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Abstract-
Honey-bees are one of the most well studied

social insects. They exhibit many features that
distinguish their use as models for intelligent
behavior. These features include division of
labor, communication on the individual and
group level, and cooperative behavior. In
this paper, we present a unified model for the
marriage in honey-bees within an optimization
context. The model simulates the evolution of
honey-bees starting with a solitary colony (single
queen without a family) to the emergence of
an eusocial colony (one or more queens with
a family). From optimization point of view,
the model is a committee machine approach
where we evolve solutions using a committee
of heuristics. The model is applied to a fifty
propositional satisfiability problems (SAT) with
50 variables and 215 constraints to guarantee
that the problems are centered on the phase
transition of 3-SAT. Our aim in this paper is to
analyze the behavior of the algorithm using bio-
logical concepts (number of queens, spermatheca
size, and number of broods) rather than trying
to improve the performance of the algorithm
while losing the underlying biological essence.
Notwithstanding, the algorithm outperformed
WalkSAT, one of the state-of-the-art algorithms
for SAT.

1 Introduction

Swarm intelligence (Bonabeau et al. 1999) is a new
area of research concerned with modelling the behavior
of social insects, such as ants and bees, and using these
models for problem solving and search. Ant colony
optimization is one of the most successful models of
swarm-based approaches for optimization, where the
search algorithm is inspired by the behavior of real ants
(Dorigo and Gambardella 1997; Dorigo and Caro 1999;
Dorigo et al. 2000). Honey-bees are also used to model
agent-based systems (Perez-Uribe and Hirsbrunner
2000). In this paper, we model the marriage behavior of
honey-bees and use this model to inspire an optimiza-

tion search algorithm, which we call optimization with
marriage in honey-bees (MBO).

MBO is inspired by the phylogenetic of sociality in
Hymenoptera, such as bees, ants, and wasps, and the
mating process in honey-bees. Eusocial insects are char-
acterized by three main features: cooperation among
adults in brood care and nest construction, overlapping
of at least two generations, and reproductive division
of labor. Insects without these attributes are termed
solitary and those lack one or two of these attributes are
termed presocial (Dietz 1986). The evolutionary steps
of eusociality were driven by the continuous series of
nests, starting with entirely solitary to high eusociality.
Two sequences can be distinguished in establishing
this series of nests; subsocial (familial or altruistic
cooperation) and parasocial (mutualistic cooperation).
In the literature of behavioral genetics, the former series
is more common than the latter and this will be the
assumed model in this paper.

A colony can be founded in two different methods
(Dietz 1986). The first method is called independent
founding, where a colony starts with one or more
reproductive females that construct the nest, produce
eggs, and feed the larvae. The first brood is reared
alone until they emerge and take over the work of
the colony. Subsequently, division of labor starts to
take place, where the queen specializes in egg laying
and the workers in brood care. The second method is
called swarming where the colony is founded by one
or more queens in addition to a group of workers from
the original colony. Division of labor commences from
the beginning where queens specialize in egg laying and
workers in brood care. The colony is haplometrosis if
it is founded by a single queen; otherwise pleometrosis.
If the colony contains one queen during its life-cycle, it
is called a monogynous colony; otherwise a polygynous
colony.

In this paper, we take a swarming eusocial approach
assuming a haplometrosis polygynous colony. The
paper is organized as follows: Section 2 introduces
the propositional satisfiability (SAT) problem along
with some background materials. In Section 3, we



discuss the marriage process in honey-bees and for-
mulate a general version of the MBO algorithm. The
MBO algorithm applied to SAT is then discussed in
Section 4 followed by experimental setup and results
in Section 5. The paper is then concluded with Section 6.

2 The propositional satisfiability problem

A general constraint satisfaction problem (CSP) is the
problem of finding an assignment to a set of variables
that satisfies a set of constraints over those variables.
To formally define a CSP, we introduce the following
notations. “SV

v ” represents an ordered instantiation
of a set of variables V by substituting corresponding
values v from their domain D(V ), “3” for such that,
“0” for not derive, and finally “⊥” for falsification.
We can define a CSP problem as follows: A set of
constraints C over the set of variables V ∈ D(V ) - that
is C ⊂ V ×V - is satisfiable iff ∃ v ∈D(V ), 3 SV

v ∧C 0 ⊥.

In SAT, the domain of each variable is either true or
false, or equivalently 1 or 0 (ie. V ∈ {0, 1}). Although
SAT is a special case of CSP, any CSP can be mapped
to SAT (Hoos 1999b; Hoos 1999a). Many problems
in planning and scheduling can be represented using
SAT; therefore solving SAT is a very attractive research
area. However, it is known that SAT is intractable
(Papadimitriou and Steiglitz 1982).

In the literature, there are two main streams of
techniques for solving SAT: complete and incomplete
techniques (Hoos and Stützle 2000). The former use an
exhaustive search approach and guarantee a solution
if one exists. However, a complete technique (such as
Davis-Putnam) can only handle small problems (Zhang
and Stickel 1994), after which the time needed to solve
the problem gets beyond any computer capabilities.
The latter, although they do not guarantee convergence
to a solution, they are fast and more suitable for large
problems. Therefore, incomplete techniques become
more attractive, especially with problems in planning
which include thousands of variables (Selman and Kautz
1993b; Selman et al. 1994a).

The easiness/hardness of solving SAT depends on
a phenomena known as “phase transition” (Cook and
Mitchell 1997). Problems before the phase transition
are easy to solve and those after the phase transition are
mostly unsatisfiable. Hard SAT problems exist around
the phase transition region. A phase transition is defined
by the ratio between the number of clauses (constraints),
l, and the number of literals (variables), n. A Markov-
bound estimates the phase transition of a problem with

k literals per clause as (Gent and Walsh 1994)

l

n
≈ − ln(2)

ln(1− 1
2k )

However, for 3-SAT, the phase transition was experimen-
tally found to be 4.3 (Cook and Mitchell 1997).

3 Marriage in honey-bees

The behavior of Honey-bees is the product of their
genetic potentiality, ecological and physiological en-
vironments, the social conditions of the colony, and
various prior and ongoing interactions among these
three (Rinderer and Collins 1986). Each bee performs
sequences of actions which unfold according to genetic,
environmental, and social regulation. The outcome of
each action itself becomes a portion of the environment
and greatly influences the subsequent actions of both a
single bee and her hive mates. The marriage process
represents one type of action that was difficult to study
because the queens mate during their mating-flight far
from the nest. Consequently, the mating process was
hard to observe. Before summarizing the mating-flight
in honey-bees, we first present the structure of a normal
honey-bees colony.

3.1 Colony structure

Each normal honey-bees colony consists of the queen(s),
drones, workers, and broods. Queens represent the main
reproductive individuals in some types of honey-bees
- such as the European Apis Mellifera - and specialize
in eggs laying (Laidlaw and Page 1986). Drones are
the sires or fathers of the colony. They are haploid
and act to amplify their mothers’ genome without
alteration of their genetic composition except through
mutation. Therefore, drones are considered as agents
that propagate one of their mother’s gametes and
function to enable females to act genetically as males.

Workers specialize in brood care and sometimes lay
eggs. Broods arise either from fertilized or unfertil-
ized eggs. The former represent potential queens or
workers, whereas the latter represent prospective drones.

3.2 The mating-flight

A mating-flight starts with a dance performed by the
queens who then start a mating flight during which
the drones follow the queens and mate with them in
the air. In a typical mating-flight, each queen mates
with seven to twenty drones (Adams et al. 1972).
In each mating, sperm reaches the spermatheca and
accumulates there to form the genetic pool of the



colony. Each time a queen lays fertilized eggs, she re-
trieves at random a mixture of the sperms accumulated
in the spermatheca (Page et al. 1984) to fertilize the egg.

3.3 The artificial analogue model

The mating-flight can be visualized as a set of tran-
sitions in a state-space (the environment) where the
queen moves between the different states in the space
in some speed and mate with the drone encountered
at each state probabilistically. The queen is initialized
with some energy-content at the start of the flight and
returns to her nest when the energy is within some
threshold from zero or when her spermatheca is full.

In this paper, we will restrict the functionality of a
set of workers to brood cares and therefore, each worker
will be represented as a heuristic which acts to improve
(take care of) a set of broods. A drone mates with a
queen probabilistically using the following equation

prob(Q,D) = e
−difference

speed (1)

where, prob(Q, D) is the probability of adding the sperm
of drone D to the spermatheca of queen Q; that is, the
probability of a successful mating, difference is the ab-
solute difference between the fitness of D and Q, and
speed is the speed of the queen Q. It is clear that this
function acts as an annealing function, where the prob-
ability of mating is high when either the queen is still in
the start of her mating-flight and therefore her speed is
high, or when the fitness of the drone is as good as the
queen’s. After each transition in the space, the queen’s
speed and energy are reduced using the following equa-
tions

speed(t + 1) = α ∗ speed(t)

energy(t + 1) = energy(t)− step

where α is a factor ∈]0, 1[ and is taken to be 0.9 in
our implementation, and step is the amount of energy
reduction after each transition.

In Figure 1, a generic MBO algorithm is presented.
The algorithm starts with initializing the set of workers
with some heuristics. The genotype of each queen is
then initialized at random. A set of mating-flights is
then undertaken where the energy, speed, and position
of each queen are initialized with some value at random.
Afterwards, each queen starts moving between states
in the space according to her speed and mate with the
drone it encounters at each state using the previously
discussed function in Equation 1. If a drone is suc-
cessfully mated with the queen, its sperm is added to
the queen’s spermatheca (ie a list of partial solutions).
After the mating flight is over for all queens, they return

to the nest and start breeding by randomly selecting
a sperm from the queen’s spermatheca followed by
crossover with the queen’s genome that complements
the chosen sperm and forms a brood. Mutation then
acts on the brood; therefore, if the same sperm is used
once more to generate a brood, the resultant brood
will be different because of mutation. This process is
followed by applying workers that are used to raise
(improve) the broods. The fitness of each worker is then
updated based on the amount of improvement achieved
by the worker to the drone. The least-fitted queen is
then replaced with the fittest brood until none of the
broods is fitter than any of the queens. The remaining
broods are then killed and a new mating flight starts. In
reality, the female broods become workers or queens and
the diploid males are killed. However, since a worker in
our algorithm represents a heuristic without a genome,
all remaining broods are assumed to be diploid males
for simplification. Also, to avoid inbreeding (since the
number of queens is usually small), drones are generated
at random; therefore they are assumed to be unrelated
to the queens.

initialize workers
randomly generate the queens
apply local search to get a good queen
for a pre-defined maximum number of mating-flights

for each queen in the queen list
initialize energy, speed and position
the queen moves between states

and probabilistically chooses drones
if a drone is selected, then

add its sperm to the queen’s spermatheca
end if
update the queen’s internal energy and speed

end for each
generate broods by crossover and mutation
use workers to improve the broods
update workers’ fitness
while the best brood is better than the worst queen

replace the least-fittest queen with the best brood
remove the best brood from the brood list

end while
end for

Figure 1: Optimization by marriage in honey-bees

4 MBO for SAT

In this section, the application of the MBO algorithm to
the propositional satisfiability problem is presented in
two stages. First, the representation of a colony and a
solution along with the means of calculating the fitness
of the individuals are presented in Section 4.1. Second,



the algorithm that is applied to SAT is introduced in
Section 4.2.

4.1 Representation

A genotype of an individual is represented using an
array of binary values and length equal to the number of
literals in the problem, where each cell corresponds to a
literal. If the value assigned to a cell is 1, this indicates
that the corresponding literal is true; otherwise it is false.

A drone is represented using a genotype and a geno-
type marker. Since all drones are haploid, a genotype
marker is used to randomly mark half of the genes in
the genotype and leaves the other half unmarked; the
unmarked genes are the ones that form a sperm.

Each queen has a genotype, speed, energy, and
spermatheca (a repository of drones’ sperm). A queen’s
speed and energy are initialized before each mating-
flight at random in the range [0.5, 1]. When a mating
takes place between a queen and one of the drones’
sperm stored in her spermatheca, a brood is constructed
by copying the unmarked genes in the drones’ sperm
into the brood and completing the rest of the genes from
the queen’s genome. A brood has only one genotype.
The fitness of the genotype is the ratio between the
number of clauses satisfied by the assignment to the
total number of clauses in the problem.

Workers represent a set of different heuristics. Each
heuristic has a fitness value that represents the amount
of improvement in a brood’s genotype as a result of
applying the heuristic to that brood. Five heuristics
are used in this paper; these are WalkSAT, random
walk, random flip, random new, and 1-point crossover.
For the description of WalkSAT and random walk,
the reader may refer to (Selman et al. 1992; Selman
and Kautz 1993a; Selman et al. 1994b). The heuristic
random flip randomly chooses a variable and changes
its value to its complement (ie. changing false to
true or true to false). The heuristic random new
replaces the brood’s genotype with a new randomly
generated genotype. The 1-point crossover heuristic,
crossovers the brood’s genotype with a randomly gener-
ated genotype. The crossover point is chosen at random.

4.2 The algorithm

The complete MBO algorithm is presented in Figure 2.
The algorithm starts with three user-defined parame-
ters and one pre-defined parameter. The pre-defined
parameter is the number of workers, representing the
number of heuristics encoded in the program. However,

the pre-defined parameter may be used as a user
parameter to alter the number of active heuristics if
required; that is, the user may choose the first W
heuristics, where W is less than or equal to the total
number of heuristics encoded in the program. The three
user-defined parameters are the number of queens, the
queen’s spermatheca size representing the maximum
number of matings per queen in a single mating-flight,
and the number of broods that will be born by all
queens. The energy and speed of each queen at the
start of each mating-flight are initialized at random.

A set of queens is then initialized at random. Then a
randomly selected heuristic is used to improve the geno-
type of each queen, therefore preserving the assumption
that a queen is usually a good bee. A number of
mating-flights is then undertaken. In each mating-flight,
all queens fly based on the energy and speed of each,
where both energy and speed are generated at random
for each queen before each mating flight commences.
At the start of a mating-flight, a drone is generated at
random and the queen is positioned over that drone.
The transition made by the queen in the space is based
on her speed which represents the probability of flipping
each bit in the drone’s genome. Therefore, at the start
of a mating-flight, the speed is usually high and the
queen makes very large steps in the space. While the
energy of the queen decreases, the speed decreases and
as a result the neighborhood covered by the queen
decreases. At each step made by the queen in the
space, the queen is mated with the drone encountered
at that step using the probabilistic rule in Equation 1.
If the mating is successful (ie. the drone passes the
probabilistic decision rule), the drone’s sperm is stored
within the queen’s spermatheca. We may notice here
that each time a drone is generated, half of his genes
are marked at random since each drone is haploid by
definition. Therefore, the genes that will be transmitted
to the broods are fixed for each drone.

When all queens complete their mating-flight, they
start breeding. For a required B broods, a queen is
selected in proportion to her fitness and mated with
a randomly selected sperm from her spermatheca.
A worker is chosen in proportion to its fitness to
improve the resultant brood. After all broods are being
generated, they are sorted according to their fitness.
The best brood replaces the worst queen until there
is no brood that is better than any of the queens.
All broods are then killed and a new mating-flight
is undertaken until all mating-flights are completed
or an assignment that satisfies all clauses is encountered.



Define Q,W , and B to be the number of queens, workers,
and broods respectively

Define M to be the spermatheca size
Define energy, and speed to be the queen’s energy and

speed respectively
Initialize each worker with a unique heuristic
Initialize each queen’s genotype at random
select a worker at random and apply it to improve the

queen’s genotype
while the stopping criteria are not satisfied

for queen = 1 to Q
initialize energy, speed and position
initialize step = 0.5×energy

M

generate a drone using position
while energy > 0

evaluate the genotype of the drone
if the drone passes the probabilistic

condition, then
if the queen’s spermatheca is not

full, then
add its spermatozoa to the

queen’s spermatheca
end if

end if
energy = energy − step
speed = 0.9× speed
with a probability of speed, flip each bit in the

drone’s genotype
end while

end for
for brood = 1 to B

select a queen in proportion to her fitness
select a sperm from the queen’s spermatheca

at random
generate a brood by crossovering the queen’s genome

with the selected sperm
mutate the generated brood’s genotype
select a worker in proportion to its fitness
use the selected worker to improve the

drone’s genotype
update the worker’s fitness based on the amount of

drone’s improvement
end for
while the best brood is better than the worst queen

replace the least-fittest queen with the best brood
remove the best brood from the brood list

end while
end while

Figure 2: MBO for SAT

5 Experiments

5.1 Experimental setup

The goal of this set of experiments is to test the
behavior of the algorithm in relation to the number of
queens, spermatheca size, and number of mating-flights.

A honey-bees colony usually contains a single queen,
although sometimes a couple of queens exist (Rinderer
and Collins 1986). Therefore, we experimented with
fewer number of queens of 1, 2, 3, 4, and 5. Since
as mentioned in Section 3 the number of matings per
flight usually ranges between seven and twenty (Adams
et al. 1972), we experimented with three values for this
parameter of 7, 14, and 21 representing the spermatheca
size. The number of flights is somehow flexible and
limited with the life of the queens. To have a fair
comparison among our experiments, we needed to guar-
antee that the number of broods all over a single run
and under any experimental setup is equal. Therefore,
we experimented with 60, 30, 20, 15, and 12 mating
flights, where the corresponding number of broods was
20, 40, 60, 80, and 100 respectively. For example, 60
mating flights times 20 broods will result in 1200 trial
solutions, where the workers will work to improve each
of these solutions. It is taken that the worker will try
to improve each brood 100 times. This parameter is as-
sumed fixed, although for future work, we are interested
in examining the effect of this parameter on the problem.

Fifty different 3-SAT problems were uniformly gen-
erated. Since the phase transition of a 3-SAT problem
occurs at a ratio of 4.3 between the number of clauses
and the number of literals, each of the fifty problems
contained 50 variables and 215 constraints to maintain
the ratio of 4.3. Therefore, all fifty problems are hard
and there is no guarantee that a solution exists.

5.2 Results and comparisons

In this section, we will present the results of MBO
model, followed by a comparison between MBO and
WalkSAT in the following section.

In Figure 3, we present the average number of
solutions found for each spermatheca size. The scale
of the z-axis is different in each figure based on the
average number of solutions. The bottom right figure
shows the average number of solutions found over the
three different spermatheca sizes.

Table 1: The average number of solutions found in rela-
tion to the number of queens and number of broods.

Number of QueensBroods
1 2 3 4 5

20 2.3 ± 1.5 4.3 ± 2.4 3 ± 1.7 3 ± 2.1 2.3 ± 1.3
40 4 ± 2.2 2.7 ± 1.4 3 ± 1.7 1.7 ± 1.3 2.3 ± 1.7
60 5.3 ± 2.9 4 ± 2.6 3 ± 2.1 0.7 ± 1 1 ± 0.5
80 5 ± 2.6 4.3 ± 2.4 3 ± 2.6 2.3 ± 2.1 3.3 ± 2.1
100 4.3 ± 3.3 3.3 ± 2.1 2.7 ± 1.6 2.3 ± 1.3 0.7 ± 0.6

As we can see from the top left figure in Figure 3,
the peak of the graph occurs for two queens and 60
broods. With a spermatheca sizes of 14 and 21, a single
queen achieves the best performance when the number
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Figure 3: The number of solutions found for the fifty
problems for each of the three used spermatheca sizes and
the average of the three. The x-axis represents the num-
ber of queens, y-axis represents the number of broods,
and the z-axis represents the average number of solu-
tions found. Top left: spermatheca size of 7. Top right:
spermatheca size of 14. Bottom left: spermatheca size of
21. Bottom right: the average of the three spermatheca
sizes.

of broods is greater than 40. A consistent result among
the three different spermatheca sizes - which can be also
seen from the bottom right graph and Table 1 - is that
a single queen is higher on the average than two or more
queens when the number of broods is higher than 20.

This final result is very interesting in the sense
that the behavior of the model on the propositional
satisfiability problem is somehow consistent with the
underlying biological model where a honey-bees’ colony
usually contains a single queen. Also the results suggest
that an average number of broods is better than small or
large number of broods. What is more interesting is that
the best results achieved with the largest spermatheca
size of 21. This spermatheca size reflects the number
of drones the queen mated with in the mating-flight
or equivalently, the number of accepted states in the
annealing stage.

In summary, the best results occurred with the
largest number of states accepted during the annealing
state, the medium size of children or broods, and the
smallest number of elitist solutions. Correspondingly,
from biological point of view, the best performance
occurred with the largest spermatheca size, an average

colony size, and the smallest number of queens.
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Figure 4: The fitness of each of the five workers over the
75 different configurations. Worker ID 1: WalkSAT,
Worker ID 2: Random walk, Worker ID 3: Random
new, Worker ID 4: 1-point crossover, and Worker ID 5:
Random flip

Table 2: The average fitness of each of the five workers
in all runs.

Worker Average fitness

WalkSAT 18.1 ± 0.7
Random walk 14.3 ± 0.6
Random new 4.4 ± 0.8
1-point crossover 7.1 ± 0.5
Random flip 0.8 ± 0.0

Another interesting set of results that comes out of
the MBO model is the workers’ fitness. In Figure 4,
we present the average fitness of each worker at the end
of each run for each of the 75 combinations (number of
queens, spermatheca size, and number of broods). Ta-
ble 2 presents the average performance of each worker in
all runs. As we can see from the figure, there is a con-
sistency in the behavior of each worker regardless of the
three user-defined parameters. This is valid as the per-
formance of each worker is somehow independent of the
number of queens, queen’s spermatheca size, and num-
ber of mating-flights. The fittest worker is WalkSAT
followed by random walk. A question may arise at this
stage of whether WalkSAT alone would have achieved
the best results overall without the additional overhead
of this algorithm. The answer of this question is the
context of the next section.

5.3 Comparison with WalkSAT

To find out whether WalkSAT alone would have
achieved the best results overall without the additional



overhead of MBO, we solved the fifty problems with the
same version of WalkSAT that we used in our imple-
mentation. The number of trial solutions in WalkSAT is
set to 1200 (number of broods in all generations of our
algorithm, which equals to the number of mating-flights
times the number of broods per mating-flights). The
number of flips in WalkSAT is set to 100 so that it is
consistent with the number of trials by each worker to
improve the broods in our algorithm.

Surprisingly, WalkSAT failed to find any solution for
all problems. The average number of unsatisfied clauses
found by WalkSAT in all runs over all problems was 8.7
± 1.2. This value is much higher than the corresponding
value of 2.13 ± 1.1 representing the average number
of unsatisfied clauses found by the best queen in the
last generation of each run by MBO with 1 queen,
21 spermatheca size, and 60 broods. These results
emphasize the importance of the cooperative behavior
of the bees in MBO. The cooperative performance of
the workers performed better than the performance of
the best worker alone.

To summarize, the annealing stage undertaken by
each queen during her mating-flight proved useful in
the set of SAT problems solved here. In addition, a
single queen deemed better with average-number of
broods. More queens were useful when the number of
broods was too small. Finally, the cooperative behavior
between the different heuristics was more functional
than a single heuristic in isolation.

6 Conclusion

In this paper, a new heuristic, MBO, based on the mar-
riage process in honey bees was introduced. The bio-
logical motivation and the computational aspects of the
algorithm were both discussed. From the analysis of
the experimental results, MBO was very successful on a
group of fifty hard 3-SAT problems. The main advantage
from our perspective was that the algorithm preserved
many of the underlying biological concepts and achieved
the good performance with parameters taken from real
biological concepts. Moreover, it was shown that MBO
performed better than WalkSAT alone although Walk-
SAT was the heuristic with the highest fitness in MBO.
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