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Abstract

A few previous works of the authors derived and discussed the space-time math-
ematical description, the PhasTraM model, for oncogenic hyperplasia regarded as a
genotoxically activated homeorhetic dysfunction. The model is based on the fluid-to-
solid-and-back transitions and nonlinear reaction-diffusion equation relevant to a series
of the key biomedical facts and distinguishing features of living systems. The first
computer-simulation results have also been reported. The present work generalizes the
PhasTraM model for the effect of radiation therapies (RTs), both external and internal.
The resulting model also includes the autocrine mechanism promoting oncogenic hyper-
plasia and the suppression of this process by certain drugs. The autocrine signalling is
implemented by the transforming-growth-factor-α (TGF-α) molecules released by the
cells and bound to the epidermal-growth-factor receptors (EGFRs) at the cell surface.
The suppression can be carried out by a drug deactivating the mentioned molecules.
The work also presents and discusses examples of the computer-simulation results for
four different settings of the applied RT. A few directions for future research as well as
prospective applications of the model and developed software are also discussed.

Keywords: Reaction-diffusion equation; Cauchy problem; Tumour; Oncogenic hyperpla-
sia; Homeorhesis

1 Introduction

The ability of a living system to maintain a static equilibrium independently (in sufficiently
large time intervals) of exogenous (external, coming from outside a system) signals bears name
homeostasis [1]. An example of homeostasis is the ability of the body to maintain an internal
temperature at a constant level, no matter what is the external temperature (within a certain
range). Homeorhesis [2] is the time-dependent generalization of homeostasis. Homeorhesis
concerns the dynamic rather than static equilibrium of the system, in which continuous
changes of the steady state occurs.

A tumour is an abnormal new mass of tissue that results from uncontrolled division
of the cells. Tumours perform no useful body function. They may be either benign (not
cancerous) or malignant (cancerous). Oncogeny, i.e. formation of a tumour, progresses in a
sequence of steps: hyperplasia, dysplasia, growth in situ, angiogenesis, and invasion. As it is
well known in biomedicine, oncogenic hyperplasia is the first and therefore inevitable stage
in development of any (solid) tumour. Oncogenic hyperplasia is also implicated in many
other proliferative diseases: vascular; gastrointestinal; endocrine; proliferative dermatoses
(infantile eczema and lichenification); megakaryocytic or platelet hyperplasia; hyperplasia of
cardiac muscle; hyperplastic lesions of the larynx; ductal, prostatic, intimal, endometrial, and
lymphoid hyperplasias; and others. Oncogenic hyperplasia is a process that is continuous
in space and time where quantitative changes in the cell-population characteristics result
in qualitative differences. As it is well known (e.g., [3, 4, 5]), oncogenic hyperplasia is a
genotoxically activated homeorhetic dysfunction.
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The minimal mathematical model that takes into account the listed features was devel-
oped in [6] (see also [7, 8]). The purpose of the present work is three-fold:

• incorporation of the effects of radiation therapies (RTs) (both external and internal)
into the previous model;

• endowing the above RT-aware model with capabilities allowing for a simultaneous ac-
tion of RT and drugs;

• illustration of the RT influence upon oncogenic hyperplasia with computer-simulation
results.

Sections 2 and 3 emphasize the key biomedical facts and distinguishing features of living
systems to be accounted in the modelling. Sections 4 and 6 presents two parts of the descrip-
tion of the RT-aware model. Sections 5 and 7 discuss the modelling parts in Sections 4 and
6, respectively. The computer-simulation results are described and analyzed in Section 8.
Section 9 presents the concluding remarks and suggests a few direction for future research.

2 Biomedical facts to be accounted in the modelling

In order to develop any mathematical model relevant to the hyperplastic tumour formation,
a series of biomedical facts should be taken into account. The most important of them are
listed below:

• oncogenic hyperplasia is the first stage of any solid tumour development (see Section 1);

• oncogenic hyperplasia is a homeorhetic dysfunction (see Section 1);

• there is no sharp boundary between a tumour and the surrounding population of home-
orhetic cells; instead, there is a continuous and complex layer of the cells;

• tumour can be of any shape; it need not be spherical;

• in any spatial domain, the cell population may be at one of the two robust, i.e. asymp-
totically stable, states: the homeorhesis state that corresponds to a medium-density
physical phase of the population and the tumour state that corresponds to a high-
density (closest-packed, solid-like) physical phase of the population; which phase is the
case in a spatial domain depends on the spatio-temporal distribution of the critical,
unstable state;

• oncogenic cells can infinitely proliferate in vitro even without a growth-supporting
serum, not to mention the nutrient substances necessary for normal cells and the ex-
tracellular matrix (ECM) (see Encyclopedia Britannica Online: “Endocrine system:
Transforming growth factors”);

• as is well known in biomedicine (e.g., [9, 10]), the above proliferation is explained by
the autocrine mechanism when, for instance, the transforming growth factor α (TGF-
α) molecules bind their corresponding receptors, epidermal growth factor receptors
(EGFRs);

None of the above facts can be neglected in the development of meaningful models. They
underlie the present model described in the Section 4. The next section discusses the distin-
guishing features of living systems.

3 Distinguishing features of living systems

The main distinguishing features of the dynamical behaviour of a living system are well
known in biology since long ago [2, Chapter 2], [11] (see also [12] for a recent discussion).
They are formulated in terms of ordinary differential equations (in Euclidean or function
Banach spaces) for the first time in [13, Appendix]. The present section summarizes the latter
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consideration and indicates the corresponding reaction-diffusion equation (RDE) applicable
to oncogenic hyperplasia.

The aforementioned features are the following.

(i) A living system includes at least one living cell.

(ii) A living system is an open system, i.e. can exchange energy and matter (e.g., cells,
molecules, atoms) with the surrounding. Since the system is open, it includes at least
one, generally time-varying exogenous (i.e. environmentally driven) signal.

(iii) A living system develops along the trajectory (in the space of the system states) that
is completely determined by the internal properties of the system and its environment,
i.e. the related exogenous signals.

(iv) The trajectory called creode (the necessary route or path) [2, p. 32] corresponds to the
“most favored” exogenous signals [2, p. 19]. The latter are also known as the formative
drives (according to Aristotle’s theory of epigenesis).

(v) The actual trajectory, i.e. the one corresponding to the actual rather than “most
favored” exogenous signals, need not be the creode, but in the course of time tends to
the latter, no matter what the signals are (in a certain, system-relevant range). This
“stability” with respect to the exogenous signals is known as homeorhesis [2, p. 32].
(Homeorhesis is the time-dependent generalization of homeostasis. The latter term was
coined by W. B. Cannon in 1926 who discussed homeostasis in detail later [14].

One usually associates dynamics of any living system with the purposeful behaviour, how-
ever, without suggesting the corresponding “mechanism” or specifying the terms. Resolving
the latter problem is substantially contributed by Waddington’s theory of homeorhesis. In-
deed, it follows from feature (v) that the homeorhetic “mechanism” indicates the creode
trajectory (which is independent on the actual exogenous signal) as the “purpose” of a living
system. This purpose is not invariable: its evolution is described with the creode dynamics.

Remark 3.1 Exogenous signals are parameters of the environment of a living system but
are not parts of the system. They vary in time smoothly and are independent of the moments
tB and tD (tB < tD) of the birth and death of the system.

We denote an exogenous signal with s(t) and regard it as a vector in the k-dimensional
Euclidean space, i.e. s(t, x) ∈ R

3 where x = (x1, x2, x3)
T ∈ R

k and k ≥ 1. In view of
Remark 3.1, s(·, x) ∈ Bk where Bk is the set of the functions which have values in R

k, and
are defined, sufficiently smooth, and uniformly bounded in the entire time axis R. We also
denote the “most favored” exogenous signal (or formative drive) mentioned in feature (iv)
with sc(t, x). It need not coincide with actual exogenous signal s(t, x) and hence is, generally
speaking, hypothetical. As explained in [13, the text below (A.11)], it is “designed” by the
living system itself and is related to what is in biology known as “the wisdom of the body”
(cf., [14]).

Waddington (see [2, p. 22]) suggested to regard the state-space of a living system as
Euclidean space, say, R

n (n ≥ 1) and to describe the system with an ODE of a fairly general
form in R

n. The coordinates in the state space can include, for instance, concentrations (or
volumetric number densities) of cells or molecules [2, Chapter 2 and Appendix].

Let m be the so-called scaled concentration of the cells in a population (e.g., [7, 8, 6], see
also (2) below). Note that m > 0 because of feature (i). Let also mc be the creode value
of m. The simplest space-time model for morphogeny is an RDE (e.g., see [6, Section 10]
for a recent discussion). Assume that concentration m is described with an RDE where the
diffusion coefficient D of a cell is space-time-independent. Then it follows from the results of
[13, Appendix] that the RDE can be of the following form

∂[m − mc(t, x)]

∂t
= D∇T∇[m − mc(t, x)]

+ Φ(mc(t, x), s(t, x), m)[m − mc(t, x)] , x ∈ R
3 , t > 0 , (1)
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where column ∇ is the Hamilton differential expression in the spatial coordinates x1, x2, and
x3, i.e. ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3)

T, Φ is certain sufficiently smooth function of respective
variables, and mc is uniformly bounded for all t ∈ R. Equation (1) can be regarded as the
equation not only for the scaled cell concentration m but also for the cell concentration n
(see (2) below). The corresponding NRDE for n (e.g. [7, Appendix B]) is a description of
homeorhesis in the particular case when the sensitivity of n with respect to the exogenous
signals has already decayed to zero (cf., [13, (A.6) and Theorem A.1]), and therefore the
term which represents the above sensitivity is not accounted explicitly. However, its resulting
influence upon m is represented with the initial condition (see (10) below).

Note that the creode value mc(t, x) is uniformly bounded for all t [13, Appendix]. Further
details on the differential-equation solutions uniformly bounded for all t can be found in [15].
In theory of Markov stochastic processes, invariant (generally, nonstationary) processes (e.g.,
[16]) are analogues of the above solutions of determinate differential equations.

The advantage of description (1) is that it does not presume to model creode concentration
mc: the latter can be obtained from the corresponding experimental data (e.g., see [17] for
examples of these data). Function Φ is derived independently of the creode modelling in [6]
within the PhasTraM approach. The PhasTraM form of (1) is discussed in Section 4.

4 Model description

The PhasTraM model of [6] (see also [7, 8]) allows for an insight into the cell proliferation. It
describes the space-time evolution of the cell concentration n and the cell-population tran-
sitions between the two phases noted in Section 2. These phases correspond to the creode
concentration nc and the hyperplastic-tumour concentration nT. Between these asymptoti-
cally stable values there must be a concentration value which is unstable and, thus, critical.
It is denoted with n. The PhasTraM model extends the well-known theory of the first- and
second-order non-equilibrium phase transitions due to chemical reactions [18].

We denote with subscript “×” the values of respective variables corresponding to the case
when RT is not applied, i.e. r ≡ 0. In the present work the term “parameter” is only applied
to the characteristics which are independent of concentrations of cells or molecules.

The PhasTraM model [6] applies the so-called scaled concentration (see [6, Section 2])

m = n/(1 − φ − Υn) , (2)

where Υ is the effective volume of a cell and φ is the volume fraction occupied by bodies of
ECM which can be regarded as immobile. Note that φ does not include the fibres that may
be located within the effective volume. Parameter Υ is defined as Υ = υ/ζ where υ is the
actual volume of the cell and ζ is the ratio of the fraction of the volume occupied by the
bodies of the cells to the fraction of the volume unavailable to the cell motion, ζ ∈ (0, 1] (for
hard spheres ζ ≈ 0.75). It follows from (2) that

n = [Υm/(1 + Υm)]nT , 0 ≤ n < nT , (3)

where
nT = (1 − φ)/Υ . (4)

The equation describing the space-time evolution of m is the NRDE of work [6] extended
with the RT-term r, namely

∂(m − mc)

∂t
= D∇T∇(m − mc)

+

(

1

η×

m − m+

c× m + m+

− r

)

(m − mc), x ∈ R
3, t > 0, (5)

where m+ is explained below (see (21)), D is the diffusion coefficient of a cell, the last term
on the right-side is the biochemical-reaction (BCR) term, η× is the lifetime of a cell in the
ideal-homeorhesis state m+ = ∞ ,

η× = ξ×/ ln 2 , (6)
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mc is the creode value of m (see Section 3), m+ is the critical value of m, r is the rate of cell
death caused by RT,

r = u + κ nI, (7)

and c× is determined as follows

c× = (ξ× + θ×)/(η× ln 2) = (3 − g×)/(1 + g×) . (8)

In the above formulas, ξ× is the total duration of the S and M cell-cycle stages, θ× is the
total duration of the G1 and G2 cell-cycle,

θ× = 2 ξ×(1 − g×)/(1 + g×) , (9)

g× is the genotoxicity of a cell, u is a rate of decrease of m due to the external RT, κ is a
coefficient related to the internal RT and nI is a concentration of the radioactive substance
used in the internal RT.

For the reasons noted in the text below (1), we consider the initial condition for (5),
namely

lim
t↓0

m = m0(x), x ∈ R
3, (10)

where initial scaled concentration m0 is coupled with initial concentration n0 by means of
(3). Values n0(x) are obtained from the related experiments.

As it is shown in Appendix A.1, equation (5) can be presented in the more concise form,
namely

∂(m − mc)

∂t
= D∇T∇(m − mc)

+
1

η

m − m

c m + m
(m − mc), x ∈ R

3, t > 0, (11)

where

m = m+(1 + rη×)/(1 − rη×c×) , (12)

η = η×/(1 + rη×) , (13)

c = c× (1 + rη×)/(1 − rη×c×) . (14)

Since the form of (11) is the same as that of the NRDE studied in [7, 8, 6], the analytical
results of these works are applicable. They include the following relations:

c = (θ + ξ)/(η ln 2) , c ∈ [1, 3) , (15)

g = (3 − c)/(1 + c) , g ∈ (0, 1] , (16)

0 ≤ θ/ ξ < 2 , (17)

m =
c(1 + c)

3 − c
mc . (18)

Appendix A.2 shows how the durations of the cell-cycle stages depend on applied radiation

ξ = ξ×/(1 − rη×c×) , (19)

θ = θ×/(1 − rη×c×) . (20)

Another necessary relation

m+ =
c×(1 + c×)

3 − c×(1 + 4rη×)
mc , (21)

is derived in Appendix A.3. Expression (see Appendix A.4)

ξ/(η ln 2) = c/c× (22)

generalizes (6) to the case when r need not be identically equal to zero. Inequalities (17)
agrees with the corresponding experimental data (e.g., [19, p. 926]). Inequality

m < m (23)

is interpreted as the threshold that prevents the cells from entering the G0 stage of the cell
cycle, thereby transferring them into the nonquiescent ones.
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Remark 4.1 The present model presumes that cell genotoxicity g× (see (9))

g× = (2 ξ× − θ×)/(2 ξ× + θ×) ,

depends on space and time and, in the course of time, can rapidly change from low to high
values (and back) thereby (see (8), (21), and (12)) providing the switching m between high
and low values. When inequality (23) holds, oncogeny begins. It lasts as long as the inequality
is valid. When it is no longer valid, a resulting hyperplastic tumour disintegrates.

The above results enable one to derive expression (see Appendix A.5)

g = (1 + rη×)g× − 3rη× (24)

and inequalities (see derivation in Appendix A.6)

3rη×/(1 + rη×) < g× ≤ (1 + 3rη×)/(1 + rη×) . (25)

The first inequality in (25) is equivalent to

r = u + κ nI <
1

η×

g×
3 − g×

. (26)

Remark 4.2 Relation (26) is a specific quantitative criterion to design and plan RTs. It can
serve as a guidance to optimize the settings for the intensity-modulated RT (IMRT) technique
(e.g., [20]) or to determine the space-time dependence of nI used by an internal RT (see for
more details Section 5).

Since the x-domain in (5) is the entire space R
3, the initial-value problem (11), (10) is

the Cauchy one. An analytical-numerical time-slices (TS) method to solve this problem is
available (see [6, Appendix C] or [21, 22]). The key advantages of the TS method are that it
is applicable to nonlinear RDEs, equally efficient in simulation of both asymptotically stable
solutions (i.e. when m → mc) and unstable solutions (i.e. when m → ∞), and is sufficiently
fast to provide efficient multiple analysis.

Remark 4.3 In the present model, creode concentration mc is assumed to be independent
of the RT-related rate r ≥ 0 (see (7)). This in particular results in inequality (26). In other
words, the sufficiently low values of r prescribed by (26) corresponds to the r-independence
of mc. Thus, the higher values of r can be the case only if the creode is affected by RT.

However, in view of the meaning of the creode (see Section 3), the creode alteration by
RT may cause iatrogenic diseases thereby changing the status of the RT treatment from a
therapy to something which is probably opposite to therapy. The iatrogenic effect of RT as
well as the related biomedical, ethical, and legal issues are beyond the scope of this work.

Other terms related to the above model (see (11)) are introduced in Section 6.

5 Discussion of the model in Section 4

The model of the previous section applies the initial value of the cell scaled concentration
m0 resulting from input parameter n0 by means of (3). Since the model describes a spatially
growing tumour, n0 must be a function of the space point. The present measurements in
vivo do not resolve the cell concentration in space. Nevertheless, it is possible to make
approximate characterization of the shape of n0 on the basis of several point biopsies. In the
clinical practise, a widely used procedure for obtaining cytological parameters at a location of
interest to physicians is the fine needle aspiration biopsy (FNAB). It is, in contrast to surgical
biopsy, safer and less traumatic for the patient. The FNAB procedure is frequently performed
in breast, thyroid, lung, upper abdomen, kidney and bone marrow studies. In order to ensure
the appropriate accuracy, the stereotactic needle biopsy is performed, a biopsy in which the
spot is located three-dimensionally by means of ultrasound, MR or CT imaging.
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The model in Section 4 includes relations for certain characteristics of the cells, such as
(13), (19) and (20), which depend on r. The r-dependences in (19) and (20) qualitatively
agree with what is known from the phenomenological description of the RT influence on the
cell cycle (e.g., [23]). The advantage of mathematical modelling is the possibility to predict
the cell-related effects not only after application of RT but also at a time when RT is applied.

Inequality (26) gives a consistent and specific recipe for designing the shape of r. The r
should, however, be close to the right-hand side of (26) as much as possible. This quantitative
description can be used as an additional factor for the planning RT, also in such an advanced
method as like IMRT.

6 The TGF-α/EGFR interpretation of the present model

The BCR term in NRDE (11) is a rational function of m. This form can be explained in
terms of the interaction of the TGF-α molecules with EGFRs in the following way.

One considers equation system more general then NRDE (11), namely

∂(m − mc)

∂t
= D∇T∇(m − mc) + (p + qν)(m − mc), (27)

∂ν

∂t
= Dν∇

T∇ν −
1

τ
ν + am(νT − ν), (28)

where p and q are the coefficients to be determined, ν is the TGF-α molecule concentration,
Dν is diffusion coefficient of a TGF-α molecule, τ is the lifetime of a TGF-α molecule, a is
the autocrinity of a cell and νT is the value of ν corresponding to nT. The gain term amνT

on the right-hand side of (28) describes the production of TGF-α molecules by the cells, and
the loss term −amν describes the decrease in TGF-α molecules due to their binding by the
cells.

Remark 6.1 Parameter τ can include various effects. For instance, the effect of the TGF-
α-molecule-deactivating drug can be accounted in the following expression

τ−1 = τ−1
0 + ωnII , (29)

where nII is the concentration of the drug, τ0 is the value of τ at nII = 0, and ω ≥ 0 is
the corresponding coefficient. In general, the specific expressions for τ depend on specific
problems.

Involving the quasi-stationary approximation in (28), i.e. neglecting all the derivatives in
(28), one obtains expression (see the derivation in Appendix B.1)

ν =
(g/mc)m

1 + (g/mc)m
νT , (30)

where g is described with (24).
The coefficients p and q in (27) should be selected in such a way that, after substituting

(30) into (27), one arrives with (11). Incorporation p and q into (27) leads to more detailed
expression (see derivation of (B.4) and (B.6) in Appendix B.1 for p and q, respectively)

∂(m − mc)

∂t
= D∇T∇(m − mc) +

1

η

(

− 1 +
ν

ν

)

(m − mc) , (31)

where ν is the value of ν that corresponds to m. As it is shown in the part of the text in
Appendix B.1 on the derivation of the BRC coefficient in (31), quantity ν has the following
form

ν = νT c/(1 + c) . (32)

It is possible to derive another expression for g (see Appendix B.1), namely

g = τ a mc . (33)
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This relation explains genotoxicity g by means of autocrinity a and the TGF-α-molecule
lifetime τ , both are the kinetic parameters.

The RT-free version of (33) is
g× = τa×mc . (34)

Subsequently, the coupling of a and a× is similar to that of g and g× (see (24)).

Remark 6.2 Equations (33) and (24) (see also (9)) present an explicit analytical connection
between the cell-cycle parameters θ× and ξ×, on the one hand, and kinetic parameters a and
τ , on the other hand. This coupling, expressed explicitly, points out the cell-phenomena
connection that has not been revealed before.

A furter analysis of the model leads to an expression for νT which depends on parameter
(38) and νc (see Appendix B.2 for the derivation),

νT =
1 + gc

gc

νc . (35)

As it is well known from experiments (e.g. [24, Figure 8(B)]), the dependence of n (see
(3)) on ν (see (30)) is linear. Such dependence straightforwardly results in relation

Υ = g/mc (36)

if one assumes that the linearity is the case even if RT is applied. Note that the cell effective
volume Υ is never less than the cell volume υ and is equal to the latter at the creode state,
i.e.

Υ ≥ Υ
∣

∣

g=gc

= υ . (37)

This and (36) in particular show that

gc = υmc . (38)

On the basis of (36), one can obtain the following equations (see Appendixes B.3 and B.4 for
the derivation of (39) and (40), (41), respectively)

nT =
1 + υmc

υmc

nc , (39)

mc =
nc

υ(nT − nc)
, (40)

φ = 1 −
nT

mc

g . (41)

Value nT is derived in Appendix B.4.
The present model is discussed in the next section.

7 Discussion of the model in Section 6

In the present model genotoxicity g is a function of τ and a (see (33)). Nevertheless, when
those parameters are unavailable, g can be calculated by means of parameters of the cell-cycle
duration (see (24) and (9)). Quantity τ in (33) can easily be obtained from the measurements
of the lifetime of TGF-α molecules in the surrounding where the cells are not present. An
obtaining autocrinity a in (33) seams to be more complicated. A model for a is to be devel-
oped. This model should describe the interaction of TGF-α molecules and their receptors at
the cell surface, as well as the production of the molecules by the cells. The molecule-receptor
binding may be rather complex.

Since φ is the volume fraction occupied by the ECM part located beyond the effective
volume of a cell, relation (41) describes the ECM degradation at growing genotoxicity g, the
phenomenon is closely associated with oncogenic fibroplasia. The latter may be performed
also within the effective cell volume Υ. This means that the present model includes a con-
cise fibroplasia description complementing the autocrine origin of oncogeny. The mentioned
coupling is in line with, and further develops, the well-known modelling vision reported in
[25].
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Figure 1: Hyperplastic tumour formation case: (a) time-space surface of the cell concentra-
tion n (mm−3); (b) time-space surface of the genotoxicity g.

8 Examples of numerical results

The time-slices (TS) method described previously in [6, Appendix C], [21, 22] was imple-
mented in a simulation software within the MATLAB environment. The current version of
the software enables a time-dependent simulation in one spatial dimension with incorporation
of the RT action. Note that the TS method has been derived for the general case of three
spatial dimensions.

This section describes four examples. The first and second examples do not include the
action of RT (r is assumed to be 0). They are shown in the time-space domain (t, x) ∈

[0, 100] × [−5, 5] days × mm (see Figures 1 and 2). The other two examples which include
the RT action are shown in the time-space domain (t, x) ∈ [0, 90] × [−6, 6] days × mm (see
Figures 3 and 4). The cell genotoxicity g×(t, x) is used as an input parameter. (The after-
growth drop in it may represent the action of, for instance, the immune system.) Other input
parameters for all of the examples are quantified as follows: φ = 0.2, υ = 5 × 10−7 mm3,
ξ× = 1 day, D = 0.01 mm2/day, and nc(t, x) = 104 mm−3. Initial concentration n0(x) (see
the text below (10) and Section 5) is assumed to be the sum of nc and the “bell”-shaped
deviation from nc (see the data in Figure 1-4(a) at t = 0). The shape of the g×(t, x) surface
for the second example is shown in Figure 2(b). In the other examples, the g×(t, x) surface
has the shape presented by Figure 1(b). For first two examples, r = 0 and g× = g. The
shapes of g for the next two examples, where r 6= 0, are presented in Figures 3(b) and 4(b),
respectively.

Figure 1(a) shows the changes of the cell concentration n(t, x) corresponding to g(t, x) in
Figure 1(b). As one can see, n decreases down to the creode value nc(t, x) during a short
time and then, because of the increase in g(t, x), begins to grow, and, in the time limit, tends
to the tumour value nT thereby forming a tumour. The tumour value is determined with the
equality in Appendix B.4, specifically, nT = 1.6 × 106 mm−3 (lg nT ≈ 6.2). The tumour is
formed since the cell genotoxicity g(t, x) keeps a sufficiently high value represented with the
top of the “ridge” in Figure 1(b) (cf., Remark 4.1).

In the second example (see Figure 2), the cell genotoxicity g(t, x) keeps a high value
during a short time interval only (see Figure 2(b)). As a result (see Figure 2(a)), the cell
concentration n does not continue to tend to the value nT (cf., Figure 1(a)) but, due to the
decrease in g(t, x) in the course of time, begins to drop down to the creode value nc, as it
should be (see Remark 4.1).

The third and fourth examples examine the influence of RT on the growth dynamics of the
cell population. As it is discussed in Section 5, the closer r is to the value of the right-hand
side of (26) the more effective RT is. To study a mere manifestation of the RT effect, it is
sufficient to use some constant parameter γ, which characterizes the effectiveness of RT (cf.
(26)), namely

r = γ
1

η×

g×
3 − g×

, γ ∈ [0, 1) .
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Figure 2: Tumour disintegration case: (a) time-space surface of the cell concentration n
(mm−3); (b) time-space surface of the genotoxicity g.

In the present examples, we used γ = 0.93 .
Figure 3(a) shows the changes in cell concentration n(t, x) corresponding to g(t, x) (see

Figure 3(b)). The drop of the value of g(t, x) is due to the action of RT. The decrease in
g(t, x) results in the decrease in the cell concentration (see Figure 3(a)). The later return
of g(t, x) to its maximum value leads to a continuous growth of n(t, x) resulting in the limit
tendency to nT. Figure 3(c) presents the cross-sections through the nc, n, n, and nT surfaces.
The cross-section abscissa corresponds to the maximum-in-x values of n along the t-axis. The
change in the profile of n (see dot-dashed line) is due to the action of RT. The “switching”
character of n is easily seen in this figure.

The last example (see Figure 4) presents a successful application of RT, i.e. the one
leading to disintegration of the tumour. Figure 4(a) shows cell concentration n(t, x) and
Figure 4(b) shows the corresponding g(t, x) function. The longer action of RT, namely for
3 days greater then in previous example, is presented with the longer “gap” in the shape of
g(t, x) and is sufficient to suppress the tumour growth. Figure 4(c) with the cross-sections
through the nc, n, n, and nT surfaces illustrates the suppression because n does not intersect
n.

The aforementioned examples explicitly demonstrate the main capabilities of the model
developed in Sections 4 and 6. The next section summarizes and concludes the work.

9 Concluding remarks and directions for future research

Summing up the present work, we note the following two groups of the results which corre-
spond to the purpose formulated in Section 1.

The first group of the results is related to the generalization of the oncogenic-hyperplasia
model [7, 8, 6, 21] for the effects of both external and internal RTs. The main equations in
the resulting model are NRDE (11) and initial condition (10). Other related quantities are
described in Sections 4 and 6. The RT-term r (see (7)) includes the external- and internal-
RT terms. Moreover, the explicit analytical expressions are derived for the influence of the
RT-term upon the key characteristics of the cell population such as:

• the ideal-homeorhesis lifetime of a cell (see (13));

• the total duration of the S and M stages of the cell cycle (see (19));

• the total duration of the G1 and G2 stages of the cell cycle (see (20));

• the cell genotoxicity (see (24));

• the critical cell concentration (see (21) and Remark 4.1);

• the cell autocrinity (see (33));
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Figure 3: Unsuccessful RT treatment case: (a) time-space surface of the cell concentration
n (mm−3); (b) time-space surface of the genotoxicity g; (c) cross-section of the nc (dotted
line), n (solid line), n (dot-dashed line), and nT (dashed line) surfaces.
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• the oncogeny-caused ECM degradation (see (41)).

Moreover, the explicit analytical results include:

• the specific quantitative recipe (26) to design or plan external or internal RTs (see
Remark 4.2 for the details; see also Remark 4.3);

• the straightforward connection (by means of the cell genotoxicity g) between the cell-
cycle parameters (see (9)), on the one hand, and the cell autocrinity (see (33)), on the
other hand (see Remark 6.2 for further details).

The list of the input and output parameters of the above, RT-aware generalization are in
Tables 1 and 2, respectively. Each of them has a distinct biomedical meaning.

Table 1: List of Input Parameters
Symbol Description
υ volume of a cell
n0(x) initial concentration of cells
nc creode concentration of cells
D diffusion coefficient of a cell
ξ× sum of the duration of the S and M cell-cycle stages at r ≡ 0
φc creode value of volume fraction occupied by the ECM
u rate of the decrease in concentration m due to the external radiother-

apy
κ coefficient related to the internal radiotherapy
nI concentration of a radioactive substance used in the internal radio-

therapy
a× autocrinity of a cell at r ≡ 0 ∗

τ lifetime of a TGF-α molecule when there are no cells
νc concentration of TGF-α molecules which corresponds to nc

ω coefficient related to TGF-α blocking drug
nII concentration of the drug molecules which bind to the TGF-α

molecules preventing the latter from the binding to the cell EGFRs
∗ because of (34) one can apply g× as an input parameter instead of a×; if so, g× can
be evaluated from (9) on the basis of the data for ξ× and θ×

The second group of the results of the work is associated with the fact that the developed
model includes the action of the drug molecules which deactivate the TGF-α molecules by
binding to them. This is presented with the drug-molecule concentration nII and coefficient
ω in (29). The latter, together with (24) and (9), explicitly shows how the above deactivation
affects the genotoxicity of a cell and the cell-cycle parameters. The TGF-α-deactivating drug
can be used in conjunction with RT, thereby improving the effect of the latter.

The developed model and related results draw attention to various directions for future
research. We mention a few of them.

• Specification of the RT term r (see (7)) by means of the input physical parameters
common to the end users.

• Coupling of the modelling/simulation with the corresponding experimentally available
data for the cell-cycle parameters employed in (9).

• Incorporation of the autocrinity model as well as the aforementioned RT-term r (see
(7)) and the TGF-α-deactivating-drug terms into the present software. This presumes
application of the related numerical-simulation results to the RT-design/planning recipe
(26). In so doing, g can come from either (9) or (33), whereas other parameters are
extracted from experiments.

• Validation of the model and calibration of its parameters on the basis of the available
in vivo measurements.
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Table 2: List of the Main Output Parameters
Symbol Description
n concentration of cells
m scaled concentration of cells
ν concentration of TGF-α molecules
mc homeorhetic scaled concentration of cells
nT tumour value of n
n critical value of n
m critical value of m
g genotoxicity of a cell
c auxiliary parameter which is in a one-to-one correspondence to g
ξ sum of the duration of the S and M cell-cycle stages
θ sum of the duration of the G1 and G2 cell-cycle stages
η homeorhesis lifetime of a cell
g× value of g at r ≡ 0
c× value of c at r ≡ 0
θ× value of θ at r ≡ 0 (θ× is output parameter only if both a× and τ are

input parameters (see the footnote in Table 1))
η× value of η at r ≡ 0
νT value of ν which corresponds to nT

Υ effective volume of cells
φ volume fraction occupied by the extracellular matrix

• Incorporation of a model of oncogenic fibroplasia (e.g., [25]) that will provide a com-
bined, hyperplastic-fibroplastic description. (The latter will noticeably generalize the
present, quite concise representation (41) for the ECM degradation.)

• Development of the software version that will provide the simulation for two-dimensional
spatial domains.

The proposed model, minimal but fairly capable, can be regarded as a specific theoretical,
mathematical and computer-simulation tool in tackling complexity in oncology by means of
a cohesive multidisciplinary efforts. The main applications of the model are:

• planning external or internal RTs with the subsequent, or even simultaneous, use of
the TGF-α-deactivating drugs;

• preclinical testing new antitumour drugs that would substantially reduce the risk of
extremely costly failures at the late phases of clinical trails;

• quantitative research of oncogenic hyperplasia in cancer and other proliferative diseases.

Future applications of the present model will allow to specify many still unclear features
of oncogenic hyperplasia and help to discover ways to prevent the disease of at least five-
thousand-year history.
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Appendix A
Derivations of equations from Section 4

A.1 Derivation of the reaction coefficient in (11)

In order to obtain (11) from (5), one follows the derivation below

1

η×

m − m+

c× m + m+

− r =
m − m+ − r(η×c× m + η×m+)

η×c× m + η×m+

=
m(1 − rη×c×) − m+(1 + rη×)

η×c× m + η×m+

=
(1 − rη×c×)(m −

1+rη×
1−rη×c×

m+)

η×c× m + η×m+

=
m −

1+rη×
1−rη×c×

m+

η×
1−rη×c×

c× m + η×
1−rη×c×

m+

=
m −

1+rη×
1−rη×c×

m+

η×
1+rη×

1+rη×
1−rη×c×

c× m + η×
1+rη×

1+rη×
1−rη×c×

m+

=
1

η

m − m

c m + m
.

The latter equality shows that m, η, and c are represented by (12), (13) and (14), respectively.

A.2 Derivation of (19), and (20)

Substituting (8) into (14), one achieves

c =
1 + rη×

1 − rη×c×
c×

=
1 + rη×

1 − rη×c×

ξ× + θ×
η× ln 2

=

(

ξ×
1 − rη×c×

+
θ×

1 − rη×c×

)

1 + rη×
η× ln 2

,

that, because of (15), results in (19) and (20).

A.3 Derivation of (21)

Derivation of m+ begins from (12) where value m is expressed by (18). Thus,

m+ =
1 − rη×c×
1 + rη×

c(1 + c)

3 − c
mc . (A.1)

Application of (14) to (A.1) leads to

m+ = c×
1 + c×( 1+rη×

1−rη×c×
)

3 − c×( 1+rη×
1−rη×c×

)
mc

= c×
1 − rη×c× + c×(1 + rη×)

3(1 − rη×c×) − c×(1 + rη×)
mc

=
c×(1 + c×)

3 − c×(1 + 4rη×)
mc .

The latter equality presents (21).
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A.4 Derivation of (22)

Relation (14) is equivalent to

c

c×
=

1 + rη×
1 − rη×c×

,

where the numerator and the denominator can be substituted by (13) and (19), respectively.
This result in

c

c×
=

η×
η

ξ

ξ×
,

that, in view of (6), leads to (22).

A.5 Derivation of (24)

Substituting (14) into (16), one obtains g as a function of c×, namely

g =
3 − c

1 + c

=
3(1 − rη×c×) − c×(1 + rη×)

1 − rη×c× + c×(1 + rη×)

=
3 − c×(1 + 4rη×)

1 + c×
. (A.2)

In view of (8), (A.2) is transformed into

g =
3(1 + g×) − (3 − g×)(1 + 4rη×)

1 + g× + 3 − g×

=
4g× − 12rη× + 4rη×g×

4
= g×(1 + rη×) − 3rη× .

The latter equality is (24).

A.6 Derivation of (25)

As it is noted in (16), 0 < g ≤ 1. Applying (24) to the latter relation, one obtains

0 < g×(1 + rη×) − 3rη× ≤ 1 ,

which, after simple manipulations, is transformed into the form (25).

Appendix B
Derivations of equations from Section 6

B.1 Derivation of (30)-(33)

Neglecting all of the derivatives of ν in (28) leads to

0 = −
1

τ
ν + am(νT − ν) ,

ν = τam(νT − ν) ,

ν =
τam

1 + τam
νT . (B.1)
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Substituting quasi-stationary approximation (B.1) into the coefficient in the BCR term in
(27), one obtains

p + qν = p + q
τ a m

1 + τ a m
νT

=
p + p τ a m + q τ a m νT

1 + τ a m

=
τ a m(p + q νT) + p

τ a m + 1

=
τ a mm(p + q νT) + p m

τ a mm + m
. (B.2)

Comparison of the coefficient form (B.2) with the BCR coefficient in (11) gives relations

c = τ a m , (B.3)

p = −1/η , (B.4)

c(p + q νT) = 1/η .

The latter is equivalent to

q =
1 + c

c η νT

. (B.5)

It follows from (B.1) at m = m and (B.3) that (32) holds. Substituting (32) into (B.5),
one gets the relation for q, namely

q =
1

η ν
. (B.6)

Results (B.4) and (B.6) provide the form (31) of RDE (27).
Application of (18) to (B.3) and accounting (16) result in (33), namely

c = τ a
c(1 + c)

3 − c
mc ,

1 = τ a
1

g
mc .

Relation (33) is used in (B.1) to obtain (30).

B.2 Derivation of (35)

It is possible to obtain relation for νc from (30) and (38), i.e.

νc =
(gc/mc)mc

1 + (gc/mc)mc

νT =
υ mc

1 + υ mc

νT , (B.7)

that directly implies relation (35).

B.3 Derivation of (39)

It follows from (3) and (36) that

n =
(g/mc)m

1 + (g/mc)m
nT . (B.8)

For n = nc the latter takes (see also (38)) the form

nc =
(υmc/mc)mc

1 + (υmc/mc)mc

nT =
υmc

1 + υmc

nT , (B.9)

that is equivalent to (39).
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B.4 Derivation of (40) and (41)

Relation (41) for φ is derived from (4) and (36).
The expression to determine nT in (41), i.e. nT = (1− φc)/υ , results from the version of

(4) for the creode and the equality in (37). Note that φc is one of the input parameters (see
Table 1). Value (40) is obtained from (39) and (37).
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