
Policy Ratification

Dakshi Agrawal, James Giles, Kang-Won Lee, Jorge Lobo
IBM T. J. Watson Research Center
{agrawal,gilesjam,kangwon,jlobo}@us.ibm.com

Abstract

It is not sufficient to merely check the syntax of new poli-
cies before they are deployed in a system; policies need to be
analyzed for their interactions with each other and with their
local environment. That is, policies need to go through arat-
ification process. We believe policy ratification becomes an
essential part of system management as the number of poli-
cies in the system increases and as the system administration
becomes more decentralized.

In this paper, we focus on the basic tasks involved in pol-
icy ratification. To a large degree, these basic tasks can be
performed independent of policy model and language and
require little domain-specific knowledge. We present algo-
rithms from constraint, linear, and logic programming dis-
ciplines to help perform ratification tasks. We provide an
algorithm to efficiently assign priorities to the policies based
on relative policy preferences indicated by policy adminis-
trators. Finally, with an example, we show how these algo-
rithms have been integrated with our policy system to provide
feedback to a policy administrator regarding potential inter-
actions of policies with each other and with their deployment
environment.

1 Introduction

In recent years, we are witnessing a growing interest in us-
ing policies for system management. In the literature, policy-
based management has been proposed for a variety of IT
tasks such as access control, data backup, network security,
resource provisioning, configuration checking, and service
planning [1, 8, 4, 2, 20, 11]. The goal of a policy-based man-
agement system is to allow an IT administrator to define high
level directives to enforce business rules and objectives, in-
stead of writing customized scripts, or manually configuring
and auditing individual resources.

It has been long recognized that merely providing a policy
editing tool to ensure correct policy syntax is not sufficient.
Policies can interact with each other, often with undesirable
effects, and an IT administrator needs to be aware of such in-
teractions among policies. The problem of policy interaction
is particularly acute in a distributed system where it is likely
that a policy author would have only a partial view of the
entire system and where multiple authors may write policies

applicable to the same set of resources [2].
We say a policyP is ineffectivein a domain if there is no

resource in the domain whose operation will be affected by
this new policy or if the policyP is dominatedor shadowed
by the already existing policies applicable to the domain. For
example, if a local password policy already mandates that
“the password length must be greater than 8”, then an in-
coming global policy “the password length must be greater
than 6” will not change the way the system is being managed
locally. Ideally any ineffective policy must not be deployed
or marked inactive so that CPU cycles are not wasted on eval-
uating it.

We say that two policies arein conflict, if, under cer-
tain circumstances, they may issue directives that cannot be
achieved simultaneously. For example, if one policy says that
“all Windows workstation must check and install the latest
service pack from Microsoft every week” and another policy
says that “the Windows XP Service Pack 2 must not be in-
stalled (due to its incompatibility with existing firewall soft-
ware)”, then, at the time when the Windows XP Service Pack
2 has been released, the two policies conflict with each other
because their goals cannot be achieved simultaneously. In
certain cases, meta-level rules can be used to resolve con-
flicts in an automated manner [17, 22, 15, 14]. However,
in many cases, it is necessary for the human administrators
to resolve conflict since it is not always clear which policy
should win among the conflicting ones. In general, conflicts
can be resolved either by specifying priorities among con-
flicting policies or by disabling one of the conflicting poli-
cies. In the above example, the human administrator may
specify that the latter policy has high priority so that in gen-
eral Windows workstations are up to date, but the installation
of Service Pack 2 is prohibited.

In this paper, we study the problem ofpolicy ratifica-
tion—the process by which a new policy is approved before
being committed in a system by taking into account its poten-
tial interactions with other policies and its deployment envi-
ronment. Our focus in this paper is on discipline independent
ratification tools that can be a part of generic policy middle-
ware. The study of interaction among policies that requires
discipline-specific information is outside the scope of this pa-
per. Specifically, the key contributions of this paper are the
following:

• We identify the primitive operations that can be used for
policy ratification regardless of the discipline, namely

dominance check, potential conflict check, coverage
check, andconsistent priority assignment.

• We present the algorithms to implement these primi-
tive operations. In particular, we identify five classes of
boolean expressions for which we provide effective al-
gorithms to implement the operations listed above. We
also present an efficient algorithm to assign priority to a
policy that is consistent with the relative preferences of
policies specified by a system administrator.

• Finally, we describe how policy ratification can be used
in real life scenarios with print service policies as an ex-
ample. To help understand how policy ratification can
be used, we present a screen shot of the graphical user
interface designed on top of our policy ratification mod-
ule.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly presents the policy models considered in this
paper, and the primitive operations required by a generic pol-
icy ratification module. Section 3 presents algorithms to im-
plement ratification operations. Section 4 gives an example
of how policy ratification can be used for defining print ser-
vice policies. Section 5 briefly reviews the related research
in this area, and compares it with our work. Finally, Section
6 contains the main conclusions of this paper, and the future
research directions.

2 Preliminaries

Policies1 can be defined in terms of aguidelineor agoal
by giving a statement that can be evaluated to be either true
or false. For instance, the policy “the average response time
of a web server measured over an hour period should be less
than 15 msec”, is an example of such a policy. In this paper,
we call these “goal” policies.

Another type of policy is related to system con-
figuration. In this case, policies are generally spec-
ified as key-value pairs. One example of such
policies is the configuration policies for the Mi-
crosoft Exchange server. For example, the value of
DisableCollaborationApps , associated with the key
HKEYCURRENTUSER\Software \Policies \Micro
soft \Messenger \Client , determines whether or
not the whiteboard and application sharing features of
Windows Messenger are enabled. We call such policies
“configuration” policies.

There are more sophisticated policy languages to handle
complex systems management tasks [8, 16, 19, 1]. Ponder,
described in [8], specifies policies in asubject-action-target
(or SAT) format.2 The modeof a policy specifies either

1Defining and classifying different policy models is a challenging re-
search topic in itself. In this paper, we review some existing policy models
to motivate operations required for policy ratification without trying to come
up with a comprehensive taxonomy.

2In addition, a Ponder policy can have optional fields such as constraint,
trigger, exception, etc.

positive O+ (must do) or negativeO- (must not do) obli-
gations, or positiveA+ (allowed to do) or negativeA- (not
allowed to do) authorizations. Thesubjectspecifies the hu-
man or automated managers and agents to which the policy
applies and specifies the entities which interpret obligation
policies. Thetarget specifies the objects on which actions
are to be performed. Theactionsspecify what must be per-
formed for obligations and what is permitted for authoriza-
tions. An optional field calledconstraintspecifies a boolean
condition when the policy is applicable. For example, the
policy: “all corporate users (the subjects) are allowed (the
mode) to browse and purchase (the action) a shared travel-
booking agent (the target)” can be easily expressed in Ponder
(see [17] for more details).

There are other policy models that follow a general format
of event-condition-action(ECA) [16, 19, 1]: “whenevent
occurs, ifcondition is true then executeaction.” The policy
core information model (PCIM)[19] by IETF is an instance
of the ECA policy model. ACPL (autonomic computing pol-
icy language) [1] and PDL (policy definition language) [16]
are also based on the ECA policy model.

While there are significant differences in the various types
of policies (goal, configuration, SAT, and ECA types), a few
characteristics are common to all. First, the evaluation of
a boolean expression is a key operation required to evalu-
ate these policies. For example, goal policies are boolean
expressions. Configuration policies can be thought of as a
conjunction of equalities. The condition part of ECA poli-
cies and the constraint part of SAT policies are boolean ex-
pressions. Second, these policies contain variables and may
specify actions. Variables and actions that are eligible to ap-
pear in a policy are determined by thescopeof the policy.
Typically, there are multiple policies defined for a scope. For
some assignment of values to the variables, multiple policies
may be applicable and they may issue conflicting directives.

2.1 Policy ratification

Regardless of the policy model used in a policy system,
when a new policy is written or committed in the system,
the administrator must consider how the new policy interacts
with those already existing in the system. In addition, given
a group of policies, the administrator may want to know if
it provides sufficient guidance for a system. We define these
tasks performed by system administrators aspolicy ratifica-
tion[2]. Based on the result of policy ratification, adminis-
trators would accept or reject new policies, assign priorities
to resolve potential conflicts, or mark certain policies as be-
ing inactive. In particular, we have identified the following
generic operations that may be performed during policy rati-
fication:
Dominance CheckA policy x is dominated by a group of
policiesY = {y1, . . . , yn} (n > 1) when the addition ofx
does not effect the behavior of the system governed byY .
For example, a policy “password length> 6” is dominated
by another policy “password length> 8” because the former
policy is subsumed by the later. In another example, a pol-

icy “Joe has access to machine X from 1 P.M. to 5 P.M.” is
dominated by another policy “Joe has access to machine X
from 8 A.M. to 7 P.M.” From these examples, we observe that
determining whether a boolean expression implies another
boolean expression is a crucial ratification operation: in the
first example, we need to determine that(p.length > 8) ⇒
(p.length > 6), while for the second example, we need to
determine that(1300 6 t 6 1700) ⇒ (0800 6 t 6 1900).3

Conflict CheckWe say two goal policies are in conflict when
they specify goals (as boolean expressions) that cannot be
satisfied simultaneously (e.g. “password length> 8” and “4
6 password length6 8”). For configuration policies, we say
two policies conflict when they specify different configura-
tion values: “disk-quota=2 GB” and “disk-quota=1 GB”. If
the configuration parameters can take a range of values, then
conflict among configuration policies can be defined in a sim-
ilar manner as for the goal policies. In the ECA model, apo-
tentialconflict between two policies may arise when the con-
ditions of two policies can be simultaneously true, i.e., both
policies may become applicable, andmayspecify two incom-
patible actions. Therefore, the key ratification operation here
is to determine whether a conjunction of two boolean expres-
sions is satisfiable.

In this paper, we assume that potential conflicts among
policies would be resolved by human administrators either by
marking policies inactive or by indicating relative priorities
of the conflicting policies.
Coverage CheckIn many application domains, the adminis-
trator may want to know if explicit policies have been defined
for a certain range of input parameters. For example, in the
ECA model, the administrator may want to make sure that re-
gardless of the values of input parameters, at least one policy
has a true condition (see Section 4 for a concrete example).
The key operation in this case is to find out if a disjunction
of boolean expressions implies another boolean expression.
Consistent priority assignmentMost policy systems prior-
itize policies by assigning an integer value to each policy.
Thus in case several policies apply, the one with the highest
priority is executed. The manual assignment of priorities to
the policies can work when the number of policies is small.
However, if the number of policies is large, the manual prior-
ity assignment becomes infeasible. Moreover, if the assign-
ment of priorities is not done with care, then the insertion of
a new policy may require reassignment of priorities to a large
number of policies.

Figure 1 depicts one such example. Let each vertex in
the graph denote a policy with an integer priority, and each
arrow in the graph connect two potentially conflicting poli-
cies with the arrow going from the policy of higher priority
to the policy of lower priority. When a new policy is added
(denoted by the white vertex), its relative priority is specified
with respect to the other policies in the system as shown in
the figure. In this particular example, the new policy cannot

3Note that the interpretation of the dominance depends on the semantics
of the policy as in the first example the implied boolean expression is dom-
inated while the case is opposite for the second example. However, in each
case, logical implication is the fundamental operation.

Figure 1. Relative Priority Graph of Policies

be assigned a priority without reassigning priorities to poli-
cies already existing in the system.

The reassignment of priorities to the existing policies
needs to be done carefully to avoid a large (average as well
as peak) overhead during insertions; especially if the up-
dated policies need to be disseminated in a distributed sys-
tem. The goal of consistent priority assignment is to takerel-
ativepreferences (or in other words, the priority graph) spec-
ified by the policy author, including those specified during
dominance and conflict checks, and assign integer priorities
to the policies so that the number of amortized reassigned
priorities is minimized.

In summary, we have identified four critical high-level
ratification operations important for a wide range of policy
models. Although the details of how these high-level oper-
ations are exposed to the user would depend on the policy
model and its application context, the low-level operations
involved are largely independent of the policy model and its
application context. In particular, we need algorithms to find
satisfiability of boolean expressions (and if possible the set
of all values for which boolean expression evaluates to true),
and an algorithm to assign priorities to policies so that amor-
tized number of priority reassignments can be minimized. In
the next section, we will discuss these algorithms.

3 Algorithms

To facilitate discussion, we will start by defining a few
terms and notation. A boolean expression isatomicif it does
not contain explicitly compound logical operators (∧,∨,⊕
etc.); a boolean expression iscompoundotherwise. For a
given regular expressionr, L(r) denotes the language gen-
erated by the regular expressionr [13]. Thus expressions
(apple 6= orange), (5 6 x 6 10), and (username ∈
L(“joe*”), are all atomic boolean expressions, while the ex-
pression(5 6 x) ∧ (x 6 10) is a compound boolean expres-
sion.

There are many challenges in determining whether a
boolean expression can betrue for an assignment of val-
ues to the variables. This is an extension of the classicNP-
complete satisfiability problem where the atomic expressions

are restricted to boolean variables [13]. There are few known
classes of formulas that are tractable. Horn clauses is one,
where the disjunctive normal form of the boolean expression
has at most one positive variable. It is tractable too if the
number of variables per disjunct in the disjunctive normal
form is limited to two. However, more than two variables
makes the problemNP-complete. Even worse, we are some-
times interested in showing that two formulas are not simul-
taneously satisfiable, which is aco-NPproblem.

Our examination of policies from many different applica-
tion domains such as network QoS, storage, database, and
identity management shows that often policies involve only
the subclasses of boolean expressions for which the satisfi-
ability problem is tractable. Thus, our approach is to iden-
tify categories of boolean expressions that occur frequently
in typical policies and address the satisfiability problem for
such cases. In the rest of this section, we describe five com-
mon categories of boolean expressions and algorithms to
solve the corresponding satisfiability problem.
Category 1: Real valued linear constraints.The general
form of boolean expressions in this category is

∧n
i=1 Bi,

Bi =
∑m

j=1 aijxj Bci, whereaij ∈ R are constants,xj ∈ R
are variables, andB ∈ {=, <,6, >, >}. In other words, this
category contains conjunctions of atomic boolean expres-
sions defined bylinear constraintsin m-dimensional real
space. We use a modified simplex algorithm to find satis-
fiability for these expressions.
Category 2: One variable inequality constraints.The gen-
eral form of boolean expressions in this category is

∧n
i=1 Bi,

Bi = x B ci, where ci is a constant,x is the variable,
and B ∈ {=, <, 6, >, >}. The variablex and constants
c1, . . . , cn are of data typereal , integer , string , or
calendar 4. Note that forreal andinteger data types
linear constraints of the forma′i ·x+ b′i B c′i can be reduced
to the formx B ci. For expressions in this category, we use
the domain elimination algorithm to find satisfiability as well
as the value of variables for which the boolean expression is
true .
Category 3: One variable equality constraints.The form
of boolean expressions in this category is

∧n
i=1 Bi, Bi =

x B ci, whereci is a constant,x is the variable, andB ∈ {=
, 6=}. The variablex and constantsc1, . . . , cn are either of
data typecomposite 5 or of data typeboolean . For this
category also, we can use the domain elimination algorithm
to find satisfiability as well as the value of variables for which
the boolean expression istrue .
Category 4: Regular expression constraint.The general
form of boolean expression in this category is any boolean
expression formed using∧ and∨ with atomic expressions of
the form eithers ∈ L(r) or s 6∈ L(r), wheres is the same
string variable in all the expressions,r is a regular expres-
sion, andL(r) is the language generated by regular expres-

4calendar data type is used to represent an instance of time. It is
similar to the Java Calendar Object or XML dateTime data type.

5In our policy language,composite data type is used to aggregate
several name-value pairs in a single data structure. For the purpose of this
discussion, the only relevant property of this data type is the existence of an
equivalence class relationship over allcomposite instances.

sion r. For expressions in this category, we can use finite
automata techniques to find satisfiability [13].
Category 5: Compound boolean expression constraint.
This is the most general category that includes expressions
obtained by compounding boolean expressions belonging to
the categories listed above. Without loss of generality, we
can assume that the logical operators used for compounding
are∧,∨, and¬. For expressions in this category, we use a
solution tree algorithm that iteratively produces conjunctions
that constitute disjunctive normal form of the given boolean
expression. This class is the only intractable class we present
and we address it with heuristics.

We are not going to address in this paper in how to deal
with the Regular expression constraint category. We just
mention that∨ connectors can be treated as unions and∧
connectors as intersections of regular expressions so that the
boolean expression that we might extract from the policies
can be translated into the question of determining ifL(r) is
empty or not for a single regular expressions. Algorithms to
do that can be found in [13].

In the following subsections, we describe algorithms cur-
rently used by our ratification process. We note that the cat-
egories listed above are by no means exhaustive; they have
been derived from our efforts to handle the frequently occur-
ring cases in several practical scenarios. We plan to examine
more scenarios and add more categories in the future.

We would also like to note that categories listed above
are not mutually exclusive. For example, the expression
5 6 x 6 10, x ∈ R belongs to both Category 1 and Category
2. Furthermore, by recognizing the equivalence5 6 x 6 10
and(5 6 x) ∧ (x 6 10), we can also put this expression in
Category 5. This example is somewhat trivial, however it il-
lustrates the point that given a boolean expression, the choice
of algorithm to find its satisfiability is not always clear. In
our implementation, we use various heuristics to minimize
the expected computational burden. In particular, if possi-
ble the use of Category 5 is avoided due to its computational
complexity6.

3.1 Domain elimination algorithm

The idea behind the domain elimination algorithm is sim-
ple: consider the conjunctive boolean expression

∧n
i=1 Bi,

Bi = x B ci, where ci, x ∈ D and B ∈ {=, <, 6, >
,≥}. Each atomic boolean expressionBi restricts the do-
main ofx to Di ⊆ D.7 The algorithm works by examining
atomic boolean expressionsBi one by one, and by comput-
ing Rl =

⋂l
i=1 Bi at each step. The algorithm stops either

when all inequalities and equalities have been examined, or
when Rl = φ. If in the end,Rn 6= φ, then the boolean
expression is satisfiable withRn as its solution.

The fundamental operation performed by the algorithm is
the computation ofS1 ∩ S2, whereS1, S2 ⊆ D. We achieve

6As discussed later, we have polynomial time bounded algorithms for
Categories 1–4, while the complexity for Category 5 is exponential.

7We defineD to be the universal space corresponding to the data type of
x, thusD = Z whenx is integer, andD = R whenx is real, and so forth.

efficiency by observing that there are three fundamental
types of domains: totally ordered (ordered with respect
to the usual< operation) continuous domains (real and
calendar), totally ordered discrete domains (integer
andstring), and discrete unordered domains (boolean
andcomposite).8

First consider the domain elimination for an unordered
domain D. The input setsS1, S2 ⊂ D are finite and
given by explicitly specifying their elements, that is,Si =
{ei

1, e
i
2, e

i
3, . . . , e

i
ni
} for i = 1, 2. Assume that the cost of

deleting an element from or inserting an element in a set
is negligible compared to the cost of comparing equality
between two elements. Clearly,S1 ∩ S2 can be tested in
O(|S1|+ |S2|) using hashing.

For totally ordered discrete and continuous domains, sets
S1 andS2 can be always expressed in terms of expressions
of the following three types: a finite discrete ordered set, an
interval, and a union of mutually disjoint intervals. The first
two types are sub-cases of the third type. A discrete ordered
set has twoextreme boundary points: the minimum and max-
imum elements of the set. An interval has two boundary
points: the left and right hand side boundary points which
may or may not belong to the interval. A union of mutually
disjoint l intervals and a discrete set ofk elements has2l + k
boundary points. It turns out that the set operationS1∩S2 can
be performed efficiently by comparing only the (extreme)
boundary points ofS1 andS2. For the most general case,
whenSi, for i = 1, 2 is a union of mutually disjointli inter-
vals and a discrete set withki elements, computingS1 ∩ S2

can be done using a variation of the algorithm to merge two
sorted lists resulting in an algorithm ofO(l1 + l2 + k1 + k2).

The domain elimination algorithm can be implemented
by using a few domain properties such as total order and
whether the domain is continuous or discrete. Thus our im-
plementation is compact, easily maintainable, and largely in-
dependent of the data types supported by the policy language.
As an added benefit, to support a new data type, all that needs
to be done is characterizing the domain properties of the new
data type. For example, to add XML date type as a new data
type, we would need to say that its domainD is a totally or-
dered discrete domain and provide a function to computex+

givenx ∈ D.
Our implementation also covers two generalizations to the

type of expressions described above. First, instead of just
computingS1 ∩ S2, it is also capable of computingS1 ∪ S2

andSc
1. The∪ operator is just a union of intervals already

considered for single sets, and complements can be done
mostly by preprocessing the complements of intervals into
a new interval expression without complements. Second, in-
stead of working with just one variablex at a time, it is capa-
ble of working withn variablesx1, x2, . . . , xn. With these
two generalizations, the domain elimination algorithm can
find satisfiability and variable assignments for any compound

8A totally ordered domainD is continuous if givenx, y ∈ D, x < y,
we can always findz ∈ D such thatx < z < y. A totally ordered domain
D is discrete if for everyx ∈ D, eitherx = supD (in case supD exists) or
there existsx+ ∈ D, x < x+, and noy ∈ D, such thatx < y < x+.

boolean expression whose constituent atomic expressions are
of the formxiBcj , and thus avoid the use of the solution tree
algorithm for such boolean expressions.

3.2 Linear inequalities

For boolean expressions in Category 1, we modify Phase
1 of the standard simplex algorithm [9] to determine if there
is a non-empty feasible region that satisfies all linear con-
straints of the atomic boolean expressions. The algorithm
consists of the following five steps:
Step 1 Normalize all the linear inequalities and equalities
into equations of the forma1X1 + a2X2 + . . . + amXm B
b whereB ∈ {=, <, 6, >, >}, aj , b ∈ R, and theXj are
variables overR. The variables are lexicographical ordered.
Step 2 Transform all equations into equalities using slack
variables and limits. There are five types of equations:

a1X1 + a2X2 + . . . + amXm = b
a1X1 + a2X2 + . . . + amXm < b
a1X1 + a2X2 + . . . + amXm 6 b
a1X1 + a2X2 + . . . + amXm > b
a1X1 + a2X2 + . . . + amXm > b

Each is respectively translated into:

a1X1 + a2X2 + . . . + amXm = b
a1X1 + a2X2 + . . . + amXm +S = b− ε
a1X1 + a2X2 + . . . + amXm +S = b
a1X1 + a2X2 + . . . + amXm −S = b + ε
a1X1 + a2X2 + . . . + amXm −S = b

whereS is a new slack variable,S > 0. Note that a newS
is introduced for each equality; whileε is an infinitesimally
small positive constant, the same for all equalities.
Step 3Build the matrix representation of the system adding
an extra column for the constantε. I.e., instead of a sin-
gle column for the right-hand side of the equalities, the ma-
trix representation has two columns for the right-hand side:
one contains the constantsb and the other contains the fac-
tor multiplying ε (initially 0, 1 or −1). The other columns
correspond to the variables in the equalities on the left-hand
side.
Step 4Do linear transformations on the matrices with slack
variables constrained asS > 0 until finding a feasible solu-
tion [9].
Step 5If a feasible solution does not exist, the spaces do not
intersect.

In Step 4, similar to the simplex algorithm, we need
to make sure that while transforming the matrix to a row-
reduced form and while selecting a column in a row that
corresponds to a slack variable, there is no violation of the
non-negativity of the slack variables. This is checked by
comparing the sign of the factor associated with the slack
variable and the sign of the result of adding the two values
in columns corresponding tob andε. These two signs must
be the same. In addition if one of the factors is 0 the other

must also be 0. Let’s say that the last column has a constant
C. We determining the sign ofb+Cε using limit arithmetic:

b > 0 ⇒ b + Cε > 0
b = 0, C > 0 ⇒ b + Cε > 0
b < 0 ⇒ b + Cε < 0
b = 0, C < 0 ⇒ b + Cε < 0
b = 0, C = 0 ⇒ b + Cε = 0

If a column corresponding to a slack variable cannot be se-
lected without violating the non-negativity constraint, then
the system has no solution. The complexity of this algorithm
is O(n2 ×m), wherem is the number of variables andn the
number of equations.

Let’s run through an example. The following set of equa-
tions swap > 2 RAM, boot = 1024, boot + swap <
1
4 HD, andRAM> 0 is normalized and modified as:

0 boot + 0 HD− 2 RAM+ swap − S1 = 0
boot + 0 HD+ 0 RAM+ 0 swap = 1024
boot − 1

4
HD+ 0 RAM+ swap + S2 = 0− ε

0 boot + 0 HD+ RAM+ 0 swap − S3 = 0 + ε

whereS1, S2, andS3 are the new slack variables. We now
need to find a solution for this system of linear equations
under the constraintsS1 > 0, S2 > 0 andS3 > 0. We find
a solution by doing linear transformations on the equations
until we obtain an independent variable for each equation.
For our running example, after the linear transformations we
obtain the following row-reduced matrix.266664

boot HD RAM swap S1 S2 S3 b ε
0 0 1 0 0 0 −1 0 1
1 0 0 0 0 0 0 1024 0
0 1 0 0 −4 −4 −8 4096 12
0 0 0 1 −1 0 −2 0 2

377775
The witness solution isRAM= ε, boot = 1024, HD =

4096 + 12ε, andswap = 2ε with all slack variables,S1, S2,
S3, being equal to 09. Thus, a feasible solution exist, and all
linear constraints can be satisfied simultaneously.

Since for two setsA andB, B ⊆ A iff Ac ∩ B = φ,
the algorithm above can also be used to check if a particular
constraint in a set of linear constraints is redundant. In other
words, this algorithm can be used to find a dominated policy,
and to find whether a set of linear inequalities covers a region
defined by another set of linear inequalities.

Finally, we note some limitations of the algorithm given
above. First, the algorithm only finds whether a feasible so-
lution exists—it does not find the set of all feasible solutions.
Second, the algorithm does not directly handle inequalities
of the form~a ~X 6= b but it can be done by adding the formula
(~a ~X < b) ∨ (~a ~X > b) to the boolean expression and using
the solution tree algorithm described in Section 3.3. Last, the
algorithm given above does not handle integer-valued vari-
ables. We are currently working on modifying the simplex
algorithm to address some of these shortcomings [21].

9In this particular case, the process of row-reduction did not involve
choosing a column corresponding to a slack variable. Therefore, all slack
variables can be assigned value 0.

3.3 Solution tree algorithm

The solution tree algorithm is used as the first step in solv-
ing satisfiability of a compound boolean expression whose
atomic formulae do not fall in the first four categories de-
scribed in the beginning of this section. In essence solv-
ing the satisfiability of such expressions means dealing with
∧, ∨ and¬ logical operators simultaneously. Take, for ex-
ample, the following two conditions,(X < 10 ∨ (X >
10 ∧ X + Y < 10)) and(X > 12 ∨ X > 2Y), coming
from two different policies. We would like to find out if the
conjunction of the formulas(X < 10∨(X > 10 ∧ X+Y <
10)) ∧ (X > 12∨X > 2Y) is satisfiable. If we look at the
disjunctive normal form of the formula,

(X < 10 ∧ X > 12) ∨ (X < 10 ∧ X > 2Y)∨
(X > 10 ∧ X + Y < 10 ∧ X > 12)∨
(X > 10 ∧ X + Y < 10 ∧ X > 2Y),

our problem reduces to checking if at least one of these dis-
juncts can be satisfied. For this, we can use the domain elimi-
nation algorithm to check the first disjunct and solve systems
of linear inequalities for the other three.

The solution tree algorithm is based on this intuition, how-
ever, it does not explicitly build a disjuncitve form of the
input formula. Instead, it takes as an input a boolean ex-
pression built with∧ and∨ connectors, and it returns, one
by one, each of the disjuncts on demand. In other words, it
works like an iterator: the first time is called, it returns one of
the disjuncts that will be passed to the appropriate module for
evaluation; next time it is called returns a different disjunct
until no more disjunct exits. The order in which the disjuncts
are returned is given by a depth-first like traversal of the tree
representation of the input boolean expression (the disjunc-
tive normal form above lists the disjuncts in this order). The
benefit of using this order is that there is high chance for a
disjunct to share some of its parts with the previously evalu-
ated disjunct allowing the reuse of previous computation. In
the example, the subsystem(X > 10 ∧ X + Y < 10) can
be computed in the third disjunct and reused in the fourth.
Currently we are using the structure of the formula provided
by the users almost unmodified. The only change we do is to
push negations down into the atomic boolean expressions.

The algorithm uses two data structures, a stack,stack ,
and a (solution) list,list . Initially, list is empty. The
stack stores nodes from the AND-OR tree representation
of the input boolean expression with threetypesof nodes:
AND, OR and atomic leaf nodes. AND nodes can be in two
states:non-coveredandcovered. OR nodes can be in three
different states:non-covered, partially coveredandcovered.
Given a noden and one of its ancestorsa, we say thata is a
left ancestor ofn if n is part of the left subtree ofa; it will be
called aright ancestor ifn is part of the right subtree. We ini-
tialize the stack by pushing the root of the tree into the stack.
If the root node is an AND or OR node we set its state to non-
covered. In addition, if the root is an OR node, the node will
have a pointer to the current state of the solution list (in this
initial state it points to an empty list). The implementation of
the iterator is given by the following algorithm:

1. IF TOP(stack) = null : STOP, no more solutions.

2. IF TYPE(TOP(stack)) = atomic :

(a) N ← POP(stack), APPEND(list , N)

(b) P ← PARENT(N)

i. IF ISRIGHTANCESTOR(P, N) MARK(P, covered)

ii. IF TYPE(P) = OR∧ ISLEFTANCESTOR(P, N):
MARK(P, partial)

(c) UNTIL (P = null) ∨
(TYPE(P) = AND ∧ ISLEFTANCESTOR(P, N))
DO P ← PARENT(P)

(d) IF P = null : RETURN list and STOP10

(e) IFP 6= null : MARK(P, covered),
PUSH(P.right , stack), GOTO 1

3. IF TYPE(TOP(stack)) = AND ∧
MARK(TOP(stack)) = noncovered :

PUSH(TOP(stack).left , stack).

4. IF TYPE(TOP(stack)) = OR∧
MARK(TOP(stack)) = noncovered :

MARK(TOP(stack), partial),
TOP(stack).backtrackingpoint ← HEAD(list),
PUSH(TOP(stack).left , stack)

5. IF MARK(TOP(stack)) = partial :
MARK(TOP(stack), covered),
HEAD(list) ← TOP(stack).backtrackingpoint ,
PUSH(TOP(stack).right , stack)

6. IF MARK(TOP(stack)) = covered : POP(stack).

7. GOTO 1.

The complexity of the satisfiability problem is reflected
in our algorithm when the disjunctive form of a formula be-
comes exponentially larger than the original formula. We
need to work with heuristics and our approach is to try to
find common factors in the disjuncts of the disjunctive nor-
mal form to reuse its computation since in our application
the evaluation of a disjunct (e.g., solving a set of linear equa-
tions) is the most significant portion of the computation. Fac-
toring out subexpressions is also a hard problem. Finding
the shortest disjunctive form of a formula is known to beNP
hard [12]. We currently work with the formula provided by
user expecting that the user will write a factored formula.
Automatic factorization requires further researh. Other op-
timization we do is partially evaluating expressions and if
the evaluation fails we prune the search. Each time a leaf
node is added to the solution list in Step 2a we can imme-
diately check if the partial solution is satisfiable. If so, we
proceed as before; otherwise we pop nodes from the stack
until we find the first left OR ancestor of the leaf node just
added to the solution list (the node causing the pruning)
and go back to Step 1. If such an OR node does not ex-
ist, there are no more solutions. In our example, if we had
(X > 10 ∧ X + Y < 10 ∧ Y > 10) instead of just
(X > 10 ∧ X +Y < 10), using partial evaluation we would
not need to complete the evauluation of(X > 10 ∧ X+Y <
10 ∧ Y > 10 ∧ X > 12) and we will never attempt to eval-
uate(X > 10 ∧ X + Y < 10 ∧ Y > 10 ∧ X > 2Y).

10Note that the stack might not be empty, this indicates that there are other
solutions.

Figure 2. Binary Interval Tree

3.4 Priority assignment algorithm

The priority assignment algorithm is a modified version
of anorder-maintenancealgorithm in a list. The basic idea
of the algorithm is as follows. Imagine a large array of size
2n whosei-th cell is marked as occupied if the priorityi has
already been assigned to a policy. A good choice forn is
the word-size of the machine. Logically, we can associate
a binary tree of heightn with the array so that each leaf of
the tree corresponds to a cell in the array (see Figure 2 where
n = 4). We can also associate a group of consecutive cells to
each internal node in the tree. Thus, the root of the tree cor-
responds to the cells with indices in[0, 2n− 1], the left child
(and the right child, respectively) of the root corresponds to
cells with indices in[0, 2n−1 − 1] (and [2n−1, 2n − 1], re-
spectively), and so on. We can also associate adensityto
each internal node that equals the fraction of cells marked as
occupied among the group of cells associated with the node.
The idea is to keep the density of every internal node below
a threshold (< 1) so that there are unoccupied cells close to
all locations in the array. In this paper, we set the threshold
to be 1

2 .
When a new cell is marked as occupied, we check whether

the density of the parent node of the marked cell is above1
2 .

If the threshold is violated, we look for the closest ancestor of
the cell where the density is less than1

2 . We take the cells as-
sociated with that node and redistribute the “occupied” mark
uniformly in the interval, thus reassigning priorities to some
policies while keeping the relative order of the priorities of
policies the same. This process ensures that the amortized
number of priority reassignment for the policies remains low.
The algorithm works as long as the number of policies in the
system are less than12 of the size of the array, which is more
than enough for most practical scenarios.

We note, given a cell index (i.e. the priority of a policy)
we can find the interval associated with itsi-th ancestor node
by looking at the binary representation of the index and vary-
ing the lasti bits. For example, if the index is 23 (10111),
the parent interval is [22,23] ([10110,10111]). If the index
is 8 (1000) the parent interval is [8,9] ([1000,1001]). To get
the grandparent of 23, we vary the last two bits to get [20,23]
([10100,10111]). The interval associated with the grandpar-
ent of 8 is [8,11] ([1000,1011]).

The input to our algorithm is an array of sizel containing

l policies ordered by their priorities plus the positioni, 0 6
i 6 l in the array where the new policy needs to be inserted.
The core of the algorithm is the following:
Step 1 Insert an empty cell in the input array’si-th position.
Step 2 Let pi−1 andpi+1 be the priorities of the two policies
contained in the cells adjacent to the empty cell. If these
priorities are not consecutive (pi+1 − pi−1 6= 1), then the
new policy is assigned a prioritypi in the middle ofpi−1

andpi+1 (e.g.,pi = b(pi−1 + pi+1)/2c), and the policy is
inserted in the empty cell.11

Step 3 If pi−1 andpi+1 are consecutive, then we shift pri-
orities for policies that are in the cellsi + 1, i + 2, . . . , i + k
by 1, wherek is the smallest integer such that priorities of
policies in the cells at positioni + k andi + k + 1 are not
consecutive.

If the above step cannot be performed either because the
empty cell is in the last position (i = l andPi−1 = 2n−1), or
because priorities of policies in cells at positionsi+1 through
l are consecutive up to2n− 1, then we shift priorities for the
policies that are in cellsi − 1, i − 2, . . . , i − k by 1, where
k is the smallest integer such that priorities of policies in the
cells at positioni− k andi− k − 1 are not consecutive.
Step 4 After the insertion is made, the density of the parent
node of the inserted policy is checked. If it is smaller than1

2 :
Stop. Otherwise, find the first ancestor of the inserted pol-
icy with density smaller than the threshold and rebalance the
priority assignment by evenly redistributing the priorities of
policies corresponding to the ancestor found in the previous
step.

One important characteristic of the algorithm is that we
do not need to build the large binary tree or the cell array
explicitly. Thus the storage requirement of our algorithm is
proportional to the number of policies in the systeml instead
of being proportional to2n wherel ¿ 2n. This algorithm
guarantees that on average, the amortized reassignment of
priorities is O(1) if the number of policies with the same
priority is bounded by a constant.

4 Print service management example

We have implemented all four ratification operations de-
scribed in this paper for an ECA policy system. The core
implementation consists of algorithm libraries that are inde-
pendent of the policy language or model. The ratification
module uses these libraries, and is capable of analyzing poli-
cies written in ACPL [2]. The module can be invoked from a
policy editor to provide feedback to the policy author as she
writes new policies, or the module can be invoked by a PDP
as new policies are committed into the system [2]. In this
section, we will illustrate how the policy ratification module
works by using a set of policies defined for managing a print
service.

Consider a print service with three queues: low, normal,
and high priority queues denoted byQl, Qn, andQh, respec-

11If the empty cell is either the first or the last cell of the array, then there
is only one cell adjacent to the empty cell. In such cases, the priority of the
missing cell can be thought of as being−1 and2n respectively.

tively. The print service uses policies to categorize an incom-
ing job into one of these three queues. For categorization,
print policies can use the following parameters of an incom-
ing job: number of pagesn, number of copiesc, total number
of pages currently in the print queues by the same userN, and
the time of day time-of-day . The default policy is to
put all printing jobs in the normal queue.

The first set of policies defined by the administrator
classifies jobs by the time of day and the number of pages
with a goal of expediting printing of small jobs during
business hours and to avoid congestion just before the end
of the business day:

PL1 If (8 AM < time-of-day < 5 PM) ∧ (n < 10): queue = Qh.
PL2 If (8 AM < time-of-day < 5 PM) ∧ (10 < n < 30): queue =
Qn.
PL3 If (8 AM < time-of-day < 5 PM) ∧ (n > 30): queue = Ql.

PL4 If (4 PM < time-of-day < 5 PM) ∧ (n > 10): queue = Ql.

The atomic boolean expressions occurring in the condi-
tional clauses of policies PL1–PL4 are single variable linear
inequality constraints. Therefore, the domain-elimination al-
gorithm can be used to analyze policies PL1–PL4. The anal-
ysis would alert the administrator to the following facts:
• There are no policies fortime-of-day =8 AM and 5 PM
andn=30 andn=10 (giving the default normal queue for such
jobs regardless of their size or submission time.). In this case,
the administrator may want to specify non-strict inequalities
for n in the policy PL2.
• The policy PL4 may be simultaneously true with policies
PL2 and PL3. In this case, the administrator may want to
specify that PL4 has higher priority than policies PL2 and
PL3.

Figure 3 shows the print service policies in the graphical
user interface for our policy tools. This screenshot shows
the ratification perspective, where groups of policies can be
viewed and analyzed for coverage, dominance, and conflict.
The tool shows that PL 2 and PL4 are potentially in conflict
as described above.

Next, the administrator defines similar policies to give
low priority queue to bulk copy printing jobs:

CL1 If (8 AM < time-of-day < 5 PM) ∧ (c > 5): queue = Ql.

CL2 If (4 PM < time-of-day < 5 PM) ∧ (c > 3): queue = Ql.

Both policies CL1 and CL2 can be simultaneously true
with policies PL1–PL4. Since CL1 and CL2 assign low pri-
ority queues, the administrator may assign both of them a
higher priority than policies PL1–PL4. Note that policies
CL1 and CL2 can be simultaneously true, however since they
specify the same queues, the administrator need not worry
about their relative priorities.

Finally, the administrator defines a third set of policies
that takes overall current usage of a user into account. These
policies make sure that users do not circumvent the previous
sets of policies by breaking a large printing jobs into several
smaller jobs or that users with multiple printing jobs, but
small overall load do not have to wait for larger jobs to

Figure 3. Potential Conflicts in Print Service Policies

finish, etc.

SL1 If (8 AM < time-of-day < 5 PM)∧ (N+n < 5): queue = Qh.
SL2 If (8 AM < time-of-day < 5 PM)∧(N+n > 60): queue = Ql.

SL3 If (4 PM < time-of-day < 5 PM)∧(N+n > 20): queue = Ql.

Some of the atomic boolean expressions occurring in the
conditional clauses of policies SL1–SL3 involve two vari-
ables linear constraints. Therefore, in this case, solution tree
algorithm in conjunction with the simplex algorithm would
be used to find out that SL1 can be simultaneously true with
policies PL1, CL1, and CL2. The policy administrator may
assign SL1 a priority equal to PL1, but higher than CL1 and
CL2. SL2 and SL3 are punitive policies and the administra-
tor may assign them a higher priority than all the policies that
can be simultaneously true with SL2 and SL3.

In the last step of the ratification process, the priority as-
signment algorithm would take relative priorities given by
the system administrator to the policies and assign them nu-
meric priorities consistent with their relative priorities.

5 Related Work

Conflict and anomaly detection have been among the pri-
mary research topics in the policy community. In [18],
the authors have categorized the conflicts that can occur in
SAT policies: (1) modality conflicts, which can be detected
without application level knowledge; and (2) goal conflicts,
which require outside knowledge.

This categorization has been further developed in [17]
where the difference between modality conflicts and consis-
tence conflicts are discussed and possible ways are given to
resolve them without human intervention. The main idea of
conflict resolution, called domain nesting, is based on the
intuition that policies defined for more specific domains are
assigned higher priority than the ones for more generic do-

mains. A similar idea has been proposed by [15, 22]. They
are based on static conflict detection techniques. We also fo-
cus on static analysis but do not confine ourselves to the SAT
type policies. Instead, we present common primitive opera-
tions that can be used across various policy models such as
goal, configuration, and ECA types. Dynamic policy con-
flict resolution is addressed in [7] but is also based on meta
information provided by the policy administrator.

In [4], the authors have studied the anomalies that can
happen in a firewall configuration, and present various types
of anomalies such as correlation anomaly (similar to policy
conflicts in this paper), shadow anomaly (similar to the dom-
inance relation in this paper), generalization anomaly, and
redundancy anomaly. While the basic insight on the problem
is common, their work is very specific to firewall policies
and furthermore specific to their particular implementation
of the policy management tool. Thus, their findings cannot
be easily applied to other domains.

We have adopted algorithms to maintain order lists un-
der insertion and deletion operations to address our prior-
ity maintenance problem. The best upper-bounds known for
the order maintenance problem were introduced in [10]. The
problem is to keep elements in the right order in a data struc-
ture that cannot be modified easily, e.g. a file. The idea be-
hind the algorithms with the best upper-bounds is to leave
spaces between elements so that they are minimally reallo-
cated. Part of the concern of these algorithms is to also min-
imize the extra space required. Our algorithm is based on a
revised version of the [10] that uses a simpler data structure,
but keeps the same time complexity bounds [6]. Also we do
not waste space since we do not move objects we just rename
them (i.e. change priorities).

Finding feasible solutions of a set of linear inequalities is
a basic step in the Simplex algorithm. We modified the algo-
rithm to take into account the fact that some variables were
not bounded and to handle strict inequalities. Non-bounded

variables have been studied in [5] for solving problems in
graphics applications. That paper also addresses incremental
evaluation of linear constraints, a feature required for inter-
active graphics applications. These techniques apply directly
to our backtracking solution tree algorithm.

Non-deterministic algorithms to find solutions to AND-
OR trees can be found in many standard AI textbooks. Find-
ing all solutions and pruning algorithms are more sophisti-
cated. Our version is a simplified and adapted version of
the backtracking algorithm used by the Warren Abstract Ma-
chine to evaluate Prolog programs [3].

6 Conclusions

The first message we would like to convey in this paper
is that ratification is a fundamental concept in policy man-
agement. It is applicable from high level goal policies to low
level Subject/Action/Target or Event/Condition/Action poli-
cies. We have further classified ratification into three cate-
gories: dominance, conflict, and coverage check. The second
message is that useful ratification functions can be developed
independently of the domain and policy language. We have
built a system that handles ratification for a significant class
of policies. To build the system we brought together con-
cepts from constraint satisfaction, linear algebra, and logic
programming and designed new algorithms that can be used
as building blocks for other management system supporting
these three operations. To complete the ratification process,
priorities need to be assigned to policies; we also presented
an efficient algorithm to do this assignment. We illustrated
how the system can be used through a series of examples
and showed the policy ratification tool incorporated into our
own policy system. We are planning to make ratification
tools publicly available so other researchers building policy
management systems can incorporate our tools as a library.
We hope that other researchers will help expand the tools to
cover other classes of policies. For example, the system will
benefit if more integer and finite domain constraints are cov-
ered. It would also be useful to handle XPath expressions as
part of the atomic formulas, and the tools should be expanded
so that priorities do not need to be restricted to a total order
as for integer priorities. We are studying algorithms that are
able to handle partial orders efficiently.

References

[1] D. Agrawal, S. Calo, J. Giles, K.-W. Lee, and D. Verma. Pol-
icy management for networked systems and applications. In
Proc. of IFIP/IEEE International Symposium on Integrated
Network Management, May 2005.

[2] D. Agrawal, J. Giles, K.-W. Lee, K. Voruganti, and K. Filali-
Adib. Policy-based validation of san configuration. InProc.
of IEEE Policy 2004, June 2004.

[3] H. Aı̈t-Kaci. Warren’s abstract machine: a tutorial recon-
struction. MIT Press, 1991.

[4] E. Al-Shaer and H. Hamed. Firewall policy advisor for
anomaly discovery and rule editing. InProc. of IFIP/IEEE

International Symposium on Integrated Network Managemnt,
March 2003.

[5] G. J. Badros, A. Borning, and P. J. Stuckey. The Cassowary
linear arithmetic constraint solving algorithm.ACM Trans.
Comput.-Hum. Interact., 8(4):267–306, 2001.

[6] M. A. Bender, R. Cole, E. Demaine, M. Farach-Colton, and
J. Zito. Two simplified algorithms for maintaining order in
a list. In Proceedings of the 10th European Symposium on
Algorithms (ESA), pages 152–164, 2002.

[7] J. Chomicki, J. Lobo, and S. Naqvi. Conflict resolution using
logic programming.IEEE Transactions on Data and Knowl-
edge Engineering, 15(1):244–249, 2003.

[8] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder
policy specification language. InProc. of IEEE Policy 2001,
June 2001.

[9] G. B. Dantzig.Linear Programming and Extensions. Prince-
ton University Press, 1963.

[10] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining
order in a list. InProc. of ACM Symposium on Theory of
Computing, pages 365–372, 1987.

[11] P. Flegkas, P. Trimintzios, G. Pavlou, and A. Liotta. Design
and implementation of a policy-based resource managmenet
architecture. InProc. of IFIP/IEEE International Symposium
on Integrated Network Managemnt, March 2003.

[12] M. R. Garey and D. S. Johnsom.Computers and Intractabil-
ity: A guide to the theory of NP-completeness. Freeman and
Company, 1979.

[13] J. E. Hopcroft and J. D. Ullman.Introduction to Automata
Theory, Languages and Computation. Addison Wesley, 1979.

[14] T. Koch, C. Krell, and B. Kramer. Policy defition language for
automated managment of distributed system. InProc. of Sec-
ond IEEE Int’l Workshop Systems Management, pages 55–64,
1996.

[15] M. M. Larrondo-Petrie, E. Gudes, H. Song, and E. B. Fernan-
dez. Security policies in object-oriented databases. InProc.
of IFIP Database Security: Status and Prospects, pages 257–
268, 1990.

[16] J. Lobo, R. Bhatia, and S. Naqvi. A policy description lan-
guage. InProc. of American Association for Artificial Intelli-
gence, July 1999.

[17] E. Lupu and M. Sloman. Conflicts in policy-based distributed
systems management.IEEE Transactions on Software Engi-
neering, 25(6), November 1999.

[18] J. Moffett and M. Sloman. Policy conflict analysis in dis-
tributed system management. 4(1):1–22, 1994.

[19] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Pol-
icy core information model (PCIM) – version 1 specification.
IETF RFC 3060, February 2001.

[20] N. Muruganantha and H. Lutfiyya. Policy specification and
architecture for quality of service management. InProc. of
IFIP/IEEE International Symposium on Integrated Network
Managemnt, March 2003.

[21] H. Rueb and N. Shankar. Solving linear arithmetic con-
straints. Technical Report CSL-SRI-04-01, SRI International,
Computer Science Laboratory, Menlo Park, CA 94025, Jan-
uary 2004.

[22] M. D. Ryan. Defaults in specifications. InProc. of IEEE In-
ternational Symposium on Requirements Engineering, pages
142–149, 1993.

