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Abstract

In this paper we study proximity structures for geometric graphs. The study of these
structures was recently motivated by topology control for wireless networks [6, 7]. We
obtain the following results:

(i) We prove that if G is a D1-graph on n vertices, then it has O(n3/2) edges.
(ii) We show that for any n there exist D1-graphs with n vertices and Ω(n4/3) edges.
(iii) We prove that if G is a D2-graph on n vertices, then it has O(n) edges. This

bound is worst-case asymptotically tight.
As an application of the first result, we show that:
(iv) The maximum size of a family of pairwise non-overlapping lenses in an arrange-

ment of n unit circles in the plane is O(n3/2).
The first two results improve the best previously known upper and lower bounds of

O(n5/3) and Ω(n) respectively (see [6]). The third result improves the best previously
known upper bound of O(n log n) ([6]). Finally, our last result improves the best
previously known upper bound (for the more general case of not necessarily unit circles)
of O(n3/2κ(n)) (see [1]), where κ(n) = (log n)O(α2(n)) and where α(n) is the extremely
slowly growing inverse Ackermann’s function.

1 Introduction

In this paper we study certain geometric-graphs which we refer to as Dk-graphs. Before
defining this notion, recall that the distance between two vertices in a graph G = (V,E),
is the minimum length of a path (in the graph theoretical sense) joining these two vertices.
Thus for example, two adjacent vertices are at distance 1 from each other.

Definition 1.1 Let k ≥ 1 be some fixed integer. A geometric graph is called Dk-graph, if
for every two adjacent vertices u and v in G there is a disc containing both u and v but no
vertex (in G) of distance less than or equal to k neither from u nor from v (we refer to such
a disc as an Nk

u,v-free disc).
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The study of such structures is motivated by the design of efficient dynamic routing
protocols for ad hoc networks (or sensor network; see, e.g., [7, 6]).

Note that for any k > l if G is a Dk-graph, then G is also a Dl-graph. Note also that
if G is a Delaunay graph of some finite planar point set, then G is a Dk-graph for any k.
In some sense, the notion of a Dk-graph is a generalization of that of a Delaunay graph.
For example, a Delaunay graph of a finite set P of points consists of all pairs (the edges) of
points that could be separated from the rest of the points by a disc. A D1-graph has the
property that any edge (pq) can be separated from the neighbors of p and of q with a disc.

In this paper we study the edge complexity of such graphs. We also show an interesting
relation between the maximum edge complexity of a D1-graph and the famous (so called)
repeated distances problem of Erdős, see, e.g., [9]. We also improve the best previously known
upper bound on the maximum size of a family of non-overlapping lenses in an arrangement of
unit-circles. This latter problem has many applications in combinatorial and computational
geometry (see, e.g., [1, 12]).

More specifically:

1. We prove that if G is a D1-graph on n vertices, then it has O(n3/2) edges.

2. We show that for any n there exist D1-graphs with n vertices and Ω(n4/3) edges.

3. We prove that if G is a D2-graph on n vertices, then it has at most 32n edges. This
bound is worst-case asymptotically tight.

4. We prove that the maximum size of a family of pairwise non-overlapping lenses in an
arrangement of n unit circles in the plane is O(n3/2).

The first two results improve the best previously known upper and lower bounds of
O(n5/3) and Ω(n) respectively (see [6]). The third result improves the best previously known
upper bound of O(n logn) ([6]). Finally, our last result improves the best previously known
upper bound (for the more general case of not necessarily unit circles) of O(n3/2κ(n)) (see
[1]), where κ(n) = (log n)O(α2(n)) and where α(n) is the extremely slowly growing inverse
Ackermann’s function.

Of Particular interest is the fact (which we show here) that any unit-distance graph (i.e.,
a graph defined on n points in the plane such that there is an edge between two points
p, q if and only if d(p, q) = 1, where d(.) denotes the Euclidean distance function) is also a
D1-graph. Obtaining asymptotic bounds on the number of edges that a unit distance graph
can have, a problem that was posed by Erdős more than 50 years ago (see, e.g., [9]), is a
long-standing and one of the most famous open problems in discrete geometry.

2 Dk-graphs

Theorem 2.1 Let G = (V,E) with |V | = n be a D1-graph. Then |E| ≤ 16
√

2√
2−1

n3/2.

Proof: Let ∆ be a set of 8 directions, represented as points on the unit circle S1, with
the property that for any direction u there exists a direction u0 ∈ ∆ such that the angle
between u and u0 is smaller than α = π/8. Let Gu denote the subgraph of G consisting of
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all edges (p, q) such that the direction ~pq forms an angle of at most α with u. {Gu}u∈∆ is
a decomposition of G into 8 (not necessarily edge-disjoint) graphs. We aim to show that

the number of edges in Gu is at most 2
√

2√
2−1

n3/2 for each u ∈ ∆. Assume, without loss of

generality that u is the vector (0, 1). We can further assume that all edges of Gu intersect
a horizontal line l. Indeed, by a simple recursion it is easily seen that an upper bound of
O(n3/2) on the number of edges under the assumption that they all intersect a horizontal
line, implies the same asymptotic upper bound in the general case. We formulate it more
precisely in the following lemma:

Lemma 2.2 Let G = (V,E) be a geometric graph with |V | = n. Assume that G has the
following property: Any subgraph G′ = (V,E ′), for which there exists a line that intersects
all edges of E ′, has at most cn1+ǫ edges, where ǫ > 0 and c are some fixed given constants.
Then |E| ≤ ( 1

1− 1

2ǫ

) · cn1+ǫ.

Proof: Easy and omitted

Lemma 2.3 Let Gu be as above and let G′
u be a subgraph of Gu all of whose edges are

intersected by a line. Then G′
u has at most 2n3/2 edges.

Proof: We partition the edges of G′
u into two sets, according to the following rule: for

each edge connecting two points (p, q) such that p is below q (i.e., the y-coordinate of p
is less than the y-coordinate of q), we pick an arbitrary N1

p,q-free disc dpq (recall that by
assumption, there exists such a disc). Let c denote its center. We say that the edge (p, q) is
a right edge (resp., a left edge) if p, q, c is a right turn (resp., a left turn). Let Gr (resp., Gl)
be the subgraph consisting of all right (resp., left) edges of G′

u. We claim that, Gr (and in a
symmetric manner also Gl) cannot contain a K2,2 as a subgraph (i.e., a complete bipartite
graph with two vertices on each side). Indeed, assume to the contrary that Gr contains
a K2,2 subgraph. Without loss of generality, we can assume that all the edges of G′

u are
intersected by the x-axis and that u is the vector (0, 1).

In [6] it was proved that G cannot contain a self-intersecting copy of K2,2
1. So the only

case that remains to consider is when Gr contains a non-self-intersecting copy of K2,2. See
Figure 1 for an illustration. It is easily seen that in such a case, the four vertices x, y, z, w of
this subgraph are not in convex position. Without loss of generality, assume that the point
x lies in the interior of the triangle spanned by the three others points y, z, w.

Let D denote the disc which has the midpoint of the segment zy as its center and the
length |zy| as its diameter. Consider an N1

z,y-free disc d (which exists by assumption) whose
center lies to the right of ~zy. It is easily seen that the point x must lie outside D (for
otherwise it would belong to the interior of d contradicting the assumption on d; see, c.f.,
Figure 2). This implies that the angle ∡zxy is less than π/2, which means that the angle
∡zyx is at least π− π/2−∡yzx ≥ π/2− 2α. Since the edge yw does not intersect the edge
zx, it must be that ∡zwy > ∡zyx ≥ π/2 − 2α and by our choice of α = π/8 implies that
zyw > π/4 = 2α, contradicting the assumption that every two edges have an angle of at

1Using this fact alone, and a result of [11], it follows that G has at most O(n8/5) edges. Note also that
G can indeed contain a non intersecting copy of K2,2.
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Figure 1: A non-self intersecting copy of K2,2 in Gr, all of whose edges are intersected by a
horizontal line, cannot exist.

most 2α between them in Gu. See Figure 3 for an illustration. Hence Gr does not contain a
K2,2 as a subgraph. By the Kövari-Sós-Turán Theorem in extremal graph theory (see e.g.,
[3]) the number of edges of Gr is at most 1

2
· (n3/2 + n). Thus, the number of edges in G′

u is
at most 2n3/2 edges. This completes the proof of the lemma.

Applying Lemma 2.2 to Gu with c = 2 and ǫ = 1/2 we conclude that Gu has at most
2
√

2√
2−1

n3/2 edges.

We conclude that the edges of G can be decomposed into 8 subgraphs (not necessarily

edge-disjoint), each containing at most 2
√

2√
2−1

n3/2 edges. Hence G contains at most 16
√

2√
2−1

n3/2

edges. This completes the proof of the theorem.
The question that naturally arises is what can we say about the maximum number of

edges of Dk-graphs for k > 1. In the next theorem we show that such graphs have a linear
number of edges already for k = 2.

Theorem 2.4 Let G be a D2-graph with n vertices. Then the number of edges of G is at
most 32n.

Lemma 2.5 Let G be a D2-graph. Then G does not contain a self-intersecting copy of P3

(i.e., a path of length three).

Proof: Assume to the contrary that x, y, u, v are vertices of G and that (xu), (uv), (vy)
are three edges of a P3, and that (vy) and (xu) cross each other.

In this case, x, y, u, v are four vertices of a convex quadrilateral. Without loss of generality
assume that their clockwise order is x, y, u, v. Then, assume with out loss of generality that
∡uvx+ ∡xyu ≥ π. It follows that any disc which contains the edge (xu) will contain either
v or y in its interior contradicting the assumption that G is a D2-graph.

Remark: Lemma 2.5, combined with a result of [10], implies that G has at most O(n logn)
edges. Using this fact alone is not enough to show that G has a linear number of edges, since
the bound given in [10] is worst-case asymptotically tight.
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Figure 2: The half-disc inside D to the right of zy is contained in the disc d (depicted
dashed).

Proof of Theorem 2.4: We start with a similar approach to that used in the proof of
Theorem 2.1. We partition the edges of G into 8 (not necessarily disjoint) classes so that
within each class, the orientations of any two edges differ by at most π/4.

LetG′ be the subgraph spanned by one of these classes. Assume, without loss of generality
that all edges in G′ make an angle of at most π/8 with the y-axis. It is enough to show that
the number of edges in G′ is at most 4n.

At each vertex v delete the rightmost edge and the leftmost edge that emanates upwards
from v as well as the rightmost and the leftmost edges that emanates downwards from v
(observe that the notion of ’to the right of an edge’ is well defined since we assume that all
edges form a small angle with the y-axis). Clearly, we deleted a total of at most 4n edges.
We claim that all edges of G′ are deleted. This will clearly conclude the proof of the theorem,
showing that G has at most 32n edges.

Assume to the contrary that an edge (uv) in G′ survives the deletion process. Without
loss of generality, assume that v lies above u. Let d be a N2

uv-free disc. Let c denote the
center of d. Assume that c lies to the right of uv (i.e., that uvc is a right-turn). The case
where c lies to the left of uv is treated symmetrically. Since (u, v) is not deleted, there must
be an edge (ux) which is to the right of (uv) and emanates upward from u, and similarly,
there is an edge (vy) which is to the right of (uv) and emanates downward from v.

Let D be the disc that has uv as its diameter. Similarly to the argument in the proof of
Theorem 2.1, both x and y must lie outside D (for otherwise one of them would lie in the
interior of d, contradicting the fact that d is an N2

uv-free disc). Let z be the intersection point
of the line l1 spanned by (ux) and the line l2 spanned by (vy). By Lemma 2.5, the edges
(ux) and (vy) cannot intersect. Thus, z must lie outside D. This implies that ∡uzv < π/2.
However, by assumption on G′, ∡uvz = ∡uvy < π/4 and ∡vuz = ∡vux < π/4. Hence, the
sum of the angles of the triangle ∆uvz is strictly less than π, a contradiction. This completes
the proof of the theorem. �
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Figure 3: x must lie outside D and so the angle ∡zxy is less than 90o.

3 A lower bound

In this section we construct D1-graphs on n vertices with Ω(n4/3) edges. Our construction is
based on a well known construction of a unit distance graph on a 3-dimensional sphere with
n vertices and Ω(n4/3) edges (see, e.g., [8]).

We start with an old and famous construction, due to Erdős (which was rediscovered
many years later by Edelsbrunner and Welzl [5]), of a configuration of n points and n lines
in the plane giving rise to cn4/3 incidences between the points and the lines (see, e.g., [9]).
We then place the unit sphere S2 such that it touches the plane at its south pole. Centrally
project the plane on the sphere, by taking the center of the sphere to be the center of
projection. Then the points on the plane project to points on the (southern hemi-) sphere
and the lines on the plane project to great half-circles on the sphere. After completing the
half circles to full circles, we obtain a collection of n great circles and n points on the sphere,
with cn4/3 incidences. For every great circle ψ on the sphere we introduce a point Pψ on the
southern hemisphere which is equidistant from all the points on ψ. We thus obtain a set of
n points on the sphere, which are the projection of the original n points in the plane, and
another n points on the sphere, which rise from the n great circles. This 2n point set has
the property that at least cn4/3 pairs of them are at distance

√
2 apart. Let u and v be two

such points on the sphere at distance
√

2 from each other. The unique circular cap Cuv on
the sphere which has u and v diametrically opposite on its boundary has the property that
every point (but u or v) on the smaller cap that it encloses on the sphere, is at distance
strictly less than

√
2 from u and from v.

Finally, to finish the construction, we project the sphere back to the plane using the
north pole as the center of projection. The 2n points on the sphere project to a set of 2n
points in the plane. We define a geometric graph on this set by drawing an edge (as a
straight line segment) between two points if their preimages on the sphere are at distance√

2. We thus obtain a geometric graph with 2n vertices and at least cn4/3 edges. We claim
that this is a D1-graph. Indeed, observe that for every u and v on the sphere at distance
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Figure 4: An illustration of Theorem 2.4

√
2 from each other, the circle Cuv projects to a circle having the images of u and v on its

boundary. Since both u and v are contained in the southern hemisphere, the smaller cap on
the sphere bounded by Cuv does not contain the north pole, and thus, by the definition of
the graph G, the disc bounded by the projection of Cuv is an N1

u,v-free disc. This completes
the construction.

4 Applications

In this section we present some applications of Theorem 2.1. We start with an application
regarding the complexity of arrangements of unit circles in the plane.

Let C be a family of unit circles in the plane. For every two intersecting circles C1, C2 ∈ C
we define the lens L(C1, C2) to be the union of the arcs of C1 and C2 which bound the area
of the intersection of the disks bounded by those circles. Two lenses are called overlapping
if they share a common sub-arc.

The study of families of non-overlapping lenses is motivated by a problem raised by
Tamaki and Tokuyama ([12]): Given a family of curves, in the plane, what is the minimum
number of cuts needed in order to generate from it a family of pseudo-segments (i.e., a set
of curves, every two of which intersect at most once). Tamaki and Tokuyama observed that
the notion of a lens (which can be defined similarly for any family of curves) is the critical
notion here. Clearly, we must cut every lens. Therefore, the minimum number of cuts is
at least as large as the maximum size of a family of non-overlapping lenses. It turns out,
however, that up to a constant factor this is also an upper bound.

Families of non-overlapping lenses were studied by many authors, in various settings (see,
e.g., [1, 2]). Here we show how Theorem 2.1 can be used to improve the best known upper
bound on the maximum size of a family of non-overlapping lenses in a family of unit circles
in the plane.

in [2], Alon et al. show that the maximum size of a family of non-overlapping lenses
created by n unit circles is O(n3/2+ǫ). This result was improved by Agarwal et al. to
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O(n3/2κ(n)) (see [1]). We now further improve it and show the following:

Theorem 4.1 The maximum size of a family of non-overlapping lenses in an arrangement
of n unit circles in the plane is O(n3/2).

Proof: Let C be a collection of n unit circles in the plane. Let L be a family of non-
overlapping lenses created by circles in C. We define a geometric graph G whose vertices are
the centers of the circles in C. We connect two vertices by an edge (drawn as a straight line
segment between the two corresponding centers), if the corresponding pair of unit circles
create one of the lenses in L.

We claim that G is a D1-graph. Once we establish this statement, Theorem 4.1 will be
an immediate consequence of Theorem 2.1.

To show that G is a D1-graph, let e = (u, v) be any edge of G. The vertices u and v are,
respectively, the center points of two unit circles in C, Cu and Cv. Let D be the disc whose
diameter is uv and whose center is the midpoint of the segment uv. We claim that D is an
N1
u,v-free disc. Indeed, assume to the contrary that there exists a point w ∈ D which is a

neighbor of, say u. Let Cw ∈ C be the circle whose center is w. Thus, Cw and Cu create
a lens which does not overlap L(Cu, Cv). We assume without loss of generality that uv is
vertical and that u lies above v. Let a, b be the two intersection points of Cu and Cv, so that
a is to the left of b (see Figure 5).

v

a b

D

u

w

Figure 5: An illustration of the contradiction in the proof of Theorem 4.1

The unit circle centered at a intersects the boundary of D at u and v and thus encloses
entirely the left half disc of D bounded by the diameter uv. Similarly the unit disc centered
at b encloses entirely the right half disc of D bounded by uv. Since w ∈ D it follows that
the disk bounded by Cw contains one of a or b in its interior. Therefore also a portion of the
arc on Cu which constitutes the lens L(Cu, Cv). This implies that L(Cw, Cu) and L(Cu, Cv)
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overlap, a contradiction. Hence, the disc D cannot contain a neighbor of u in G. Thus, we
have found a disc (namely D) which is N1

u,v-free. This completes the proof of the theorem.

5 Open problems

• There still exists a wide gap between the lower bound of Ω(n4/3) and the upper bound
of O(n3/2) on the maximum number of edges of a D1-graph, established in this paper.
We leave it is a major open problem to tighten this gap.

• Can one prove a better upper bound on the size of a D1-graph with n vertices, in the
more restricted case that for each edge (p, q), we further require that the disc whose
diameter is pq is an N1

p,q-free disc. In this case the best lower bound is Ω(n1+c/ log logn)

and is achieved by considering n points in the plane with Ω(n1+c/ log logn) pairs of them
that are unit distance apart (this construction is due to Erdős; see, e.g., [9]).
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