Cross-modal 

cues originating even in the olfactory system appear to 

interact with the processing of visual social percepts. The 

smelling of sex-specific hormones, for instance, biases the 

perception of a face’s sex-category. Perceivers exposed to 

an androgen (a male-specifying hormone) required less 

masculine features to perceive a face as male, whereas 

perceivers exposed to estrogen (a female-specifying 

hormone) required more masculine features (Kovács et al., 

2004). Below we focus on the interactivity between the face 

and voice in person construal. 

 

Phenomenon 5: Continuous Face–Voice Interactivity in 

Social Categorization 
Visual processing of the face and auditory processing of 

the voice robustly interact to perceive others, specifically in 

perceiving identity and emotion. For instance, when a face 

appears sad but is accompanied by a voice that sounds 

happy, perceivers consistently report seeing the face as more 

happy than it really is. This remains true even when 

participants are instructed to disregard the voice (de Gelder 

& Vroomen, 2000). Furthermore, congruency between vocal 

and facial features tends to make perceptions of another’s 

emotions more accurate and efficient (for review, 

Campanella & Belin, 2007). Recently, face–voice 

interactions have also been explored in the context of sex 

categorization (Masuda, Tsujii, & Watanabe, 2005; Smith, 

Grabowecky, & Suzuki, 2007). 

We investigated the temporal dynamics through which 

voice processing interacts with face processing in sex 

categorization (Freeman & Ambady, in press). Participants 

categorized slightly ambiguous male and female faces by 

sex while simultaneously presented with a sex-typical voice 

(e.g., masculinized male voice for a male face) or sex-

atypical voice (e.g., feminized male voice for a male face). 

We tracked their computer mouse trajectories en route to 

indicating a “male” or “female” response on the screen. 
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Figure 9. An instantiation of the model, used for 

simulations to account for Phenomenon 5. 

Figure 10. The activation level of the MALE and 

FEMALE category nodes as a function of time 

(iterations) following the presentation of a sex-typical 

male face (solid lines) and sex-atypical male face 

(dashed lines). 
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When categorizing a face’s sex, the simultaneous processing 

of a sex-atypical voice led the hand to travel closer to the 

opposite sex-category continuously across construal (Figure 

8). Thus, even when perceivers correctly categorized the 

face’s sex, auditory processing of sex-specifying vocal cues 

exerted a temporally dynamic influence on the face-based 

categorization. Specifically, the simultaneous processing of 

sex-specifying facial and vocal cues triggered partially-

active representations of both sex categories (male and 

female) that simultaneously competed over time to settle 

into ultimate categorizations.  

To account for this temporally dynamic face–voice 

interactivity in sex categorization, we developed another 

instantiation (Figure 9) of our general model (Figure 1). 

Connection weights are provided in Table S4 of the 

supplementary materials. In this instantiation, the cue level 

receives input from both visual processing and auditory 

processing, with nodes for MALE FACIAL CUES, FEMALE 

FACIAL CUES, as well as MALE VOCAL CUES and FEMALE 

VOCAL CUES.  

To simulate the presentation of a slightly ambiguous 

male face, we set visual input at .55 for MALE FACIAL CUES 

and at .45 for FEMALE FACIAL CUES. To simulate the 

simultaneous presentation of a sex-typical voice, we set 

auditory input at .95 for MALE VOCAL CUES and at .05 for 

FEMALE VOCAL CUES. We also set higher-level input at .9 

for the SEX TASK DEMAND node to simulate a strong 

attentional state on targets’ sex required by the task. We ran 

this simulation 100 times, each time over 75 iterations, and 

plotted the averaged level of activation of the category 

nodes over time (Figure 10). The slightly ambiguous 

activation of facial cues nodes fed forward activation onto 

the MALE and FEMALE category nodes. Simultaneously, the 

activation of the vocal cues nodes also fed forward 

activation onto the category nodes. In doing so, the 

simultaneous processing of vocal cues placed an immediate 

constraint on the face-triggered activation of sex categories. 

This permitted ongoing updates from voice processing to 

immediately interact with ongoing updates from face 

processing, continuously over time. The strong activation of 

MALE VOCAL CUES was therefore immediately brought to 

bear on resolving the category competition induced by 

ambiguous facial input. Strong excitation of the MALE 

category and inhibition of the FEMALE category, due 

primarily to the unambiguous vocal cues nodes, led the 

system to rapidly converge on a stable state involving strong 

activation of MALE category, with FEMALE category pushed 

below resting level. 

When the voice is more atypical, however, the face-

triggered category competition does not resolve so quickly. 

To simulate the presentation of a slightly ambiguous male 

face coupled with a sex-atypical voice, we kept the input 

activation the same except, this time, we set input into the 

MALE VOCAL CUES node at .6 and input into the FEMALE 

VOCAL CUES at .4. We ran the simulation 100 times, each 

time over 75 iterations, and plotted the averaged level of 

activation of the category nodes over time (Figure 10). The 

slightly ambiguous activation of facial cues nodes and 

slightly ambiguous activation of vocal cues nodes 

simultaneously fed forward activation onto the MALE and 

FEMALE category nodes. This induced a strong competition 

between the category nodes. Although the system eventually 

resolved the competition by arriving at a stable state 

involving strong activation of MALE and weak activation of 

FEMALE (i.e., a male categorization), the FEMALE category 

was partially-active in parallel strongly throughout the 
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process. This partial activation of the FEMALE category was 

considerably stronger when the voice was sex-atypical 

rather than sex-typical (Figure 10). 

This pattern is precisely what is observed in the 

laboratory (Freeman & Ambady, in press). The stronger 

partial activation of the FEMALE category, which 

continuously competes with the MALE category, is clearly 

seen in the human mouse-tracking data of Figure 8. When 

sex-categorizing a male face, the simultaneous processing of 

a sex-atypical voice led participants’ hands to be 

continuously attracted toward the “female” response before 

ultimately arriving at the “male” response. This reflects a 

stronger partially-active representation of the female 

category (induced by voice processing) that simultaneously 

competed over time with the male category during face-

based categorization. Thus, in sex categorization, the model 

predicts (as experimental data show) that voice processing 

interacts with face processing through temporally dynamic 

competition. As such, the simultaneous processing of facial 

and vocal cues place parallel constraints on sex 

categorization (which are dynamically satisfied over time), 

permitting the ongoing processing of vocal cues to 

continuously interact with the ongoing processing of facial 

cues. In short, our model naturally accounts for continuous 

cross-modal interactivity in person construal.  

 

Summary 

 

We propose a dynamic interactive theory of person 

construal. It argues that the perception of other people is 

accomplished by a dynamical system in which lower-level 

sensory perception and higher-order social cognition 

continuously coordinate across multiple interactive levels of 

processing to give rise to stable person construals. We 

described a recurrent connectionist model of this system that 

accounted for a wide range of phenomena, including partial 

parallel activation and dynamic competition in 

categorization and stereotyping (Phenomenon 1); top-down 

influences of high-level cognitive states and stereotype 

activations on categorization (Phenomena 2 and 3); bottom-

up category interactions due to shared perceptual features 

(Phenomenon 4); and continuous cross-modal interaction in 

categorization (Phenomenon 5).  

In a dynamic interactive model, perceptions of other 

people gradually emerge through ongoing cycles of 

interaction between social categories, stereotypes, high-level 

cognitive states, and the low-level processing of facial, 

vocal, and bodily cues. Internal representations of categories 

and stereotypes are dynamically and probabilistically 

reconstructed, rather than behaving like static, symbol-like 

structures that wait around inertly until discretely accessed. 

The real-time evolution of these probabilistic 

representations is in continuous interaction with other 

activations across the system, both dynamically influenced 

by these other activations and a source of influence over 

them. The entire system’s prior history, its visual inputs 

(e.g., facial cues), auditory inputs (e.g., vocal cues), and 

higher-level inputs (e.g., task demands, prejudice, 

motivation), its internal constraints, and some random noise 

jointly determine the construal of other people. 

 

Comparison with Extant Models 

 

Extant social psychological models have described how 

perceivers form high-level impressions of other people, 

whether they utilize category-based or individual-based 

information, and how knowledge about individuals and 

groups is learned, stored, and accessed (Bodenhausen & 

Macrae, 1998; Brewer, 1988; Chaiken & Trope, 1999; Fiske 

et al., 2002; Fiske & Neuberg, 1990; Higgins, 1996; Kunda 

& Thagard, 1996; Read & Miller, 1998b; Smith & 

DeCoster, 1998; Srull & Wyer, 1989; van Overwalle & 

Labiouse, 2004). Models in the cognitive face-processing 

literature, on the other hand, have described the visual and 

perceptual mechanisms that permit face recognition (Bruce 

& Young, 1986; Burton et al., 1990; Valentin, Abdi, 

O'Toole, & Cottrell, 1994). Our dynamic interactive model 

helps unify these two literatures by describing how the 

lower-level perceptual processing modeled in the cognitive 

literature works together with the higher-order social 

cognitive processes modeled in the social literature to give 

rise to person construal. 

 Social psychological models have tended to use 

categorization as a starting point, with relatively little focus 

on the perceptual processing that gives rise to it. Thus, in 

Fiske and Neuberg’s (1990) influential model of impression 

formation it is argued that the utilization of stereotypes, 

which is derived from a dominant categorization, is 

prioritized over more individual-based information in 

forming impressions, unless the perceiver is motivated to 

move further and individuate the target. This model, like 

Brewer’s (1988) and Kunda and Thagard’s (1996) models 

of impression formation, provide comprehensive accounts 

of how top-down processes, such as stereotypic 

expectations, motivation, and attention, interact with the 

bottom-up process of learning explicit individuated 

characteristics about a target. In these models, therefore, a 

target’s category memberships are given, and their influence 

on subsequent interpersonal phenomena are richly described 

(e.g., impressions, behavior). This is also the case for other 

models of person perception, such as Bodenhausen and 

Macrae’s (1998)  stereotype activation and inhibition 

model. As such, categorization (and corresponding 

stereotype activation) is the initial input into these models. 

The focus of these models is not to explain the 

categorization process itself; it is to explain the higher-order 

social cognitive processing that comes after.  

Our framework builds on these important models by 

fleshing out the initial category and stereotype activation 

process and explaining how this process is dynamically 

driven by both bottom-up sensory information as well as 

high-level top-down factors. Notably, this expands on extant 
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models by explaining how initial category and stereotype 

activation may be influenced, sometimes considerably, by 

top-down factors. Although models of person perception 

have always emphasized the role of top-down factors (e.g., 

expectations, motivation, and attention), these factors have 

not been readily acknowledged to seep down into lower 

levels of processing, into the initial category and stereotype 

activation process itself.  For example, in our model such 

top-down factors had an important role in Phenomenon 2, 

where racial stereotypes, more or less activated by 

prejudice, caused a face’s emotional expression to alter the 

perception of race. Our modeling of the reach of top-down 

influences into even lower levels of person perception, such 

as basic category activation, thus builds on extant models 

that have generally described only the reach of top-down 

influences into higher levels of processing. 

Beyond the importance of accounting for how perceptual 

processing brings about social cognitive phenomena in 

general, our modeling of perceptual processing is also 

important because it can bear a variety of downstream 

effects.  For example, within-category facial or vocal 

variation affects the dynamic competition inherent to 

categorization (Freeman & Ambady, in press; Freeman et 

al., 2008; Freeman et al., 2010b), in turn affecting the 

eventual stable category representations that perceivers 

settle into (Locke et al., 2005). Thus, more prototypically 

masculine facial or vocal features (relative to less), for 

instance, affects the competition between male and female 

categories, which results in a stronger stable representation 

of the male category and weaker stable representation of the 

female category (see Figure 4A). This can bear a variety of 

downstream effects, shaping trait attributions (Blair et al., 

2005; Blair et al., 2004b; Blair et al., 2002; Ko, Judd, & 

Blair, 2006; Maddox & Gray, 2002) as well as behavior 

(Blair et al., 2004a; Johnson et al., 2006). Moreover, as 

shown in Phenomenon 4, categorization of a focal category 

membership may be shaped by other memberships because 

the perceptual cues supporting those memberships are 

directly confounded (e.g., angry men and happy women; 

Becker et al., 2007). Thus, our framework builds on extant 

models by shedding new insights into the relationship 

between the higher-order processes extant models have 

described and the lower-level perceptual processing that has 

received less attention.  

Kunda and Thagard’s (1996) model of impression 

formation and Read and Miller’s (1998b) Social Dynamics 

model provide important precedents to the present work. 

These connectionist models proposed that parallel-

constraint-satisfaction principles guide impression 

formation and social reasoning, and here we proposed that 

such principles guide person construal. Thus, in Kunda and 

Thagard’s model, categories (e.g., Black) and stereotypes 

(e.g., aggressive) have an equal priority with individuating 

information (e.g, pushed someone) in driving high-level 

impressions, and this information is simultaneously 

integrated into a coherent impression through a process of 

constraint satisfaction. Read and Miller’s model additionally 

included detectors for perceptual features and considered 

these detectors’ influence on how a target is identified, with 

a target’s identification thereafter influencing high-level 

social reasoning (understanding social scenarios and 

attributing traits). For example, Read and Miller considered 

how detection of a target’s grey hair would lead to the 

identification that the target is old, which then guides how 

perceivers reason about a relevant social scenario (e.g., why 

someone would help carry groceries for the target). At the 

heart of their model is a constraint-satisfaction process that 

gives rise to high-level social reasoning, similar to the 

constraint-satisfaction process underlying Kunda and 

Thagard’s model. Our model shares a kinship with these 

models and suggests that constraint-satisfaction processes 

may give rise to a variety of different person-perceptual 

phenomena, including person construal in our case, as well 

as impression formation (Kunda & Thagard, 1996) and 

social reasoning (Read & Miller, 1998b). 

These models, however, like other connectionist models 

in person perception research (Read & Miller, 1993; Read et 

al., 1997; Smith & DeCoster, 1998; van Overwalle & 

Labiouse, 2004), did not aim to extensively deal with the 

perceptual processing that drives the category and 

stereotype activation process or to examine how specific 

perceptual interpretations emerge. However, they did make 

important points about the role of perceptual processing in 

instigating the higher-order phenomena they were interested 

in, and the ability for perceptual processing to be potentially 

influenced by these phenomena (e.g., Read & Miller, 

1998b). Our model builds on these prior models by 

examining how perceptual interpretations emerge and by 

comprehensively modeling the role of perceptual processing 

and its dynamic influence by higher-order processes. Our 

model also extends these models by directly examining the 

temporal dynamics of construing others. For instance, 

although extant connectionist models, like our model, 

assume that processing is continuous and internal 

representations are dynamic, temporal dynamics and the 

time-course of person perception were not of primary 

interest. Instead, these models generally focused on the 

outcomes of person perception. Therefore, a network’s 

ultimate stable states were used to explain person perception 

outcomes, with little modeling and simulation of the 

extended dynamic processing that culminates in those 

outcomes. Our model builds on these models by explicitly 

describing the temporal dynamics of person construal and 

by accounting for these dynamics in several simulations. 

This is important because a central claim of our theory is 

that perceptions of other people are the end-result of a time-

dependent process of simultaneously and partially active 

representations continuously interacting over time. Thus, it 

is important that our model explicitly describe these 

dynamics and fit them to human data. The fleshing out of 

temporal dynamics is a novel aspect of our theory and 
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model, and these add to extant accounts of person 

perception. 

 

Implications 

 

Our theory and model have several implications for 

present understandings of person construal, which we 

discuss here. 

 

Re-thinking the “Multiple Category Problem” 

Individuals naturally vary along any number of category 

dimensions (e.g., sex, race, age). Extant models have often 

emphasized that one category and the stereotypes tied to that 

category come to dominate the processing landscape, 

whereas others are actively suppressed, making the 

perceiver’s job easier and thereby solving the “multiple 

category problem” (e.g., Bodenhausen & Macrae, 1998; 

Macrae, Bodenhausen, & Milne, 1995; Sinclair & Kunda, 

1999). 

In a dynamic interactive model, the selection of one 

category and winnowing of other categories is accomplished 

by top-down pressure from higher-order nodes. For 

instance, the task demands of sex categorization, expressed 

by higher-order nodes, exerts excitatory pressure on to-be-

attended categories (male, female) and inhibitory pressure 

on task-irrelevant categories (e.g., Black, White, Asian). 

However, our model introduces several nuances to an 

understanding of how the person construal system comes to 

arrive at focal categorizations of others. 

Our model assumes that these top-down task-demand 

pressures exert their differential influence on categories 

dynamically over time. Thus, although for the purposes of 

sex categorization an applicable sex category rises in 

activation (thus becoming focally attended) whereas an 

applicable race category falls (thus becoming ignored), this 

pattern of excitation and inhibition is not instantaneous. 

Rather, higher-order task-demand nodes gradually exert 

excitatory pressure on certain categories while exerting 

inhibitory pressure on others. Thus, while these pressures 

are still at work our model predicts that multiple applicable 

category memberships (e.g., sex, race) are actually flexibly 

active in parallel. This places our model in line with neural 

dynamic models of visual attention (Desimone & Duncan, 

1995), which assume a similar parallel activation of multiple 

representations.  

Because multiple applicable category memberships (e.g., 

Black, angry) may be active in parallel while the system 

works toward stabilizing on a focal category (e.g., Black), 

non-focal categories also have an influence over perception. 

This is because their partial parallel activation can 

powerfully affect the system’s trajectory and the stable 

states it achieves. A clear demonstration of this, for 

example, is found in our modeling of the prejudice-mediated 

race-emotion interactive effects (Phenomenon 2). Due to the 

context of a race categorization task, higher-order nodes 

exerted excitatory pressure on race-category nodes and 

inhibitory pressure on emotion-category nodes. While these 

top-down task-demand pressures were at work, for a great 

deal of processing time emotion categories were still 

partially active in parallel. This emotion-category activation 

had a powerful effect on the trajectory of the system and on 

race categorization in particular. The competition between 

race categories, which was initiated by a race-ambiguous 

face (and thus initially equibiased with respect to bottom-up 

visual input) was powerfully swayed one way (White) or the 

other (Black) based on the partial parallel activation of 

presumably task-irrelevant emotion categories. Specifically, 

when a race-ambiguous target was angry, the partial 

activation of the ANGRY category biased the race-category 

competition toward a Black categorization, and this was 

especially the case for high-prejudice individuals. Thus, 

non-focal, presumably task-irrelevant categories (e.g., 

emotion in a race categorization task) can bear powerful 

influences on focal person construals. 

Our model also implies that, in the absence of strong 

top-down factors that require all but one category to be 

inhibited (e.g., task demands, goals), the person construal 

system could settle into stable states that are quite flexible. 

For instance, without higher-order nodes exerting inhibitory 

pressures on particular category nodes, the attractor states 

that the person construal system settles into could easily 

involve multiple categories (e.g., White, male) that are 

flexibly active in parallel. Indeed, the quality of having 

multiple person characteristics (e.g., lazy, friend, lives 

nearby) partially active in parallel is a central feature of the 

content-addressable memory modeled in connectionist 

networks of person memory (Smith, 1996, 2000; Smith & 

DeCoster, 1998). Just as multiple categories have often been 

shown to simultaneously constrain high-level impressions 

and social reasoning (Kunda & Thagard, 1996; Read & 

Miller, 1998b), a dynamic interactive theory proposes that 

they also simultaneously constrain lower-level person 

construals. Thus, the “multiple category problem” might 

best be characterized not so much as a “problem” that must 

be eliminated to keep cognitive efficiency (Allport, 1954), 

but rather as a reflection of the flexibility of interactive, 

parallel category representations.   

 

The Dynamic Coextension of Category and Stereotype 

Activation 

Recent research has found that variation in facial 

features may bear effects on stereotype activation that are 

independent of a target’s category membership. For 

instance, the presence of Black-specifying cues on a person 

who is not Black (e.g., a White face) increases Black-related 

stereotypic attributions (Blair et al., 2005; Blair et al., 2002). 

These effects may thereafter influence behavior as well. For 

example, in court trials, targets with more Black-specifying 

features are punished more severely and more likely to be 

sentenced to death (Blair et al., 2004a; Johnson et al., 2006). 

Based on such findings, some accounts have argued that 

these independent feature-based effects on stereotype 
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activation are accomplished by a special feature-based 

processing route, where features become associated with 

stereotypes unmediated by any category representation at all 

(Blair et al., 2002; Livingston & Brewer, 2002). This direct 

features � stereotypes route is theorized to be separate from 

a more typical categories � stereotypes route.
5 

Our model agrees with these previous accounts that 

facial features can influence stereotype activation without a 

discrete categorization. However, because our model 

permits categorizations to be partially active in parallel, 

independent feature-based effects on stereotype activation 

could be mediated by the tentative, partially-active 

categorization of an alternate category.  Specifically, our 

model suggests that independent feature-based effects on 

stereotyping are a product of the dynamic processing 

cascade inherent to the system. Cues of an alternate 

category (e.g., Black-specifying cues on a White target) 

trigger partially-active, competing category representations 

(e.g., “he’s [tentatively] White” versus “he’s [tentatively] 

Black”). Both category representations (e.g., White, Black) 

then immediately pass activation onward to their respective 

stereotypes before the competition in the category level has 

resolved and settled into just one alternative. This is 

reflected in Figure 4B, where feminine cues on a man’s face 

triggered the partial and parallel activation of the FEMALE 

category, which continuously cascaded into the partial and 

parallel activation of the female-related stereotype, DOCILE, 

as was shown with human perceivers (Freeman & Ambady, 

2009). Thus, the dynamic coextension of category and 

stereotype activation permits independent feature-based 

effects on stereotype activation. As such, our model 

parsimoniously accounts for independent feature-based 

effects on stereotyping by one single route involving a 

dynamic processing cascade.
6
 

 

A Rapidly Adaptive, Ecologically Valid Person 

Construal System 

Like the present model, the ecological approach to social 

perception (McArthur & Baron, 1983) emphasized the need 

to study directly the stimulus information that avails 

perceivers with functionally significant characteristics about 

other people. It also emphasized the inherently dynamic and 

multimodal nature of social stimuli. Our dynamic interactive 

framework is in the best spirit of this approach and builds 

on it in several ways.  

Our framework brings new and helpful ways of thinking 

about ecologically-valid person construal. Specifically, it 

assumes that the person construal system’s processing is 

fully continuous and highly interactive, and that its 

representations are probabilistic, active in parallel, and 

changing over time. This is exactly the sort of system 

required for the ecologically-valid person perceiver—the 

kind of perceiver that must make sense of others in real-

time, on-the-fly, and in a rapidly changing social 

environment. In real-world social encounters the sensory 

stimulation of another person is almost always in continuous 

flux (Gibson, 1979). The most obvious example might be 

the perception of a face’s emotion, which continuously 

fluctuates over time. Rarely do perceivers encounter a static 

emotional expression. Rather, for just a few fleeting 

moments, another’s face displays slight anger, which then 

rapidly transitions into some other expression. By the time 

perceivers are finished processing that subtle anger, 

however, there are already hundreds of milliseconds of new 

visual information that needs to be accrued and dealt with. 

In real-world person construal, therefore, another’s face 

tends not to fit squarely into any one expression (e.g., 

angry), but is usually in some in-between state amidst one 

interpretable expression and the next, and rarely standing 

still. 

For simplicity, in our instantiations of the model we 

supplied external input to the network discretely (at iteration 

1). However, the model is flexible to support the more 

ecologically-valid situation in which external stimulation to 

the network dynamically changes across time based on 

changing cues in the social environment. As a face’s 

5 It should be noted that this also applies to face overgeneralization 

effects. Face overgeneralization occurs when adults whose facial 

characteristics resemble babies, the unfit, a particular emotion, or a 

familiar person are perceived as possessing the internal 

characteristics suggested by those cues (e.g., being babyish, being 

unfit, feeling a particular emotion, or being similar to another 

familiar person, respectively; Zebrowitz & Montepare, 2008). 

Conceptually, overgeneralization effects are akin to independent 

feature-based effects on stereotype activation. For instance, baby-

specifying cues on an adult’s face appear to partially trigger baby 

stereotypes independent of the fact that the target is not actually a 

baby. This is akin to Black-specifying cues on a White target 

triggering Black-related stereotypes independent of the fact that the 

target is White (e.g., Blair et al., 2002) or analogous effects with 

sex categories (Freeman & Ambady, 2009). Thus, face 

overgeneralization effects are similarly accounted in our model by 

the dynamically cascading activation inherent to the person 

construal system. Specifically, activation of baby-specifying cues 

on an adult’s face, for example, would continuously cascade 

activation into the category level, triggering partially-active 

representations of both adult category and baby category. These, in 

turn, would continuously cascade activation into the stereotype 

level, triggering the partial parallel activation of baby stereotypes. 

This would thereafter bias high-level judgments and evaluations, 

driving the perceiver to infer the adult target is somewhat babyish 

(e.g., innocent, inexperienced). Thus, a dynamic interactive model 

can account for face overgeneralization effects, complementing 

connectionist networks that model them explicitly (Zebrowitz et al., 

2003; Zebrowitz, Kikuchi, & Fellous, 2010). 

6 Although our model can account for independent feature-based 

effects on stereotyping with a single route involving dynamically 

cascading activation, future work could attempt to empirically 

disentangle a one-route account (cues � categories � stereotypes) 

versus two-route account (categories � stereotypes and cues � 

stereotypes) using the model. By implementing direct connections 

between the cue nodes and stereotype nodes, researchers could 

determine whether experimental data better fit a one-route or two-

route account in the future. 
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emotion, a body’s subtle nonverbal behavior, or the ongoing 

stream of vocal cues fluctuate over time, the visual and 

auditory inputs into cue nodes would continually change 

across iterations accordingly. This would thereby 

continually change, iteration to iteration, the amount of 

excitatory and inhibitory pressures on category and 

stereotype nodes. As such, at any given moment while the 

system is trying to settle into one stable attractor state, new 

sensory information bombarding the system would already 

start changing the various attractor states to which the 

system will start gravitating (Spivey, 2007). This leaves 

little time for the system to actually rest in any given stable 

state, since by the time it starts to stabilize it is already being 

pushed out of its stability by new constraints (e.g., changes 

of a face’s emotion, of the body’s behavior, of the voice 

stream). Thus, the network we have outlined is a rapidly 

adaptive and dynamic person construal system. Its 

continually evolving states are able to be tightly yoked to 

the ongoing sensory stimulation of the social environment. 

This adaptive, dynamic person construal system is 

potentially stimulated by continuous top-down input as well. 

For instance, ecologically-valid, moment-to-moment 

changes in one’s goals or attentional states, among other 

top-down factors, would continually stimulate higher-order 

nodes, which thereafter continually change the amount of 

excitatory and inhibitory pressures on category and 

stereotype nodes. Thus, although for the sake of simplicity 

we modeled external inputs into the network as discrete 

occurrences, the system is inherently capable of supporting 

stimulation by a dynamically changing social environment 

as well as dynamically changing internal cognitive states. 

An ecologically-valid person construal system also 

needs to permit ongoing perceptions of other people to 

guide action continuously over time. In social interaction, 

something apparent on individual A’s face and gesturing 

elicits a reaction on individual B’s face and gesturing, which 

then elicits a reaction on individual A’s face and gesturing, 

and so on and so forth. Thus, there is no staccato series of 

static images and sounds that elicit particular reactions. 

Instead, ecologically-valid person construal would likely 

need to involve continuous millisecond-by-millisecond 

updates of facial, vocal, and bodily information, and these 

updates need to make their way onto the motor system 

immediately, not once the system has 100% finalized the 

processing of each transient image or sound in a social 

interaction. Indeed, recent neurophysiological evidence 

suggests that this dynamic person processing is a likely 

possibility. In a series of event-related potential studies, we 

demonstrated that the process of social categorization 

immediately shares its ongoing results with the motor cortex 

to guide action continuously over time (Freeman et al., in 

press). This is consistent with multi-cell recordings in 

nonhuman primates (Cisek & Kalaska, 2005, 2010). Thus, 

person construal is characterized by continuous perceptual–

cognitive–motor dynamics, such that perceptual, cognitive, 

and motor processing are coextensive. Cognitive 

representations of a face’s category memberships develop 

over hundreds of milliseconds while perceptual processing 

is ongoing, and these representations evolve alongside 

accruing perceptual evidence for category alternatives. 

Further, ongoing results of this social category processing 

are immediately cascaded into the motor cortex to guide 

relevant actions continuously over time. Thus, person 

construal is continuously coextensive with action. This is 

exactly the kind of processing required by the ecologically-

valid person perceiver. 

In short, we have described here a person construal 

system that is rapidly adaptive and dynamic. It is able to 

perceive others in an ecologically-valid, real-time social 

environment, while also able to coordinate with the motor 

system to act on ongoing perceptions. 

 

New Predictions and Future Directions 

 

Beyond our model’s ability to explain a wide range of 

phenomena, it also gives rise to a number of new and 

distinctive predictions, which future work could directly 

examine. Below are a few examples of important 

predictions derived from the model that could serve as 

testable hypotheses in the future. 

 

Category Interactions due to Incidental Stereotypic and 

Phenotypic Overlap 

Our model makes the novel prediction that any 

incidental overlap in the stereotype or phenotype content of 

two category memberships would lead the system to throw 

those categories into interaction. As shown in Phenomenon 

3, overlapping stereotype content between the male and 

Black categories (e.g., aggressive) and between the female 

and Asian categories (e.g., docile) created top-down 

pressure that gave rise to sex–race interactions. Or, as 

shown in Phenomenon 4, overlapping phenotype content 

between male and angry faces (e.g., furrowed brow) and 

between female and happy faces (e.g., roundness) created 

bottom-up pressure that gave rise to sex–emotion 

interactions.  

However, any number of category interactions are 

possible and, in fact, quite likely. Many stereotypes are 

likely to be incidentally shared by multiple categories. In 

fact, the very existence of some categories may be 

predicated on the stereotypes of other categories, such as 

sexual orientation categories and sex-category stereotypes 

(Kite & Deaux, 1987), and this is evident in perceptual 

construals (Freeman, Johnson, Ambady, & Rule, 2010a; 

Johnson, Gill, Reichman, & Tassinary, 2007). Future work 

could empirically estimate the degree of stereotype overlap 

between categories using explicit or implicit measures, and 

implement the estimated overlap into the stereotype and 

category levels. A variety of category interactions could 

arise in network simulations, and these could then be 

experimentally tested in the laboratory.  



                                                                        FREEMAN AND AMBADY 28 

 

  

  

Similarly, the perceptual cues contained in the face, 

voice, and body are likely to, by chance, partly covary 

between categories. Future work could empirically estimate 

the degree of phenotype overlap between categories and 

then implement this estimated overlap into the cue and 

category levels. For example, face-modeling software can 

derive precise estimates of hundreds of facial cues from a 

facial photograph (e.g., Blanz & Vetter, 1999). Thus, 

researchers could derive estimates of cue overlap using 

representative samples of faces for specific category 

memberships, and then implement these estimates into 

instantiations of the model. If category interactions arose in 

network simulations, these could then be experimentally 

investigated in the laboratory.  

Category interactions could also potentially be driven by 

both top-down and bottom-up overlap at the same time. For 

example, not only do male and angry cues and female and 

happy cues overlap (Becker et al., 2007), but also men are 

stereotyped as angry and women are stereotyped as happy 

(Fabes & Martin, 1991). Simulations with our model are 

uniquely poised to assess the relative contribution of 

potentially coexistent top-down and bottom-up forces in 

driving category interactions. Such simulations could also 

be used to tease apart the time-courses of these two forces’ 

influence on perceptions. 

 

Temporally Dynamic Influence of Top-Down Factors 

As shown with Phenomena 2 and 3, high-level cognitive 

states and stereotype activations may readily exert top-down 

pressure on categorization. Although in the case of 

substantially ambiguous targets our model predicts that such 

pressure will lead categorizations to be pushed entirely one 

way (e.g., White) or another (e.g., Black), an ultimate 

categorization outcome is unlikely to be altered in the case 

of less ambiguous targets. Nonetheless, even though in 

many instances such outcomes may not be altered 

wholesale, our model predicts that top-down factors will 

still impose a variety of dynamic biases across the 

categorization process. Further, these will often result in the 

triggering of alternate category memberships (e.g., male 

category for a female target) that are partially-active in 

parallel. Consider the following example. 

An individual on a job interview is told she will meet 

with a high-profile business executive. Her expectations of 

the executive trigger a host of stereotypes (e.g., business-

oriented, dominant, high-status), which are mostly 

associated with the MALE category. As she enters the office 

and takes her initial glance at the executive, who is a 

woman, visual processing of female-specifying cues will 

activate cue nodes, which thereafter place excitatory 

pressure on the FEMALE category. Simultaneously, the 

activated stereotypes will exert excitatory pressure on the 

MALE category. Eventually, competition between the two 

categories will lead the system to converge on an attractor 

state involving strong activation of FEMALE and weak 

activation of MALE, thereby achieving a female construal. 

Nonetheless, the MALE category would be partially-active in 

parallel for hundreds of milliseconds while top-down 

pressure from stereotype activation (biasing the competition 

toward a male construal) continuously interacts with the 

target’s bottom-up perceptual accrual (biasing the 

competition toward a female construal). Thus, even though 

perceivers’ ultimate construal outcomes might not be 

affected by top-down factors, our model predicts that the 

construal process will be considerably influenced by such 

factors. 

Such temporally dynamic influences of top-down factors 

on the construal process have yet to be tested in the 

laboratory. Prior work investigating top-down influences 

has focused on ultimate construal outcomes rather than the 

temporal dynamics culminating in those outcomes. The 

studies that have examined temporal dynamics (e.g., via 

mouse-tracking), however, have investigated only bottom-

up effects (e.g., manipulations of cues) to shed light on the 

nature of person construal processing, with little mention of 

top-down effects. Our model makes the novel prediction 

that even for person construals that are ultimately 

“veridical,” top-down factors will still exert any number of 

subtle, temporally dynamic biases across the course of 

construal. Future work could investigate this, including 

measuring the time-course of these top-down biases and 

confirming its correspondence with network simulations. 

 

Downstream Consequences of “Hidden” Parallel 

Activations  

Anderson (2002) argued for the importance of bridging 

psychological phenomena across multiple orders of 

temporal magnitude. Here we provided a model of person 

construal that fleshes out the process by which an ultimate 

perception crystallizes on the order of hundreds of 

milliseconds. But how do these relatively low-level, fine-

grained dynamics relate to higher-order phenomena on the 

order of hundreds of seconds or hours, such as aspects of 

social interaction or other behavioral outcomes? There are 

likely many relationships to be uncovered. For example, our 

model predicts that several unforeseen category and 

stereotype representations may be simultaneously and 

partially active before perceivers arrive at an ultimate 

construal. Subtle bottom-up overlap with an alternate 

category (e.g., slight feminine facial features on a man) can 

lead to partial parallel activation of that alternate category 

(e.g., female). Or, as discussed above, high-level cognitive 

states or stereotypes can exert top-down influences on 

category-level processing, in turn triggering partially-active 

representations of other candidate categories. Our model 

therefore predicts that, for a great many of our construals of 

others, a variety of “hidden” category and stereotype 

activations may be partially triggered in parallel—

activations that are not reflected in an ultimate perceptual 

outcome.  

Such subtle activations triggered during real-time 

construal could likely give rise to a variety of unforeseen 



                                       DYNAMIC INTERACTIVE THEORY OF PERSON CONSTRUAL 29 

 

  

  

downstream consequences. The lasting effects of category 

and corresponding stereotype activation on higher-order 

social phenomena—even the briefest of kinds (e.g., 

priming)—have long been documented. Activated 

stereotypes change how we think about others, judge, and 

remember them (Bodenhausen, 1988; Brewer, 1988; 

Devine, 1989; Fiske & Neuberg, 1990). They also activate 

related attitudes and behavioral tendencies, in turn changing 

how we feel about others and evaluate them (Fazio, 

Sanbonmatsu, Powell, & Kardes, 1986) and how we interact 

with others and treat them (Bargh, Chen, & Burrows, 1996; 

Chen & Bargh, 1999). Thus, future work could investigate 

how “hidden” parallel activations of alternate categories and 

stereotypes computed during the construal process, or other 

aspects of this real-time process, relate to important 

downstream phenomena. Moreover, such work could test 

how variation in the presence of these parallel activations 

relates to measures of individual differences (e.g., levels of 

prejudice or motivation) or other behavioral outcomes. 

 

Future Advances to the Model 
Future work could advance the model and simulations 

presented here in several ways. First, our simulations were 

limited to focusing on how sensory information and high-

level cognitive states temporally conspire to shape category 

and stereotype activations.  However, any given change in 

one node of the system will lead to changes in all other 

nodes, as the system works over time to maximally satisfy 

all of its constraints in parallel. Thus, the model is highly 

interactive and inherently bidirectional. It therefore assumes 

that, beyond high-level cognitive states shaping lower levels 

of processing, lower levels of processing also shape high-

level cognitive states. As such, the model predicts that 

sensory information and category and stereotype activations 

should all lead to a variety of changes in high-level 

cognitive states. However, in the present work our focus 

was on category and stereotype activations as the dependent 

measures of interest. Future work could develop the model 

further by testing the reverse relationship, making high-level 

states the dependent measure of interest (e.g., motivation, 

prejudice, top-down attention, affect) and examining how 

these states are shaped by a rich interaction with lower 

levels of processing, as the model predicts. 

The model could also be advanced by deriving network 

parameters empirically (see Footnote 3), and experimental 

studies could be used to refine and expand the model. For 

example, data could be collected for estimating the 

connection weights between category nodes and potentially 

hundreds of stereotype nodes (e.g., via explicit or implicit 

measures) and hundreds of cue nodes (e.g., via face-

modeling algorithms), and all these nodes and their 

weighting could be implemented in future versions. This 

would bring the model closer to the empirical rigor and 

level of quantification common to connectionist models of 

speech perception (e.g., McClelland & Elman, 1986). 

Moreover, future work could opt to replace the cue level 

with more sophisticated approaches to modeling the uptake 

of sensory information, such as a pixel-based image 

processor (e.g., Burton, Bruce, & Hancock, 1999). This 

would make fewer assumptions about the role of specific 

features and instead rely more on the emergent properties 

inherent in other people’s sensory information. Together, 

such advances would allow the model to better reflect the 

real-world interrelatedness among cues, categories, 

stereotypes, and high-level states. 

 

Conclusion 

 

A new approach to the study of person perception is on 

the rise, as evidenced by the two recent volumes, The 

Science of Social Vision (Adams, Ambady, Nakayama, & 

Shimojo, 2010) and The Social Psychology of Visual 

Perception (Balcetis & Lassiter, 2010). Social psychologists 

are working alongside researchers in the cognitive, neural, 

and vision sciences to provide a unified and more complete 

understanding of person perception. In the present work, we 

sought to open up the temporally extended, real-time 

process of person construal. In this real-time process, person 

construal is dynamic and interactive, and the connection 

between the “sensory” and the “social” an intimate one. 

Both our theory and the model we have described here show 

that many person construal phenomena may be accounted 

for by a dynamical system that permits lower-level sensory 

perception and higher-order social cognition to continually 

collaborate across multiple interactive levels of processing. 

Low-level sensory information and high-level social factors 

fluidly work together to give rise to stable and integrated 

perceptions of other people. Probabilistic and parallel 

construals gradually emerge through the ongoing interaction 

between categories, stereotypes, high-level cognitive states, 

and the low-level processing of facial, vocal, and bodily 

cues. Our hope is that a dynamic interactive framework for 

person construal will provide a helpful guiding force in the 

burgeoning interdisciplinary effort to understand the 

perception of our social worlds. 
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