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 I. Introduction 

The large investment by the U.S. federal government in academic research in the 

postwar era has been predicated on the belief that this expenditure would stimulate 

economic growth in the long run by laying down a scientific foundation upon which 

inventors could develop useful new technology.1  Recent studies suggest that the nature 

of the relationship between academic science and industrial innovation is changing.  At 

least in some fields of science and technology, the positive impact of publicly funded 

science on private innovation appears to have been increasing in strength in recent years.  

If this is true, it could have important implications for U.S. science policy and for the 

prospects for continued technology-driven economic growth. 

This paper seeks to contribute to our understanding of this changing relationship 

in three ways.  First, I argue that examining patent citations to academic papers offers a 

useful window through which the process of knowledge spillovers from science to 

invention can be viewed.  Second, I bring nonlinear regression analysis techniques to 

bear on a large random sample of 30,000 U.S. utility patent grants.  Using these data, I 

show what kinds of patents cite academic science and how these patterns have changed 

over time.  I also examine the linkage between citations to academic science and the 

quality of invention.  Third, I undertake an econometric “case study” of the changing 

impact of academic science on innovation by combining comprehensive data on the 

publications generated by a set of California research universities, the universe of patent 

citations to these publications, and the universe of potentially citing U.S. patents over the 

1987-99 period.  Using these data, I document changes in the propensity of patents to cite 

                                                 
1  For an early and influential statement of this belief, see Bush, 1945. 
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science while controlling for changes in the level and distribution of scientific articles 

and changes in the level and distribution of potentially citing patents.   

To summarize some of my most significant findings, I find that the knowledge 

spillovers from academic science to invention are highly concentrated in a small subset of 

technological fields and geographic regions.   I show evidence of a positive link in the 

cross-section between citations to science and invention quality.  Finally, I present some 

preliminary evidence on the relative importance of three changes in explaining the rise in 

the incidence of patent citations to academic papers:  1) a change in the quantity and 

distribution across fields of potentially cited scientific publications, 2) a change in the 

distribution of potentially citing inventors, and 3) a change in the propensity of inventors 

to cite academic science.   The implications of these results and possible extensions are 

discussed at length in the conclusion. 

II.  The Link Between Academic Science and Industrial Innovation  

Lessons from the Prior Literature 

This paper draws on and contributes to a burgeoning literature on the impact of 

academic science on industrial innovation.  While much of my focus will be on the recent 

research by economists on this topic, I should note that important work by both 

noneconomists and economists on the relationship between science and technology 

stretches back several decades.2  The consensus of this early research was that the 

relationship between science and technology was generally neither close nor direct.  

Based on science and technology literature citations studies, Derek De Solla Price (1965) 

                                                 
2   I thank Marvin Lieberman for pointing to me to some of these early studies.  I should note that 
Schmookler (1966) made important contributions to the early economics literature on this and related 
subjects.   Nathan Rosenberg generated a number of pioneering studies of the economic history of 
interaction between American universities and industry.  See, for example, Rosenberg (1982).    
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concluded that there was only a weak interaction between the two.  This view was 

generally supported by the Defense Department’s ambitious “Project Hindsight” study of 

the impact of basic scientific research on weapons development, which concluded that 

the primary impact of science on weapons development came not from recent science at 

the research frontier, but instead from “packed-down, thoroughly understood, and 

carefully taught old science,” such as that typically presented in textbooks and university 

courses.3 

Early researchers noted that there were cases when relatively “new” scientific 

discoveries quickly found early application in new inventions, leading to a closer 

coupling between the advance of the scientific frontier, as traced out in the recent 

scientific literature, and the rapid incorporation of these advances into new products or 

commercial processes.4  However, these deviations from the norm tended to be 

temporary phenomenon.  For instance, Lieberman’s (1978) study on the introduction of 

MOS transistor technology suggests that the linkage between science and technology 

weakened as the technology matured and the crucial advances in science became 

embodied in succeeding generations of products.5   

The recent economics literature has argued that the linkage between “new” 

science and technology is potentially stronger and more direct than this earlier literature 

suggested.  Case studies and surveys have been used to assess both the magnitude of this 

impact and the channels through which it flows.6  These studies suggest that firms 

                                                 
3   The quoted phrase comes from Sherwin and Isenson (1967). 
4   See, for example, Marquis and Allen (1966). 
5   Darby and Zucker (2003) argue that a similar pattern can be seen in the more recent impacts of 
biotechnology and nanotechnology on industrial invention. 
6   Important recent studies relying primarily on case study techniques and surveys include Mansfield 
(1995), Cohen et. al. (1994), Faulkner and Senker (1995) and Gambardella (1995).  Rosenberg and Nelson 
(1994) have also contributed to this literature with a more historical approach.   
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perceive academic research to be an important input into their own research process, 

though this importance differs widely across firms and industries.7     A second stream of 

recent research has undertaken quantitative studies of knowledge spillovers from 

academic research.  Jaffe (1989) and Adams (1990) were early contributors to this 

literature.  More recently, Jaffe et. al. (1993, 1996, 1998) have used data on university 

patents and citations to these patents to quantify knowledge spillovers from academic 

science.8  This paper will also seek to quantify knowledge spillovers from academic 

research, and it borrows from the empirical methods introduced in these papers.   

A related stream of research has undertaken quantitative analysis of university-

industry research collaboration.  Contributors include Zucker et. al. (1998) and Cockburn 

and Henderson (1998, 2000).  A number of papers in this literature have studied “start-

up” activity related to academic science or academic scientists, such as Zucker et. al. 

(1998) and Audretsch and Stephan (1996).  Finally, several recent studies have examined 

university licensing of university generated inventions, such as Barnes et al. (1998), 

Mowery et. al. (1998), Thursby and Thursby (2002), Shane (2000), and Shane (2001).   

Collectively, the recent literature has highlighted several key changes that have 

potentially affected the relationship between academic science and private sector 

innovation.  First, the quantity of academic science and its distribution across fields has 

changed over the last three decades, with a substantial shift in federal funding away from 

the physics-based disciplines that were connected to weapons development and the space 

                                                 
7   While the channels by which firms absorb the results of academic research vary across industries, the 
Cohen et. al. (1994) study suggests that the formal scientific literature is, on average, an important channel. 
8   Barnes, Mowery, and Ziedonis (1998) and Mowery, Nelson, Sampat, and Ziedonis (1998) have 
undertaken a similar study for a smaller number of universities. 
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program and toward the life sciences.9  Second, the nature of inventive activity seems to 

have changed.  Firms in some industries, especially those related to drugs and medical 

technology, have changed their approach to research in a way that brings them “closer” to 

academic science.  While this is well documented in the context of the pharmaceutical 

industry,10 it is less clear to what extent there have been similar changes in other 

technology-intensive industries.  Third, the institutional environment in which scientists 

and inventors interact has changed.  Partly, this is the result of public policies designed to 

encourage the commercialization of university-developed science, such as the Bayh-Dole 

Act.11  However, the rise of venture-capital investments in small high-technology firms 

has arguably made it easier for entrepreneurial academics to commercialize their 

discoveries.  In terms of the data-generating process, this institutional change has brought 

in a “new” group of patenting entities with a higher propensity to cite academic research 

than others.12   

If we are to understand the policy implications of the observed increase in the 

incidence of patent citations to academic science, it would be obviously helpful to 

understand the relative importance of these and other factors in explaining the overall 

increase.  A finding that there are more citations simply because there are more 

publications in fields that have always been highly cited would have quite different 

implications from a finding that showed a large increase in the propensity to cite science 

across all classes of inventors and all fields of science.  A key aim of the current paper is 

                                                 
9   See Cockburn and Henderson (2000).   
10   See Zucker et. al. (1998) or Cockburn and Henderson (2000), among many other studies. 
11   See Henderson, Jaffe, and Trajtenberg (1998) and Mowery et. al. (1998).   
12   See Kortum and Lerner (1997).  In the last few years, of course, the sharp downturn in venture capital 
funding across a range of technologies has changed the institutional environment yet again.     
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to try to present evidence on which factors are most important in explaining the overall 

increase.   

Using Patent Citations to Academic Science as Measures of Knowledge Spillovers 

This paper will use patent citations to academic papers to measure “knowledge 

spillovers” between academic science and industrial R&D.  In doing so, I am building on 

the work of Francis Narin and his collaborators, who have pioneered the use of these data 

in large-sample “bibliometric” analysis.13  As indicators of knowledge spillovers from 

academia to the private sector, these data have a number of advantages.  The academic 

promotion system creates strong incentives for academic scientists, regardless of 

discipline, to publish all research results of scientific merit.  As a consequence, the top-

ranked research universities generate thousands of academic papers each year.  Similarly, 

inventors have an incentive to patent their useful inventions, and a legal obligation under 

U.S. patent law to make appropriate citations to the prior art – including academic 

science.  As Figure 1 illustrates, the number of citations to these papers in patents has 

been growing rapidly for much of the 1990s.   

In response to the Bayh-Dole Act and other public policy measures, universities 

have increased the extent to which they patent the research of university-affiliated 

scientists.  They have also increased the extent to which they license these patented 

technologies to private firms.  Nevertheless, it is clear to observers that only a tiny 

fraction of the typical research university’s research output is ever patented, and only a 

fraction of this set of patents is ever licensed.  To illustrate this, Figure 2 shows the trends 

over the 1988-1997 period in several alternative indices of university research output and 

knowledge spillovers for one university system:  the University of California’s 9 
                                                 
13  See Narin et. al. (1997) and Hicks et. al. (2001) for recent examples of this work. 
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campuses and affiliated laboratories.  The figure graphs university patents by issue year 

(patents), invention disclosures by year of disclosure filing (invention disclosures), new 

licenses of university technology by date of contract (licenses), the number of citations to 

previous university patents by issue year of the citing patent (citations to UC patents), 

and the number of citations to UC-generated academic papers by issue year of the citing 

patent (citations to UC papers).  Throughout the sample period, there are far more 

citations to UC papers than any other kind of indicator.14   

 This figure suggests that patent citations to academic papers may provide a much 

broader window through which to observe knowledge spillovers from academic science 

to inventive activity than any available alternative.  But while citations may be easy to 

count, they are more difficult to interpret.  This paper goes beyond simple tabulations of 

citations to explore their determinants and effects.15 

  Having made the case for the use of patent citations to science as a measure of 

these spillovers, it is also appropriate to acknowledge the limitations of this measure.  

Universities also contribute to the advance of industrial technology through the education 

and training of engineers employed in private firms.  Patent citations to academic science 

are unlikely to be a particularly effective measure of this “general human capital” 

channel.  On the other hand, American universities have played this role of human capital 

generation for decades, and it is unlikely that the operation of this channel has changed so 

much as to be the principal driver of a closer connection, if any, between academic 

science and industrial invention.  It is also true that university faculty members engage in 

                                                 
14   Data for Stanford reveal a similar picture. 
15   Other recent studies using data on patent citations to scientific papers include work by Fleming and 
Sorenson (2000, 2001) and Lim (2001).  Agrawal and Cockburn (2002) examine the impact of academic 
science in industrial innovation in three technological fields, although they do not use data on patent 
citations to academic science. 
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formal and informal consulting with industry – and have done so for decades.  To the 

extent that the nature of this consulting involves advising industrial scientists and 

engineers on the import of recent scientific discoveries, my measure of patent citations to 

science is likely to be positively correlated – perhaps highly so – with this consulting 

activity.  To the extent that this consulting involves advising industrial scientists and 

engineers on well-established principles, findings, algorithms, or techniques (i.e., “old 

science”), patent citations to science are unlikely to be highly correlated with it.16  Thus, 

patent citations to science can be viewed as a reasonable measure of the incorporation of 

recent science into inventive activity.  To the extent that change along this particular 

dimension of university-industry interaction is of interest, patent citations to science are 

likely to be a useful indicator.   

 III. Evidence from the Random Sample 

 Citations Patterns in the Random Sample 

 I start with a random sample of 30,000 utility patents granted over the 1981-1996 

period, approximately 4,500 of which make at least one citation to “science.”17  The 

sample is large enough that changes in the distribution of patents and patent citations to 

science in the sample should be reflective of changes in the underlying sample.  I focus 

here on obtaining econometric estimates of the conditional impact of various attributes of 

citing patents on the propensity to cite, holding others constant.  The nature of the data 

suggests the use of a negative binomial specification, since most patents make no 

references to science but small numbers of patents make numerous references to 

                                                 
16   Agrawal and Henderson report results based on a survey of university faculty at MIT indicating that 
consulting arrangements are an important channel of knowledge flow to industry.       
17   These data were purchased from CHI Research, Inc.  At the moment, budgetary limitations preclude 
expansion of the random sample past 1996. 
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science.18  Independent variables of interest include dummy variables for the 

(application) year of the patent cohort, the technology category of the patent, the category 

of organization to which the patent is assigned, and a crude measure of geographic 

proximity between the region in which the (first) inventor of the patent is located and the 

region(s) in which academic science is produced. 

 There are several ways in which I can define “academic science” and thus 

measure patent citations to it.  The most comprehensive such measure is to consider all 

nonpatent citations which appear to be to “scientific documents” (including conference 

proceedings and technical manuals) as citations to “science.”  A narrower measure would 

be to count all references to articles in SCI-indexed academic journals.  This database 

tracks articles appearing in many of the most influential peer-reviewed journals across all 

major scientific disciplines, and it may correspond more closely to the output of 

“academic science.”  A still narrower measure would count only references to university-

authored papers in tracked journals.  This distinction is useful because, in some scientific 

disciplines, large corporate R&D labs and public science agencies generate a substantial 

contribution to “academic science,” publishing in the same journals as their university-

affiliated peers.19   

 Table 1 presents empirical results based on a negative binomial specification.  

The three columns correspond to the different definitions of “academic science” 

described above.  The first five rows present the coefficients on dummy variables equal 

                                                 
18   An alternative logit specification, in which the dependent variable was a dummy indicating whether or 
not the patent in question made any citations to academic science, yielded results qualitatively similar to 
those shown in Table 1.  Specification tests suggested that the more flexible zero-inflated negative binomial 
model did not fit the data significantly better than the standard negative binomial specification.  
19   An important data limitation to the data used here is that, in most specifications focusing on geographic 
proximity, I only examine citations made to authors based in the United States.  Results presented in the 
next section utilize data on cited authors worldwide. 
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to one if the patent assignee falls into one of the five listed categories:  university, non-

profit R&D organization (many of these are research hospitals), U.S. government agency 

(i.e., NASA), foreign (foreign firms, individuals, and government agencies are all placed 

in this category), and “other” (the largest fraction of which are U.S. individuals).  The 

reference category here is private firms.  It is immediately clear that universities, 

nonprofit R&D organizations, and U.S. government agencies are all more likely to cite 

academic research than are firms.  This differential gets generally more pronounced as 

one restricts the definition of what constitutes academic science.  That being said, the vast 

majority of citing patents (76%) are generated by firms.20 

 The next set of dummy variables corresponds to the technology class of the citing 

patent.  Using a taxonomy developed by Adam Jaffe and Manuel Trajtenberg, I have 

aggregated the primary patent classes of the U.S. Patent and Trademark Office patent 

classification system into six groups – chemicals, communications/computers, 

drugs/medical, electronics/electrical machinery (not directly computer related), 

mechanical devices, and a catch-all “other” category which constitutes the reference 

group in these regressions.21  Patents in the drugs/medical category stand out as being 

disproportionately likely to cite.  This differential effect gets stronger as I narrow the 

definition of academic science across columns.  The chemicals category ranks second in 

terms of likelihood of citing. 

  “Science center” is a dummy variable equal to 1 if the patent inventor is located 

in one of the top 100 U.S. counties in terms of generation of scientific publications.  This 

                                                 
20   It is also possible to control for “self-citation” by excluding from the data counts of made by an entities’ 
own patents to papers generated by authors affiliated with that entity.  Regressions run on data purged of 
such self-citation generate results qualitatively similar to those presented here. 
21   I thank Adam Jaffe for providing this taxonomy in electronic form.  Note that there are several hundred 
primary patent classes. 
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variable is positive and statistically significant at conventional levels.  This suggests that 

patents are more likely to cite when an inventor is located in a region with a high level of 

scientific research.  However, this does not necessarily constitute evidence of the 

geographic localization of knowledge spillovers.    

 Following Jaffe et. al. (1993), I use a different approach to this question that 

explicitly controls for the skewed distribution of research activity across U.S. counties.  I 

match each of the citing patents in my random sample with a nonciting “control” patent 

issued on the same date in the same patent class as the citing patent.  Let pc be the 

probability that a citing patent is generated in the same county as that in which the cited 

“science source” is located.  Let p0 be the corresponding probability for a randomly 

drawn control patent.  I test for “geographic localization of knowledge spillovers” using 

the following test statistic: 
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where the two terms in the numerator are the sample proportion estimates of pc and p0.  

The null hypothesis that pc=p0 is easily rejected at conventional levels.22 

 All regression specifications are run with patent application year cohort effects.  

While the coefficients are not shown in Table 1, the results from Table 1, column 1 are 

graphed out in Figure 3, along with the 95% confidence bounds.  What is evident from 

this graph is a pronounced rise in the tendency of patents to cite over time, controlling for 

the increase in university patenting and changes in the distribution of patents over classes 

with different tendencies to cite science.  It is interesting to compare the shape of this 

                                                 
22   This test was conducted using both the “state” and the “county” as the regional unit of analysis.  The t-
statistic of the difference in ratios was 11.27 for state-level comparisons, 11.03 for county-level 
comparisons.    
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graph to Figures 1 and 2.  When one looks further back into the past, it seems that the 

most pronounced increase in the conditional likelihood of citation came in the early 

1980s rather than in the 1990s, as would be suggested by the unconditional distribution of 

citations over time.  While there has been an increase in the conditional probability 

tendency to cite science across later cohorts of patents in the 1990s, it may be that much 

of the “spike” in citations so visible in Figures 1 and 2 has been driven by the widely 

documented increase in patenting in the health care related technologies.23   

  Does Citation of Academic Science Make Inventions Better? 

 The discussion of trends in the citations data above is of limited interest unless the 

knowledge spillovers indicated by these citations are actually enhancing the research 

productivity of the firms and other organizations that receive them.  Are innovators 

learning from academic science in such a way that they are able to produce more 

inventions than they otherwise could or better inventions than they otherwise could?  

Alternatively, does the information generated by academic science allow them to invent 

in areas in which they could not work without the pre-existing foundation of academic 

science on which to build?   

 It is very difficult to establish the technological dependence of a particular 

invention on a cited scientific article without engaging in an in-depth study of the 

invention and extensive interviews with its inventors.24  However, I can seek to measure 

whether or not patented inventions that cite UC or Stanford academic science are 

                                                 
23  See Hicks et. al. (2001) for evidence on the increase in “biomedical” patenting.  
24  In a series of interviews with cited academics and citing firms in which I presented both parties with a 
list of patent citations to the work of a particular academic, it was often quite easy, based on the 
titles/abstracts of the patents, to identify a technological linkage between the cited paper and the citing 
patent.  Obviously, it is difficult to draw sweeping generalizations from a small number of interviews.  A 
brief summary of this fieldwork component of the project is available from the author upon request. 
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systematically “better” than patents that do not.  The micro literature on patents has 

suggested several measures of patent “quality” – quantitative features of the patent 

document – that have been demonstrated to be positively correlated with the ex-post 

commercial and technological importance of the patent.  Three such measures include 

counts of ex-post (or “forward”) citations, counts of claims contained in the patent 

document, and a measure of “generality” proposed by Henderson, Jaffe, and Trajtenberg 

(1998).  This latter measure is a quantitative index of the diversity of technological fields 

across which ex-post citations occur.  An invention whose citations come from multiple 

technological fields can be thought of as having a more “general” impact than an 

invention whose citations come from a single technological field.  The formal definition 

of the index is 

2
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1 ∑
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where the numerator in the expression measures the number of citations to patent i 

coming from patent class k, while the denominator measures the total number of citations 

to patent i across all classes. 

 Table 3 presents the results of regressions in which these three measures of 

quality are the dependent variable, a dummy variable indicating patents which cite 

academic research is the chief independent variable of interest, and I use as controls 

measures of the patent cohort (application year) and technological field.  The results in 
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Table 3 suggest that patents citing academic research are significantly better according to 

all three indices of patent quality.25 

However, in this context, it is very difficult to interpret this result in a causal way.  

Are patents that cite academic research “better” because they cite, or do they tend to cite 

academic research more frequently because they are “better”?  At this level of 

aggregation, it is difficult to determine which interpretation is correct.26  

IV. Evidence from California Research Universities 

Evidence from a Citations Function Approach 

As I noted in the introduction, much can potentially be learned by examining 

changes in citations while controlling for changes in the population of potentially cited 

papers and in the population of potentially citing patents.  While it would be impractical 

to do this for the universe of academic publications and U.S. patents, it has been possible 

for me to link data on the universe of SCI-indexed academic publications generated by 

the campuses and affiliated research units of the University of California, Stanford 

University, Caltech, and the University of Southern California, the universe of patent 

citations made to these publications over the 1983-1999 (grant year) period, and the 

universe of potentially citing U.S. utility patents granted over that same period. 

 Restricting the sources of science to a relatively small number of universities 

based in a single state brings with it obvious disadvantages.  Nevertheless, a study of this 

kind in the context of California is of particular interest because of the substantial growth 

                                                 
25   After completing the first draft of this paper, it was brought to my attention that Sorenson and Fleming 
(2001) have also documented a positive relationship between patent quality and academic citations, using a 
smaller sample drawn from two years. 
26   Fleming and Sorenson (2001) question the interpretation that the higher level of citations received by 
patents citing academic science is indicative of a higher level of patent quality.  They find that citations are 
higher for patents citing any kind of publication, including classes of publication with limited scientific 
content.   
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of the state’s relative importance in national innovative inputs and outcomes.  Over the 

past twenty years, the geography of innovation within the United States has changed 

substantially.  As Hicks et. al. (2001) document, California has dramatically increased its 

share of domestically generated U.S. patents, and it has been the leading center of venture 

capital-backed entrepreneurial activity.  One of the reasons given for California’s 

innovative ascendancy is the high quality of the state’s academic science base, to which 

locally based firms are believed to have preferential access.  The approach taken below 

will actually allow for a test of the hypothesis that location within the state provides 

preferential access to spillovers from California academic science.   

An examination of some features of the raw data illustrate why the approach 

taken in this section may be useful.  As Figure 4 illustrates, the majority of publications 

generated by the UC system in 1999 was concentrated the life sciences.  This is reflective 

of national trends, and the preponderance of publication in these fields has been a feature 

of the data for much of my sample period.  If I were to find that citations to academic 

science are dominated by the life sciences and medicine, this could simply reflect the 

greater volume of publication in those fields.  To put it simply, there are many more 

relevant articles to cite. 

Figure 5 presents a brief look at changes in patenting across aggregated fields of 

technology over time, where time is measured by the year in which the patent is granted.  

It is clear that patenting has been growing overall – but that growth has been particularly 

rapid in the categories of computers and communications and drugs, with level of 

patenting in these fields rising roughly 6-fold and almost four-fold, respectively, over the 

course of my sample period.  Any investigation of the impact of academic science on 
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invention needs to control for changes, such as these, in the distribution of invention 

across fields.  The finding of increase in patent citations to life science articles could 

simply reflect the explosion of patenting in drug-related technology categories.     

 The empirical framework I use for this analysis borrows from the work of 

Caballero and Jaffe (1993) and Jaffe and Trajtenberg (1996, 2002).  In this framework, I 

model the probability that a particular patent, p, applied for in year T, will cite a 

particular article, a, published in year t.  This probability is determined by the 

combination of an exponential process by which knowledge diffuses and a second 

exponential process by which knowledge becomes obsolete.   

 This probability is referred to in the work of Jaffe and Trajtenberg (1996) as the 

citation frequency.  It is a function of the attributes of the citing patent (P), the attributes 

of the cited article (a), and the time lag between them (T-t).  It can be rendered in notation 

as 

)](exp(1)][(exp[),(),( 21 tTtTPaPap −−−−−= ββα     (3) 

 Attributes of the citing patent that I incorporate into my analysis include the 

application year, the technical field (based on the primary technology class assigned by 

the patent examiner), the type of entity owning the patent (based on the identity of the 

assignee), and the geographic location of the patent, based on the address of the inventor.  

Attributes of the cited article that I consider include the publication year, the scientific 

field of the article, and the institution with which the authors were affiliated at the time of 

publication.   

 Given these data, one could sort all potentially citing patents and all potentially 

cited articles into cells corresponding to the attributes of articles and patents.  The 
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expected value of the number of citations from a particular group of patents to a 

particular group of articles could be represented as 

))](exp(1)][)((exp[))((][ 21 tTtTnncE tcelTSLtcelTSLtcelTSL −−−−−= ββα   (4) 

which can easily be rewritten as 

))](exp(1)][)((exp[
)(*)(

][
21 tTtT

nn
cE

tcelTSL
tcelTSL

tcelTSL −−−−−= ββα    (5) 

This is what Jaffe and Trajtenberg (1996) refer to as a citations function.  If one adds an 

error term, then this equation can be estimated using nonlinear least squares.  The 

estimating equation is thus 

tcelTSLLSTlecttcelTSL tTtTp εββααααααα +−−−−−= ))](exp(1)][)((exp[ 21   (6) 

where the dependent variable measures the likelihood that a particular patent in the 

appropriate categories of application year (t), technology class (c), institutional type (e), 

and location of the citing patent’s inventor (l) will cite an article in the appropriate 

categories of scientific field (based on the scientific content of the article) (S), a particular 

campus (L), and publication year (T).  The α ’s are multiplicative effects estimated 

relative to a benchmark or “base” group of patents and articles.  In this model, unlike the 

linear case, the null hypothesis of no effect corresponds to parameter values of unity 

rather than zero.   

 I estimate various versions of (6) using the nonlinear least squares estimation 

routine of the STATA software package.  When doing so, I weight the observations by 

the square root of the product of potentially cited articles and potentially citing patents 

corresponding to the cell, that is  

)(*)( TSLtcel nnw =          (7) 

 18



This weighting scheme should take care of possible heteroskedasticity, since the 

observations correspond to “grouped data,” that is, each observation is an average (in the 

corresponding cell), computed by dividing the number of citations by (ntcel)*(nTSL). 

 This approach allows us to examine changes in citation patterns over time 

controlling for differences in the intensity of citation of science across different industrial 

technology classes, changes in the distribution of patents across technological fields, and 

changes in the distribution of scientific articles across scientific fields.  Regression results 

from a version of (6) run on the full sample are given in Table 3.  Using the parameter 

values from this regression, it is also possible to graph out the double exponential 

function implied by our parameter estimates, giving us a sense of how the “citedness” of 

a particular group of articles by a particular group of patents changes over time.  This is 

graphed out for our “base case” in Figure 6.  The base case in this regression corresponds 

to patents assigned to firms, where the first inventor resides in the U.S. outside the state 

of California.  The base patent application period is 1981-1987, and the base publication 

period is 1981-1985.  The base science category is biology, the base patent category is 

chemistry, and the base institution is Stanford University.  

The shape of the curve graphically demonstrates the first key result of this section 

– namely that citations to academic science are somewhat localized in time.  Citations to 

science appear almost immediately after article publication, and the citation function 

peaks at a lag of about four years after article publication.  These lags are measured with 

respect to the application date of the patent, implying rapid spillovers of knowledge from 

science into industrial invention.  While the estimated lag structure demonstrates that 

papers continue to receive some citations even at relatively long lags, the citation 
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frequency declines steadily after the peak lag.  For the “base category,” the estimated 

citation frequency drops below the level for a single year at a lag length of about twelve 

years.       

The similarities between my methodology and that of Jaffe and Trajtenberg 

(1996, 2002) invite an informal comparison of my results to theirs.  My findings are not 

directly comparable to theirs, because I date patents according to date of application 

rather than date of grant.  Nevertheless, the general patterns of growth and decay of 

citations to academic papers over time seem to be broadly similar to those of citations to 

other patents.   

The second key result of this section is the finding of striking differences in the 

incidence of citation across fields of academic science over time.  Note that the citation 

function specification controls for the number of “citable papers” within these science 

categories over time, as well as the number of potentially citing patents across fields of 

technology, so the coefficients on science categories are akin to a “per-paper” measure of 

technological fertility.  The coefficients in Table 3 suggest that a paper in the “biomedical 

research” field is nearly 38 times more likely to be cited in a patent than a paper in the 

base category of biology.  Papers in “chemistry” and “clinical medicine” are nearly five 

times as likely to be cited as a biology paper, while papers in the other science categories 

are substantially less likely to be cited.  This differential is illustrated in Figure 7, where 

the double exponential function for “biomedical research” is graphed out relative to the 

base category for general “biological sciences.”27 

                                                 
27   In results available upon request, I specified an “academic production function” for the university 
systems studied in this section of the paper, in which the output measure was the count of publications 
generated in a scientific field by a particular campus in a particular year.  This was regressed on measures 
of “inputs” to the research process, including various measures of R&D funding, post-doctoral students, 
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Again, an informal comparison with the results of Jaffe and Trajtenberg is useful.  

These authors allow the technological fertility of different patent classes to vary, but 

constrain the propensity to cite to be the same across patent classes, so that my measures 

of technological fertility are not directly comparable to theirs.  Nevertheless, I find a 

much more skewed pattern of citations across science classes than they find across 

technology classes.  Jaffe and Trajtenberg find that the “drug and medicines” category is 

about 1.4 times as “fertile” as the base category of “other patents.”  My estimated gap 

between the most and least fertile categories of science is much wider. To put this another 

way, the distribution of citations to science is much more narrowly concentrated within 

particular categories of science than the distribution of citations to patented technologies. 

Continuing in this theme, I can allow different categories of patented technologies 

to display different propensities to cite science.  Relative to the base category 

(chemicals), drug/medicine patents are 2.6 times more likely to cite science, whereas all 

other categories are substantially less likely to cite science.  The typical patent in the least 

likely-to-cite category, mechanical patents, is only about 1% as likely to cite science as 

the typical chemical patent. Again, the estimated gap between technology categories in 

citation propensity is quite substantial.  Note that these estimated propensities control for 

the number of patents in these categories over time, so that these coefficients are properly 

interpreted as an estimate of the differential “per-patent” propensity to cite science.   

Taken together with the result on differences in fertility across science classes, 

this suggests that the aggregate trends in patent citations to science are driven largely by 

“biotech” patents citing “bioscience” papers.  While there is certainly growing citation 

                                                                                                                                                 
graduate students, etc.  The results suggest that the higher “productivity” of the biological sciences is not 
driven purely by the increase in R&D funding in that field. 
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activity outside this nexus, citations to date have been highly concentrated within it.  The 

existing literature has pointed out that university patenting and licensing activity have 

been concentrated in biotechnology.  To the extent that the concentration of citations 

across fields reflects the real underlying distribution of knowledge spillovers across 

fields, these results would seem to imply that the much discussed shift in federal R&D 

funding toward the life sciences is actually a step toward improving the impact of R&D 

spending on industrial invention.  However, I cannot, at this point, rule out that the 

concentration of citation activity in the bioscience-biotech nexus also reflects field-

specific differences in citations practices.   

 I have seen that the citation function results suggest that knowledge spillovers 

from academic science to industrial invention are concentrated in time and technology 

space.  These results also provide evidence of concentration in geographic space.  Citing 

patents are assigned to three categories based on their recorded addresses:  California 

inventors, U.S. inventors outside California, and non-U.S. inventors.  U.S. inventors 

outside California are the base category, so the coefficients imply that California-based 

inventors in a given technology class are nearly three times more likely to cite California 

academic science.  The evolution of this differential over time is graphed in Figure 8, 

which compares the predicted citation frequencies for California-based inventors to those 

of the base category at different lag lengths.  Non-U.S. inventors are only about half as 

likely to cite California science as is the base category.  The U.S. / non U.S. differential 

propensity to cite implied by the coefficients of Table 3 is broadly comparable to 

international differences in knowledge flows documented by Jaffe and Trajtenberg.   
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The intranational localization of knowledge spillovers implied by the California 

effect seems large. California’s share of national patenting has grown substantially over 

the course of my sample period (reflecting among other things, the regional concentration 

of venture capital funding), but the citation function approach controls for that.  However, 

the current specification arguably does not control well for regional clustering of 

industrial R&D within the particular niches of the broad technology categories I have 

employed.  A finer disaggregation of patent classes would likely attenuate the measured 

degree of localization.  Furthermore, as can be seen in Figure 9, it is still the case that 

large numbers of citations are made by inventors far from California.  In fact, one sees a 

“bicoastal” concentration of citations, reflecting the clustering of U.S. innovative activity 

in the Northeast and the West Coast.   

I have also looked at patenting by different categories of assignees:  firms, public 

science institutions (universities, research institutes, and research hospitals), and a grab-

bag category of “other institutions” in the non-profit sector.  Assignment of a patent to 

one of these categories is based on the typography of assignees developed in the NBER 

patent citation database.  Relative to the base category of firms, public science 

institutions are nearly four times as likely to cite academic science, and “other 

institutions” are almost twice as likely to cite academic science.  This is unsurprising, 

given the connection that is likely to exist between academic science and academic 

patenting.  Because these institutional categories accounted for a small fraction of total 

U.S. patenting, even by the end of my sample period, it is still the case that the vast 

majority of patent citations to California academic science are made by the patents of 

industrial firms.  This reality notwithstanding, it is important to control in a study like this 
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for the impact of university patenting on patent citations to science, and this breakdown 

by assignee category helps to accomplish that goal. 

I also included a set of cited institution effects, to get a sense of differences across 

institutions in citedness.  The actual coefficients may be of limited interest to readers not 

based in California, but they provide an interesting lesson in the utility of the citation 

function approach.  When one does simple data tabulations, the institution with the 

largest number of patent citations to its academic research – by a considerable margin – is 

UC-San Francisco.  When one controls for changes in the distribution of papers across 

fields, UCSF’s average level of citedness over time drops below that of the base 

institution, Stanford.  In other words, UCSF’s high number of citations completely 

reflects its specialization in the bioscience disciplines.  The institution that seems to be a 

standout with science field controls in place is Caltech.  Although the scale of its 

academic output is limited (reflecting its small size), and concentrated to some extent 

outside the fields where the connections between academic science and industrial 

invention seem to be the strongest (Caltech has no medical school), it has a 

proportionately greater impact on industrial invention than Stanford.  Within the UC 

institutions, the campus with the highest degree of citedness, controlling for levels of 

academic publications across fields and their changes over time, is UC-San Diego. 

Having incorporated fixed effects associated with the cited field of science, the 

cited institution, the citing field of technology, and characteristics of the citing 

inventor/assignee, I can also make some inference about changes in citation patterns over 

time across fields.  Perhaps the most interesting finding here is that the propensity to cite 

academic science is evidently growing over time.  This can be seen by examining the 
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pattern of coefficients on the citing year cohort terms.  They generally increase from the 

“base category” of 1981-87.  Note that I have explicitly controlled for the fact that 

academic publications in the heavily cited branches of science have become more 

numerous and that there has been an increase in patenting in fields that heavily cite 

academic science.  These results are consistent with the view that there has been a change 

in the nature of invention such that inventors now draw more heavily on academic 

science.28     

That being said, we find some evidence of a decline in citation propensity in the 

most recent period.  Controlling for changes in the volume and distribution of patents and 

publications, the average per-patent propensity to cite science seems to have declined 

somewhat in the late 1990s from the peak levels of the mid-1990s.  While still more than 

50% higher than the base period, the finding of a decline in citation propensity raises an 

immediate question about the permanence of recent growth in the measured linkage 

between academic science and industrial technology.  Are recent trends beginning to 

reverse themselves?  Could we be seeing a replay of the kind of cycle of interaction 

between science and technology identified by earlier researchers, in which, once a set of 

significant scientific discoveries is effectively assimilated by industrial inventors, there is 

a decoupling of the formerly strong relationship between technology and frontier 

academic science? 

                                                 
28   Of course, it is also possible that these coefficients simply reflect a change in citation practices rather 
than an actual change in knowledge spillovers.  Jaffe and Trajtenberg also find an increase in propensity to 
cite prior patents that rises fairly steadily over time, and they attribute some of this to advances in 
information technology that make prior art easier to find.  I find that the fraction of citations made to 
academic science is going up – in other words, science citations are increasing even more quickly than 
citations to prior patents – but I cannot, at this stage, definitely rule out the alternative interpretation that 
much of this change is driven by changes in citation practices.  However, anecdotal evidence from 
conversations with intensively citing firms and highly cited academic scientists strongly suggests that at 
least part of the measured increase in citation propensity is attributable to an increasingly close connection 
between science and innovation, especially in the biotech arena. 
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Interpretation of this measured decline is clouded by two problems in the data.  

The first is the issue of the so-called “spike patents,” which is discussed at some length in 

the most recent edition of Science and Engineering Indicators.29  In order to bring the 

U.S. patent system into compliance with the set of international intellectual property 

rights standards embodied in the Trade-Related Intellectual Property Rights (TRIPs) 

agreement that was part of the charter of the World Trade Organization (WTO), the U.S. 

Patent and Trademark Office changed the effective period of monopoly granted to U.S. 

patent holders from 17 years after the grant date to 20 years from the filing date.  This 

change took effect for patents filed after June 8, 1995.  Previously rejected patents re-

filed after this deadline would also be subject to new rules.  Applications submitted to the 

U.S. PTO more than doubled in May and June of 1995, and these applications carried an 

unusually large number of citations to science.  This surge in patenting seems to have 

been driven in part by a rush to file as much as possible under the “old rules.”  The 

increase in citations to science seems to have been driven in part by uncertainty out of 

what was appropriate description of the prior art and a desire to avoid having to refile 

under the new rules.  Patents applied for in this period were issued gradually over the 

next few years – dramatically increasing the average citations to science in the overall 

data.  Once the last of these applications was processed, the rate of citation fell to 

something closer to earlier levels.   

The most recent edition of Science and Engineering Indicators notes that average 

citations to science per patent continue to increase through the late 1990s when one 

removes these “spike patents” from the data, though the growth rate in average citations 

slows.  However, that data tabulation does not control for the continuing shift in the 
                                                 
29   This issue is also discussed in Hicks et. al. (2001). 
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distribution of patenting towards frequently citing categories of technology.  I also 

removed the so-called “spike patents” from my sample, and re-estimated the citation 

function.  My citation function approach controls for the continued changing distribution 

of patents across technology classes in the 1996-1999 period – and doing still produces 

the finding of a decline in citation propensity in the most recent period. 

However, this measured decline could be an artifact of another feature of the data 

for which it will be harder to control.  Note that we measure patents by application year 

cohort.  Because it takes time for patent applications to be processed, and because we 

only have data on patent applications that are eventually granted, we observe a truncated 

sample of the patents applied for in the 1996-1999 period.  If there is any connection 

between the science citations contained in a patent application and the length of time it 

takes the U.S. PTO to evaluate the application, then this could bias the measured citation 

propensity downward.   

Even if the per-patent propensity to cite science has not declined in the most 

recent period, one needs to put its ability to explain overall trends in the data into 

perspective.  It is certainly true that the data reject the imposition of the constraint that 

per-patent citation propensities have not changed over time.  Imposition of this constraint 

causes a significant degradation in the fit of the model to the data.  But the degradation in 

model fit generated by this constraint is small relative to the degradation in fit generated 

by imposing the constraint that the relative propensity of different patent classes to cite 

science is the same or the constraint that the relative citedness of different categories of 

science is the same.  In other words, changes in the distribution of patenting across 

technologies and changes in the distribution of publications across fields explain much 
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more of the total variance in patent citations to science than does changes in per-patent 

citation behavior over time.  

 While the propensity to cite relative to the base period rises, albeit not 

monotonically, with later cohorts of patents, there is little evidence that the relative per-

paper citedness of different cohorts of papers is rising over time.30  However, this 

statement requires some qualification.  The nature of the lag structure suggests that the 

lags between the appearance of a scientific article and its initial impact on patenting are 

generally short.  Controlling for these lags, one sees some decline in the estimated 

citedness of more recent cohorts of publications.  Recall, however, that this coefficient 

has an interpretation of “citedness per paper.”  The volume of publications has been 

trending upward over time – on average, by the end of my sample period, publication 

levels had expanded by over 50% relative to the beginning of the sample.  Thus, even 

though the per-paper measure of citedness has modestly declined, the expanding volume 

of publication has more than compensated, pushing up the total number of citations to 

more recent cohorts of papers.   

 Given the extent to which aggregate numbers of citations are driven by biotech, I 

break the data into a biotech-only subsample and a subsample from which papers in 

bioscience and patents in biotechnology are excluded.  This partition of the data allows 

me, at least in principle, to examine changes in the bioscience-biotechnology nexus in 

some detail.  Then, I can separately estimate the key parameters of the citations function 

for the “non-bio” subsample, such that the parameters of obsolescence and diffusion – 

                                                 
30   This result parallels that of Jaffe and Trajtenberg, who also find no evidence of an increase in citedness 
over time once they control for lags between cited and citing patents. 
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constrained here to be the same across fields of science -- are not driven by observations 

in the bioscience-biotech nexus.31 

 When partitioning the data in this manner, the field categories must obviously be 

adjusted.  In the biotech-only subsample, the “drugs and medical” patent category is 

subdivided into drugs, surgery/medical instruments, and “other drug and medical.”  The 

bioscience categories are now clinical medicine, “other biotech,” and 

biochemistry/biophysics/molecular biology.  The other categories remain as before.  

Examination of a regression on the biotech subsample demonstrates that patent citations 

are concentrated in drug patents and the most heavily cited science category is the “other 

biotech” field.  Despite its identification with information technology, Stanford is the 

most highly cited institution.32  Compared to the full sample, the geographic bias toward 

California inventors and the institutional bias toward public science assignees are 

evidently less pronounced.  One sees a significant rise in propensity to cite, relative to the 

base period, in the mid-1990s.  While the propensity to cite in the most recent period 

seems to have actually fallen relative to the base period, the differences are statistically 

indistinguishable from zero.  Throughout the 1990s, patenting in these most intensely 

citing categories was rising rapidly.  In these regression results, we also see an increase 

(albeit a possibly temporary one) within those categories in measured per-patent 

propensity to cite science.  While the coefficients on the paper publication year cohort 

                                                 
31   Jaffe and Trajtenberg (1996, 2002) allowed the obsolescence parameter to vary across fields of 
technology, but constrained the diffusion parameter to be the same.  In results not shown in this draft, I 
estimated a variant of the baseline specification that allowed obsolescence to vary in this manner.  This 
produced estimates of varying obsolescence across fields that are similar to those found by Jaffe and 
Trajtenberg, and this did not change the qualitative pattern of the other multiplicative category fixed 
effects.  However, given the preponderance of citations in the bioscience-biotech nexus, it seemed to make 
sense estimate citations functions separately for a bio-tech only subsample and a non-biotech sample, 
allowing both obsolescence and diffusion to vary over these samples.   
32   Note that I have drawn the institutional boundary of Stanford University to include its medical school. 
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dummies suggest a modest decline in per-paper citedness, the increase in publication 

volumes in these fields more than compensates for this.  The measured obsolescence 

parameter is slightly smaller, while the measured diffusion parameter is larger, relative to 

the overall sample. 

 Interestingly, the non-biotech subsample generates a significantly different pattern 

of results.  The aggregate patent classes used are computers and communications (IT), 

general electronics, mechanical inventions, chemicals (the base category), and a catch-all 

“other” category.  Science aggregates are engineering and technology, physics, 

chemistry, and a catch-all “other science” category.  The other categories remain as 

before.   

 Within “non-biotech,” the IT patent classes cite science most frequently, 

displaying a propensity to cite that is nearly 13 times as high as the base category.  

General electronics patents are more than 6 times as likely to cite science, while 

mechanical patents are three times as likely.  Articles in the physics fields are nearly 22 

times more likely to be cited than base category articles.  The physics aggregate includes 

some fields that relate to semiconductors and advanced materials.  The 

engineering/technology aggregate (which includes computer science) is the next most 

highly cited, with a citedness per paper that is about 8 times greater than the base 

category.  The rest of the sciences are significantly less likely to be cited.33 

                                                 
33   Note that chemistry seems substantially less significant in this subsample than it did in the overall 
sample, where it was an important source of cited papers and citing patents.  This difference seems to stem 
from the significant interaction between chemistry and the life sciences.  Many citations made by chemical 
patents are evidently made to articles in the life sciences.  Likewise, many citations received by chemical 
papers come from patents in the bioscience-biotech nexus.  In other words, the chemical field can be 
viewed as being on the border of the bioscience-biotech nexus, and excluding papers and patents in this 
nexus reduces the measured importance of chemistry in patent citations to science.   
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 In a striking contrast with earlier results, geographic localization seems to be 

much higher in this subsample.  California-based inventors display a much higher 

likelihood of citing California science than the base (non-California U.S.) category of 

inventors.  While intra-national localization is apparently higher, international 

localization is lower – the tendency of non-American inventors to cite California science 

is nearly 75% as high as that of non-California American inventors.  This pattern of 

results could very well reflect the increasing geographic concentration of the U.S. 

information technology industry in California, as well as strong growth by inventors 

based outside the United States (particularly East Asia) in patenting in IT-related classes.   

 Another contrast with earlier results is a much higher propensity (relative to 

firms) for patents generated by public science institutions to cite science.  Public science 

institutions are more than 25 times as likely to cite science as are firm patents, controlling 

for patent class.  The category of “other institutions,” is less likely to cite science in these 

fields, corresponding to the less significant role played by this category of assignee in 

non-biotech patenting.   

 The patterns suggested by the coefficients on patent application year cohorts and 

paper publication year cohorts also suggest patterns that differ from those in previous 

regressions.  Controlling for changes in the volume and distribution of publications and 

patents, later cohorts of patents display a markedly lower per-patent propensity to cite 

science.  The volume of patents in these categories has grown substantially, but not 

enough to fully offset the estimated decline in per-patent propensity to cite.  On the other 

hand, more recent cohorts of papers are more likely to be cited, although the estimated 

differential relative to the base category is not always statistically significant.  
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Publications have grown in non-biotech sciences, particularly in physics and engineering 

technology, reinforcing the impact of higher citedness of the later paper cohorts.  If the 

evidence from the bioscience-biotech nexus provides support for the notion that inventors 

have moved closer to academic science, the evidence here is perhaps more consistent 

with the view that academic science has moved closer to invention.  

 Finally, the estimated obsolescence coefficient is substantially higher than the 

overall sample, while the diffusion parameter is lower.  This implies that citations to 

science in these categories arrive more quickly, decay more rapidly, and peak at a lower 

level.  Viewed in this context, the results on the paper publication year cohort effects are 

even more striking.  Even controlling for these shorter lags, the incidence of citation has 

risen for more recent cohorts of papers.   

V. Conclusions and Extensions 

Relative to other indicators of knowledge flow from academia to the private 

sector, citations to academic papers are relatively numerous, rich, and widely available 

across campuses and scientific disciplines.  Quite simply, there is a great deal of 

information to be obtained from this source, and the existing literature has only begun 

this process.  The beginning sections of the paper described some of the basic lessons of 

these data, based on a representative random sample of U.S. patents.  While the logit and 

negative binomial regressions described therein can control for changes in citations 

driven by changes in the distribution of patenting across technologies, I was unable, in 

that context, to control for changes in the underlying distribution of potentially cited 

science. 
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At the risk of sacrificing some generality, the citations function estimates focused 

on California research universities allow me to control for changes in both patenting and 

publication.  While still preliminary, the citation function results offer some suggestive 

insights into the changing impact of academic science on industrial innovation.  First, this 

impact is quite concentrated in time, geographic location, and, especially, in technology 

space.  There is a widely held perception that the links between academic science and 

industrial innovation have increased across a broad range of disciplines.  This perception, 

of course, reflects a notion of connection between science and innovation that is much 

broader than the one used in this paper.  However, if one focuses on the incorporation of 

frontier scientific research into industrial invention as evidenced by patent citations, then 

the evidence presented here suggests that link is, to a great extent, a phenomenon within 

the bioscience-biotech nexus.  Patents within this nexus have been much more likely to 

cite science – and increasingly so over time, although the most recent period suggests a 

possible decline in citation propensity.  In other words, citation patterns suggest that, at 

least for a while, inventors in this nexus moved closer to academic science.  This, coupled 

with the growth in patenting in bioscience-citing classes relative to other categories of 

patents, explains a significant portion of aggregate increase in patent citations to science.  

Papers within this nexus have not shown an increased citedness over time, but the 

increase in publication in these areas is so large as to be an additional driving factor in 

increased citations to science.   

Discussions with industry experts suggest that the increase in citations has been 

driven by a shift in the focus of research in the biomedical industries, the entry of 

academic scientists into the marketplace through start-up enterprises, and an expansion of 
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patents to encompass classes of innovations such as genetically modified organisms and 

“research tools.”  In principle, one could attempt to quantify the degree to which changes 

in patent citations to science in biotechnology are statistically associated with each of 

these changes.  Such an investigation is the subject of ongoing research.  As noted in the 

draft, in the most recent period, we find some evidence of a modest decline in per-patent 

citation propensity, raising an intriguing question about the permanence of recent growth 

in the linkage between science and technology in this nexus.  Further exploration of this 

apparent decline is also the subject of ongoing research.   

Outside the bioscience-biotech nexus, one sees evidence – albeit less pronounced 

– of a secondary nexus in the IT-related disciplines.  One finds a concentration of citation 

activity by IT-related patents to IT-relevant scientific disciplines.  However, the citation 

patterns in this nexus differ from that in “bio” nexus in a number of dimensions.  There is 

no evidence of rising propensity to cite science – in fact, the data suggest a rather striking 

monotonic decline in per-patent propensity to cite for more recent patent cohorts.  On the 

other hand, there has been a rapid increase in publication volumes in the most highly 

cited fields and there is evidence that these more recent paper cohorts are more frequently 

cited, even controlling for the shorter lags between publication and patent citation.  On 

average, inventors outside of biotech/pharmaceuticals have not moved substantially 

closer to academic science – the measured increase in citations largely reflects changes in 

the distribution of patenting across fields and, potentially, the increased relevance to 

industrial technology of more recent cohorts of scientific papers.       

Another finding of the paper is evidence at the patent level that the incidence of 

citation of academic science is positively associated with measures of invention 
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“quality.”  While this evidence is consistent with the idea that knowledge spillovers from 

academia make private inventions better, for reasons discussed at length in the paper, this 

does not constitute proof that the chain of causality runs from citation to invention 

quality.  Certainly, further analysis is needed at the assignee (firm) level.   

Patents do not spring spontaneously into existence – they are created by inventors, 

most of whom are employed by innovating firms.  This is perhaps reason enough to 

conduct analysis at the firm level.  There are also econometric reasons for doing so.  It is 

likely that the patents created by a firm possess some common characteristics – it is 

unlikely that these are realizations of some independent, identically distributed random 

variable.  Secondly, patents, per se, possess no panel dimension, because a given patent 

only appears once in my sample.  In contrast, innovative firms generate multiple patents 

per year.  By tracking the patents of a corporate assignee over time, I am able to bring to 

bear all of the usual fixed effects econometric techniques.  This can provide useful 

leverage in sorting out, for instance, whether citation of academic science actually leads 

to higher levels of innovative performance.  Pursuing such analysis at the assignee level 

is the focus of current research.  
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Figure 1  Patent Citations to Academic Research

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

 

 

 

Figure 2      Citations to UC papers vs other indicators
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Table 1  Negative Binomial Regressions on the Determinants of Academic Citation 

Variable Category Variable 
 

All citations ISI 
journals 
only 

University-affiliated 
authors 

Universities 
 

1.60 
(.146) 
 

1.90 
(.173) 

2.51 
(.225) 

Nonprofit R&D 
organization 
 

1.09 
(.319) 

1.42 
(.377) 

1.56 
(.495) 

U.S. government 
agency 
 

.623 
(.165) 

.758 
(.206) 

.618 
(.290) 

Foreign assignee 
 

-.527 
(.048) 
 

-.474 
(.063) 

-.579 
(.095) 

Type of Assignee 

Other 
 

-1.089 
(.065) 
 

-1.06 
(.088) 

-.685 
(.125) 

Chemicals 
 

1.94 
(.066) 
 

2.30 
(.092) 

2.45 
(.140) 

Communications/ 
Computers 
 

1.65 
(.074) 

1.42 
(.105) 

1.34 
(.161) 

Drugs/Medical 
 

2.90 
(.078) 
 

3.46 
(.104) 

3.97 
(.151) 

Electronics 
 

1.42 
(.069) 
 

1.61 
(.097) 

1.41 
(.150) 

Technology Class 

Mechanical devices 
 

.020 
(.075) 
 

-.041 
(.113) 

-.403 
(.194) 

Science Center 
 

 .436 
(.050) 
 

.492 
(.064) 

.649 
(.091) 

Application Cohort 
Effects 
 

 Yes Yes Yes 

Obs 
 

 29,876 29,876 29,876 

Log-Likelihood 
 

 -20,695.575 -12,510.80 -6,641.674 
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Figure 3  Application Year Cohort Effects, Negative Binomial Regressions
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Table 2  Results on Quality Differentials 
 
 
Variable 
 

Coefficient Std. Err. Implied Difference 

Claims 
 

2.25 .220 15.1% 

Forward 
Citations 
 

.581 .101 5.5% 

Generality 
 

.029 .008 7.5% 

 
Table 1 reports the regression coefficient on a dummy variable identifying patents that 
cite scientific research.  Regressions control for technological field and application year 
effects.  The measures of patent quality in the table are used as the dependent variable in 
the regression, as in Henderson, Jaffe, and Trajtenberg, 1998. 
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Figure 4      UC Academic Publishing across Fields, 1999
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Figure 5   Patent Grants by Technology Category, 1981-1999
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Table 3   Citation Function Results, Full Sample 
Variable Coefficient T-statistic for H0: Parameter=1 
Computer Communications 0.042641 -101.27 

Drugs/medicine 2.580614 65.35 
Electronics 0.054423 -109.91 
Mechanical 0.013223 -91.96 
Other 0.046111 -83.27 
 
Biomedical research 37.58918 7.76 
Chemistry 4.612922 6.11 
Clinical Medicine 4.880407 6.27 
Eng/Technology 0.244953 -6.14 
Other Science 0.310768 -6.01 
Physics 0.441311 -4.58 
 
Caltech 1.211671 18.34 
Berkeley 0.578289 -54.87 

Davis 0.408163 -79.11 
Irvine 0.441956 -64.1 
Los Angeles 0.378945 -89.43 
Riverside 0.267284 -74.76 
Santa Barbara 0.325639 -57.73 
Santa Cruz 0.245496 -60.65 
San Diego 1.106468 10.74 
Santa Francisco 0.890317 -13.14 
USC 0.56083 -48.03 
 
US-CA 2.754931 89.72 
Non-US 0.455029 -64.86 
 
Other Institutions 1.720603 30.52 
Public Science 3.895451 84.39 
 
App year 88-90  0.839112 -9.43 
App year 91-93 1.483676 16.41 
App year 94-96 2.141093 22.88 
App year 97-99 1.533536 12.35 
 
Paper pub year 86-89 0.937367 -5.41 
Paper pub year 90-93 0.867258 -8.19 
Paper pub year 94-97 0.771549 -11.01 

1β   (obsolescence) 0.258239 0.002268 

2β   (diffusion) 3.72E-08 4.73E-09 
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Table 4, Bioscience/Biotechnology Nexus, R-squared:   
Variable Coefficient T-statistic for H0: Parameter=1 
Surgery/medical Instruments 0.38233 -71.87 
Biotechnology 0.012987 -113.17 
Other Drug & Medical 0.014335 -68.08 
Clinical Medicine 0.132214 -72.4 
Other Biotech 2.338469 29.22 
Caltech 0.857317 -7.07 
Berkeley 0.436655 -38.01 
Davis 0.28297 -49.13 
Irvine 0.31106 -39.39 
Los Angeles 0.336879 -46.12 
Riverside 0.192002 -40.62 
Santa Barbara 0.240868 -31.5 
Santa Cruz 0.25059 -27.85 
San Diego 0.751386 -14.23 
Santa Francisco 0.659127 -22.01 
USC 0.500215 -26.16 
US-CA 2.020528 30.15 
Non-US 0.411354 -34.56 
Other Institutions 1.381069 10.64 
Public Science 1.749713 24.98 
App year 88-90  0.760042 -8.28 
App year 91-93 1.083733 1.84 
App year 94-96 1.340517 4.82 
App year 97-99 0.938605 -0.96 
Paper pub year 86-89 0.827982 -6.97 
Paper pub year 90-93 0.635044 -12.06 
Paper pub year 94-97 0.601088 -9.11 
  Asymptotic Standard Error 

1β   (obsolescence) 0.241896 0.005724 
2β   (diffusion) 2.03E-05 8.11E-07 
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Table 5   Citation Function, Non-biotech Sample  
Variable Coefficient T-statistic for H0: Parameter=1 
Computers Communications 12.96369 10.38 
Electronics 6.535692 9.47 
Mechanical 3.27098 7.36 
Other 0.297798 -5.65 
Eng/Technology 7.674823 5.29 
Other Science 0.292769 -4.39 
Physics 21.66557 5.84 
Caltech 0.259771 -98.2 
Berkeley 0.116574 -119.39 
Davis 0.415936 -52.22 
Irvine 0.014034 -93.23 
Los Angeles 0.069184 -114.2 
Riverside 0.027343 -73.11 
Santa Barbara 0.068202 -111.47 
Santa Cruz 0.020609 -71.11 
San Diego 0.069723 -103.1 
Santa Francisco 0.019566 -118.73 
USC 0.150845 -91.43 
US-CA 11.51926 16.11 
Non-US 0.735649 -3.44 
Other Institutions 0.615733 -1.72 
Public Science 25.43173 11.54 
App year 88-90  0.436647 -55.01 
App year 91-93 0.273626 -68.94 
App year 94-96 0.124899 -99.31 
App year 97-99 0.112237 -69.24 
Paper pub year 86-89 1.173268 6.12 
Paper pub year 90-93 1.070638 1.26 
Paper pub year 94-97 1.255886 1.97 
  Asymptotic Standard Error 

1β   (obsolescence) 0.484528 0.005581 
2β   (diffusion) 2.14E-09 4.53E-10 
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Figure 6  Fitted Citation Frequency (Base Category)
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Figure 7   Base Case versus Biomedical Research
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Figure 8   Citations by California-based inventors versus Non-California Inventors
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Figure 9   Citations to UC Berkeley Papers, US 
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