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Bandwidth and Power Allocation for Cooperative
Strategies in Gaussian Relay Networks
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Abstract—Achievable rates with amplify-and-forward (AF) and
decode-and-forward (DF) cooperative strategies are examined for
relay networks. Motivated by sensor network applications, power-
constrained networks with large bandwidth resources and a large
number of nodes are considered. It is shown that AF strategies
do not necessarily benefit from the available bandwidth. Rather,
transmitting in the optimum AF bandwidth allows the network
to operate in the linear regime where the achieved rate increases
linearly with the available network power. The optimum power
allocation among the AF relays, shown to be a form of maximal
ratio combining, indicates the favorable relay positions. Orthog-
onal node transmissions are also examined. While the same op-
timum bandwidth result still holds, the relay power allocation in
this case can be viewed as a form of water-filling. In contrast, the
DF strategy will optimally operate in the wideband regime and is
shown to require a different choice of relays. Thus, in a large scale
network, the choice of a coding strategy goes beyond determining
a coding scheme at a node; it also determines the operating band-
width, as well as the set of relays and best distribution of the relay
power.

Index Terms—Antenna arrays, optimum relay powers, relay
channels, two-hop cooperative strategies.

I. INTRODUCTION

A LTHOUGH the capacity of the single-relay channel [1]
and consequently of wireless relay networks remains

unknown, several coding strategies have been proposed. Two
coding strategies were developed in [2]. The first uses block
Markov superposition encoding, random partitioning, and
successive decoding and achieves the capacity of the degraded
relay channel [2]. Two modifications that somewhat simplify
the above scheme were proposed in [3] and [4]. To avoid the
random partitioning, backward decoding [3] and windowed
decoding [4] were used, instead. The approach of [4] was
extended to the general relay channel model and referred to
as multihopping in [5]. When relays are close to the source,
this strategy achieves the capacity for some wireless relay
network models [6]. These are all decode-and-forward (DF)
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I. Marić is with the WSL, Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA (e-mail: ivanam@wsl.stanford.edu).

R. D. Yates is with the Wireless Information Networks Laboratory
(WINLAB), Department of Electrical and Computer Engineering, Rutgers Uni-
versity, North Brunswick, NJ 08902 USA (e-mail: ryates@winlab.rutgers.edu).

Communicated by A. J. Grant, Associate Editor for Communications.
Color versions of Figures 9–11 in this paper are available online at http://

ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2010.2040875

[7] strategies that require a relay to decode reliably the source
message before forwarding.

A different paradigm in which relays do not decode the mes-
sage, but send the compressed received values to the destination
was proposed in [2] and extended to the multiple relay channel
in [8]. When the relays are close to the destination, this strategy
achieves the antenna-clustering capacity [8].

In another strategy that does not require reliable decoding
at the relays, called amplify-and-forward (AF) [7], a relay for-
wards the scaled version of the received noisy copy of the source
signal. Hence, the data is sent through only two-hops with no
cooperation among relays. Under the assumption of uncoded
transmission at the source, it was shown that the two-hop AF
strategy achieves the asymptotic capacity in a relay network in
the limit as the number of relays becomes large [9], [10]. It was
further shown that in a random network the power efficiency of
such a strategy increases with the number of relays [11]. Even
though the relay power in [9]–[11] was allocated suboptimally,
the favorable scaling was achieved due to the coherent com-
bining of the relay signals that increases the received SNR at
the destination node.

In this paper, we revisit the reliable, DF strategy and the unre-
liable, AF strategy used in a Gaussian network with many relays
and a single source-destination pair. We show that these two
strategies require two different modes of operation employing
different sets of relays and different bandwidth and power allo-
cation among them. Motivated by sensor networks, we consider
networks in which transmit power is a limiting resource. Com-
pared to the power, the bandwidth in such a network is plen-
tiful. Operating in the wideband regime then seems like the right
choice; at the expense of using a large number of degrees of
freedom, the transmit energy per bit can be reduced.

However, the optimal operating regime for relay networks is
in general unknown [12]. In this paper, we show that the AF
strategy cannot necessarily benefit from the large bandwidth,
i.e., that it should not operate in the wideband regime. The
reason is that in the AF strategy, a part of the relay power is
wasted amplifying the receiver noise. As the signaling band-
width increases, the receiver noise increases and the AF gain
reduces. Ultimately, for a network operating in the wideband
regime, there is no benefit from relays employing the AF
strategy [13].

In this paper, we characterize the optimum AF bandwidth
and show that transmitting in the optimum bandwidth allows
the network to operate in a linear regime where the achieved
rate increases linearly with transmit power. Therefore, AF op-
timally uses only a fraction of the available dimensions. This
same conclusion was recently shown in [14] for the single relay
fading channel, when considering the outage capacity. We then
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present the optimum power allocation among the AF relays.
The solution can be viewed as a form of maximum ratio com-
bining (MRC) with the powers being proportional to the equiva-
lent channel gains that depend not only on the relay-destination
channel gains, but also on the source-relay links.

The requirement of coherent combining of the signals trans-
mitted from the different nodes may be too demanding in prac-
tice. Furthermore, a network with a large bandwidth available,
can support orthogonal signaling at the nodes that precludes co-
herent combining at a receiver. To evaluate the performance of
a two-hop network that does not benefit from coherent com-
bining, we also consider a relay network model with orthogonal
transmissions at the nodes. We show that the above result for
the optimum bandwidth applies to this channel model as well.
Furthermore, for the case of AF orthogonal transmissions, we
again identify the best subset of AF relay nodes. The optimum
relay power solution in this case can be viewed as a form of
water-filling.

The optimum AF bandwidth and relay powers can be con-
trasted to the DF solution. In a network with unconstrained
bandwidth, the DF strategy will operate in the wideband regime
to minimize the energy cost per information bit [15], [16]. The
wideband DF strategy requires again a different choice of relay
nodes; for the orthogonal transmission case, we present the op-
timum solution and demonstrate that, the data should be sent
through one DF relay that has the best pair of channels, when
channels are determined by attenuation [17].

The results presented in this paper indicate that in a large
scale network, a choice of a coding strategy goes beyond de-
termining a coding scheme at a node; it also determines the op-
erating bandwidth as well as the best distribution of the relay
power. While we consider a single source-destination pair, our
results have implications to networks with multiple source-des-
tination pairs. Our view is that, for each such pair, the relay net-
work in between is a resource that we aim to use efficiently.
Such a view motivates a total power constraint as the network
budget. The optimum power allocation then allows determining
the best subset of relay nodes for each source-destination pair.

The paper is organized as follows. The system model used in
the analysis is described in Section II. The optimum operating
bandwidth for the AF strategy is characterized in Section III and
the optimum AF power allocation is derived in Section IV. In
Section V, we address the DF forwarding strategy. The obtained
results motivate consideration of a hybrid strategy that combines
AF and DF and is presented in Section VI. This work builds on
the previously presented results [17]–[19].

II. SYSTEM MODEL

We consider a wireless Gaussian network with a single
source, labeled node , the destination, labeled node ,
and relays that dedicate their resources to relaying informa-
tion for the source. We consider two bandwidth allocations in
the given network.

1) Shared bandwidth. All the relays transmit in a common
bandwidth .

2) Orthogonal channels. Every node is assigned to transmit in
an orthogonal channel of bandwidth .

We adopt a discrete-time Gaussian channel model [20] and let
the vector denote the channel
inputs in time slot . The input depends on the source
message and the input at relay depends on its past
outputs .

In such a network, we consider two-hop forwarding strate-
gies in which relays use only the information received from the
source to choose their channel inputs and forward the messages
to the destination. In the first hop, the source transmits. The
channel output at relay is

(1)

and at the destination

(2)

where and are the source-relay and source-des-
tination channel gain, respectively, and is a zero-mean
Gaussian random variable with variance . In the second
hop, the relays transmit. In shared bandwidth, the channel output
at the destination is

(3)

Coefficients and are assumed to be real numbers,
for simplicity. When relays use orthogonal channels

(4)

where and and is a
Gaussian noise vector with covariance matrix .

Using the cut-set Theorem [20, Th. 14.10.1], it was shown
[9] that the capacity of this network is upper bounded by ,
given that there is a dead zone around the source that contains
no relays.

We consider two transmission strategies at the relays. As in
[9], we consider the AF protocol at the relays, in which the noisy
version of the source input received at relay
is amplified with gain and forwarded with a unit delay.
In time slot , relay transmits

(5)

We also consider the DF strategy in which the source transmis-
sion is reliably received at a relay. The relay decodes, reencodes
using an independent codebook and transmits.

In this paper, rather than considering the power constraint im-
posed on each transmitter, we assume that the total power budget
of [Watts] is allocated to the network. The constraint is on the
total power rather than on the power per dimension because DF
and AF will not in general operate in the same bandwidth. Thus
the power allocation over the relay nodes must satisfy the total
power constraint

(6)

Authorized licensed use limited to: Stanford University. Downloaded on May 04,2010 at 20:30:49 UTC from IEEE Xplore.  Restrictions apply. 



1882 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 4, APRIL 2010

III. AF: OPTIMUM BANDWIDTH ALLOCATION

We now consider the rates achievable with the AF strategy.
Let denote the power at node and let
be the power allocation at all nodes. Vector
denotes the nodes’ transmit powers per dimension and

. The amplification gain is chosen such
that the transmit power at node is and is found from (5)
to be

(7)

The achievable rates are given by the maximum mutual infor-
mation between the channel input and the channel output,
either for shared relay bandwidth or for orthog-
onal relay signaling. From results in [21], cases and
can both be expressed in the form

(8)

where represents a gain obtained by employing the AF
relays. For shared bandwidth, it follows from (2), (3) and (5)
that

(9)

For orthogonal channels, (4) and (5) imply

(10)

The rates (8) are normalized by the number of dimensions uti-
lized by a node rather than by the total number of dimensions in
the channel. For , (8) becomes the rate achieved in
the single-user channel, by a direct source transmission at power

. The difference in the AF gains (9) and (10) comes from the
coherent combining of the relay signals transmitted in a shared
bandwidth, which is forfeited in the orthogonal channel system.
The analysis presented in this section, however, applies to both
cases and we therefore drop the superscript. We next con-
sider the total rate achieved by the AF strategy

(11)

where is given by (8). As becomes large, we observe
that decreases to zero and therefore

(12)

which is the rate achieved in the wideband regime by the
source transmission. Therefore, there is no benefit from AF
relays transmitting in the wideband regime. This behavior was
previously observed in [13] in a parallel Gaussian network with
two relays. Except for the somewhat trivial case in which the
source is in a favorable position compared to all the relays, the
rate generally decreases for large .

To characterize the optimum AF bandwidth, we formulate the
AF power/bandwidth relay problem as

(13)

subject to (13a)

(13b)

(13c)

We assume that is sufficiently large to allow the network
to operate in the wideband regime. Let denote the
optimum power and bandwidth allocation that achieves in
(13). We first observe that, to achieve nonzero rate in (13), it
has to hold that and . Furthermore, constraint
(13a) is always binding. Depending on the values of the channel
gains, a solution to (13) may be a direct source transmission, that
is, for and given by
(13a). Otherwise, there will be a set of , relays
employing the AF strategy. In this case, the rate will be
decreasing with for large , implying that .
Given , it will be convenient to relabel the nodes such that
relays are the active transmitters with powers

while , for . Since
, the solution to (13) is never on the boundary (13c).

The Kuhn-Tucker conditions imply

(14)

From equations given by (14), we observe that the optimum
power allocation is independent of and . We
present the solution for the optimum relay powers in the next
section. The optimum bandwidth can be determined such that
the solution lies on the feasibility region boundary (13a)

(15)

From (13), (14), and (15)

(16)

We thus proved the following:
Theorem 1: The AF relay problem (13) has an optimum so-

lution in which the optimum bandwidth , the maximum rate
and the total power have a linear relationship.
We can view as a “rate reward,” or power efficiency; in-

creasing the total available power in (13) by , increases the
maximum achievable rate by .

IV. AF: OPTIMUM RELAY POWER ALLOCATION

We next consider a subproblem of (13) that determines the op-
timum relay powers per dimension, for any given source power

. We consider the shared bandwidth case first.

A. Shared Bandwidth

Given a source power , we let

(17)
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To maximize the rate (8) over the relay powers
, we maximize the AF gain (9)

(18)

subject to (18a)

(18b)

where is the power allocated to the re-
lays. To solve (18), we first argue that the solution is always
on the boundary (18a). To see that, consider a feasible solu-
tion such that . Then, there exist a constant

and a feasible solution such that is on the
boundary . Furthermore, it is easy to verify
that . We can, thus, let the constraint (18a) be
satisfied with equality. The objective function (18) becomes

(19)

A solution to (18) can be found by introducing the vector
with

(20)

and a vector of coefficients where

(21)

Problem (18) can then be represented in a vector form

(22)

Applying the Schwarz inequality, the solution to (22) is
where the constant can be found from (18a) and (20). We get
the optimum powers in the MRC form as

(23)

where we define

(24)

The AF gain (9) becomes

(25)

The next Lemma follows by comparing AF gains (25) and (10).

Lemma 1: For any given source power and relay power
with the relays employing AF signaling in shared bandwidth

outperforms orthogonal signaling.

Fig. 1. Relay powers for � � �� � � � ����. Relays employ AF in shared
bandwidth. Due to a small power available to the relays, the MAC side limits
the network performance. The solution chooses relays that have a better relay-
destination channel.

Given the relay powers (23) and AF gain (25), the shared-
bandwidth AF power/bandwidth (13) with fixed bandwidth
reduces to

(26)

subject to (26a)

(26b)

Lemma 2: There exists a unique optimum solution
to (26).

The proof for the Lemma follows from the observation that
the optimum is on the boundary where and that

is strictly concave in .
Given , the AF power/bandwidth (13) re-

duces to maximizing the rate with respect to bandwidth for

(27)

Numerical calculation of is straightforward. The relay
powers (23) are shown in Figs. 1–4 for a scenario of
relays positioned on a 100 100 square grid. The source and
the destination are positioned on the two opposite sides of the
grid. The propagation exponent was chosen.

For large source power , relay powers are shown in Fig. 1.
In this case, the received SNR at the relays is high and the
network multiple-access side from the relays to the destination
limits the performance. The relays that have a better channel to
the destination are employed.

Fig. 2 shows the opposite case of a small power and a
high power . We observe a reversed relay power allocation
compared to the previous case, as the network tries to improve
the broadcast side performance by choosing the relays with high
received SNR. Fig. 3 shows the powers for larger values of
and . Finally, Fig. 4 shows the relay powers when the network
operates in a low SNR-regime due to small and . The
clustering behaviors shown in Figs. 1–4 are preserved as the
number of relays in the network changes.

Authorized licensed use limited to: Stanford University. Downloaded on May 04,2010 at 20:30:49 UTC from IEEE Xplore.  Restrictions apply. 



1884 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 4, APRIL 2010

Fig. 2. Relay powers for � � ����� � � �� . Relays employ AF in shared
bandwidth. Relays that are closer to the source are employed.

Fig. 3. Relay powers for � � � � �� and � �� � �. Relays employ AF
in shared bandwidth.

Fig. 4. Relay powers for � � � � ���� and � �� � �. Relays employ
AF in shared bandwidth.

Fig. 5 shows the solution to the AF relay problem (13).
For a given network power budget [Watts], the best powers

and the bandwidth are found numerically. In par-
ticular, for each value of , we determine the optimum relay
powers (23) for a fixed . We then optimize over all and

, as given respectively by (26) and (27). As the power budget
in the network is varied, the achieved rate and the optimum
bandwidth, shown in Fig. 5, vary linearly, as promised by
Theorem 1. The powers stay constant for all values
of , a behavior we observed in (14). Due to the symmetry of
the network in the experiment, the values of powers and
are very close to each other.

Fig. 5. Achieved rate and the optimum bandwidth as a function of the network
power budget � [Watts]. Relays employ AF in shared bandwidth.

B. Orthogonal Channels

We next identify the best subset of AF relays and their powers
for the case of orthogonal signaling. Given a source power ,
we let

(28)

Again, to maximize the rate (8) over the relay powers , we
maximize the AF gain (10)

(29)

subject to (29a)

(29b)

From the Kuhn–Tucker conditions, the solution to (29) is in the
water-filling form

(30)

where is the Lagrange multiplier and is found such that (29a)
is satisfied with equality. Once again, the best choice of relays
varies with the transmit source power. We observe that the AF
relay network, depending on whether it operates in shared or
orthogonal channels, will require two different relay power al-
locations as given by (23) or (30).

C. Single-Relay Channel

A different AF paradigm can be used in a single-relay
channel (or in a relay network with multiple relays that cannot
hear each others’ transmissions.) Under the assumption that a
relay can transmit and receive simultaneously, we can allow the
source and the relay to transmit at the same time in the shared
bandwidth. As observed in [5], this strategy turns the relay
channel into a unit-memory intersymbol interference channel,
as the signal at the destination becomes

(31)
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Fig. 6. Achieved rate [bits/dim] in a single-relay channel for � � � � ��.

where

(32)

is the total noise at the destination. The amplification gain is
given in (7), as before. Note that has variance

(33)

The capacity of this effective ISI channel is [20]

(34)

under the power constraint

(35)

where

(36)

When using the large bandwidth , the amplification gain
goes to zero and the channel (31) becomes the point-to-point
channel with no benefit from the relay. Thus, this AF strategy
can again benefit from the bandwidth optimization. We illustrate
that fact on the network example of [5] where a source, relay and
destination are positioned on a line. The source-relay distance
is denoted as . For , we repeat the performance
comparison given in [5], in Fig. 6. Fig. 7 shows the comparison
for . Note that, when employing DF strategy,
a relay also transmits and receives simultaneously. We observe
that the relative performance between DF and AF changes as the
different power per dimension is used. Thus, in Fig. 8, we com-
pare the two strategies while allowing each of them to operate
in its optimum bandwidth and thus optimum power per dimen-
sion, for the given power (Watts) at the nodes.

V. DF

A multihopping strategy [5] in which data sent by the source
is successively decoded by the relays and finally by the destina-
tion was shown to achieve the rates ([5, Thm. 1])

(37)

Fig. 7. Achieved rate [bits/dim] in a single-relay channel for� � � � ����.

Fig. 8. Achieved rate [bits/s] in a single-relay channel for � � � � �.

where is a permutation on the set of nodes such that
and , and

denotes the channel inputs . For
a fixed covariance matrix , it follows from the
conditional maximum entropy theorem [22, Lemma 1]) that all
the terms in (37) are maximized by choosing as a zero-mean
Gaussian vector.

The two-hop DF is a more constrained case of multihopping
and it imposes a constraint on the correlation between the in-
puts. The rate (37) then reduces to the minimum of the broad-
cast rate achieved in the first hop and the MAC rate achieved in
the second hop from the relays to the destination. With
denoting the subset of relays executing the DF strategy and

, the first hop broadcast rate is

(38)

and the second hop MAC rate is

(39)
The channel capacity from the source to any node in
is thus higher than the code rate and we say that source
makes a node in reliable. In general, the source power is
split in two parts: the first for transmission to the relays, and the
second for helping the relays forward a message to the destina-
tion [2]. However, in (38) and (39), the source power is used for
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the first goal exclusively. The reason is that the MAC rate (39),
increases with and thus will become higher than the rate (38)
for sufficiently large .

In the case of the orthogonal signaling, the MAC rate is given
by

(40)

As in the AF case, the difference in the two bandwidth alloca-
tions is that the signaling in the common bandwidth allows for
the coherent combining of the relay signals at the destination.

The achievable rate (37) reduces to

(41)

The achievable rate (41) is bounded by the worst source-relay
link and by the MAC part of the relay network that, for any

, is a Gaussian vector channel [21] with relays acting as
a multiple-antenna transmitter. For the given powers, the max-
imum rate in bits/s or equivalently, the minimum energy cost per
information bit in both the point-to-point and Gaussian vector
channel is achieved in the limit of large [15]. Thus, the
power-efficiency of DF strategy is maximized in the wideband
regime. This behavior was also analyzed in [16].

A. DF Orthogonal Signaling: Optimum Power Allocation

In this case, the MAC rate is given by . For the given
power and the rate at the source, relay will be able to
execute the DF strategy only if the rate can be communicated
reliably from the source to relay with power . Thus, it has
to hold that

(42)

When constraint (42) is met for node , we say that the source
makes node reliable. To optimize the transmit powers, we
have to find the best subset of nodes to be made reliable so that
they can DF the message. We use binary variables to indicate
which relays will be in the active set and formulate the
maximization of in the following way:

(43)

subject to (43a)

(43b)

(43c)

(43d)

Specifically, (43) sets while (43a) requires that rate
be achievable at each active relay. In the limit of large , (43)

simplifies to the orthogonal wideband DF relay problem

(44)

subject to (44a)

(44b)

(44c)

(44d)

From (44), we observe that in terms of the set
of active relays

(45)

Moreover, this upper bound is achievable by assigning the
relay power budget to a single relay with

. This observation yields the following
claim.

Theorem 2: The orthogonal wideband DF relay problem (44)
admits an optimal solution in which no more than one relay node
transmits.

The intuition of Theorem 2 is that the relays provide a set
of parallel channels to the destination and under wideband op-
eration, transmitted power per dimension is severely restricted.
Thus, waterfilling this power over the relay channels results in
transmission only on the best channel to the destination.

By Theorem 2, it is sufficient to consider only policies that
employ a single relay . In this case, , and
for . Equation (44) becomes the wideband single relay
problem

(46)

subject to (46a)

(46b)

(46c)

In (46), one can show that relay is used with power
only if and . In this case, the transmit powers
are

(47)

The achieved rate normalized by the noise variance is

(48)
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Fig. 9. Comparison of rates achieved with AF and DF. There are � � ��

relays randomly distributed in the network of size 10� 10. DF outperforms AF.

Fig. 10. Comparison of rates achieved with AF and DF. There are� � ���

relays randomly distributed in the network of size 10� 10. The two strategies
have the same performance.

We emphasize that this is the optimal power assignment for
using node as long as node is a useful relay, in the sense
that belong to the set of useful relays

(49)

Finally, among all useful relays , we choose that one which
maximizes the rate . We summarize our observations in the
following theorem.

Theorem 3: If the set of useful relays is nonempty, the
optimal solution to the orthogonal wideband DF relay problem
(44) is for the source to employ relay

(50)

with power assignment given by (47); otherwise, if is empty,
then direct transmission from the source to the destination is
optimal.

Remark 1: Employing a single relay out of the set of available
relays, as in Thm. 2, was more recently shown to be superior also
in fading, in terms of the outage probability [23]. From a more
practical aspect, this approach was considered in [24].

B. DF Coherent Combining: Optimum Power Allocation

When the DF relays share the bandwidth, the maximum rate
problem can be formulated as

(51)

subject to (51a)

(51b)

(51c)

(51d)

In the limit of large , this problem simplifies to the wideband
DF relay problem

(52)

subject to (52a)

(52b)

(52c)

(52d)

Any choice of source power determines a reliable set of relays
, for which (42) is satisfied. With total power

allocated to relays, (52) simplifies to determining the optimum
powers of relays within the set

(53)

subject to (53a)

(53b)

Since relays do not contribute to the rate objective
(53), the optimization problem sets those relay powers to zero.
For the reliable relays , it is straightforward to show
that the solution is in the MRC form

(54)

Thus, unlike the orthogonal DF case, each reliable relay is em-
ployed in order to contribute to the coherent combining gain.
The corresponding achievable rate (52) is

(55)
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Without loss of generality, we can assume that the relay nodes
are labeled such that . Thus, if ,
then relay nodes 1 through will be able to DF. From (55), the
achievable rate will become

(56)

where

(57)

From (52) and (56), the wideband relay problem reduces to

(58)

subject to (58a)

(58b)

(58c)

We observe that (58) is identical to (46) with replacing .
In this case, however, node will not be the only transmitting
relay, but rather the transmitting relay with the th largest link
gain to the source.

Using the same reasoning as in the case of (46), we conclude
that a set of relays is employed if and

for a given . From (58), we obtain the optimum
powers

(59)

The set of useful relays in this case is given by

(60)

We choose such that

(61)

C. Numerical Comparison

We compare the performance of the AF and DF strategies
in a network of size 10 10. In Figs. 9, 10, and 11 a different
number of relays (10, 100, and 1000, respectively) are randomly
positioned in the network. We consider the case when the relays
share the bandwidth. For the AF strategy, we choose .
We observe that, for a small number of relays, the DF strategy
performs better than AF. As the number of relays increases, the
AF strategy catches up with DF and ultimately outperforms it.
The limitation of DF comes from the constraint that relays have
to decode the message and, thus, DF cannot fully utilize the
relays. This effect becomes more prominent as the number of
relays gets large.

VI. HYBRID STRATEGY

In the DF strategy, the signaling rate is limited by a channel
from the source to the active relay with the smallest channel
gain. This limitation is overcome by allowing AF at the relays
and thus relaxing the decoding constraint. In this case, however,
a part of relay power is wasted to amplify the receiver noise. In

Fig. 11. Comparison of rates achieved with AF and DF. There are� � ����

relays randomly distributed in the network of size 10� 10. AF outperforms DF.

this section, we propose a hybrid strategy, in which a relay am-
plifies and forwards a signal only if it cannot reliably decode the
source message. Otherwise, a relay employs DF. This scheme
is expected to perform better than pure AF as a subset of nodes
will be forwarding a clear signal without unnecessary amplifi-
cation of noise.

A. Optimum Power Allocation

For a fixed signaling bandwidth , source power and total
relay power , we can use results from Section IV-A to derive
the optimum relay power allocation for the hybrid strategy. For
a given source power the set of reliable relays is given
by (42). For the achievable rate (10), it is then straightforward
to determine the gain as in (9). In particular, the problem can be
expressed in a form equivalent to (18) as

(62)

subject to (62a)

(62b)

where is the power allocated to the relays
and is given by (17). We have

(63)

Note that when is an empty set, (62) reduces to (18). In
fact, we let

if
otherwise

(64)

if
otherwise

(65)

so that the gain (62) is reduced to

(66)
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Repeating steps (19)–(25), we obtain the solution

(67)

where we defined

(68)

When is an empty set, solution reduces to the AF solu-
tion (23); similarly when all contains all the nodes, the
solution reduces to the DF solution (55).

VII. CONCLUSION

The results presented in this paper indicate show that the
choice of a coding strategy goes beyond determining a coding
scheme at a node; it also determines the operating bandwidth as
well as the best distribution of the relay power. While we con-
sider a single source-destination pair, our results have implica-
tions for networks with multiple source-destination pairs. Our
view is that the relay network between each source-destination
pair is a resource that we aim to use efficiently. Such a view mo-
tivates a total power constraint as the network budget. The op-
timum power allocation then allows determining the best subset
of relay nodes for each source-destination pair. The obtained
results assume full knowledge of channel gains at the nodes in
order to bring insights into operating networks with relays. One
future path would be to examine the impact of reduced channel
state information available at the nodes.

In a wireless network, messages are typically expected to
travel further than just two hops and the two-hop protocol ap-
proach should not be viewed as an obstacle to multihoping pro-
tocols. In fact, it is expected that a routing protocol will still
operate on the network layer. The cooperative relay strategies
will be run on the lower MAC layer, allowing for faster network
adaptation to changes due to fading or high mobility. In that
sense, routing and relaying will work together to increase the
network performance.
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[17] I. Marić and R. D. Yates, “Forwarding strategies for Gaussian parallel-
relay networks,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2004.
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