A Framework for Evaluating Design Tradeoffs in Packet
Processing Architectures

Lothar Thiele, Samarjit Chakraborty, Matthias Gries, Simon Kunzli
Computer Engineering and Networks Laboratory
Swiss Federal Institute of Technology (ETH) Zirich

CH-8092 Ziirich,

Switzerland

{thiele, samarjit, gries, kuenzli}@tik.ee.ethz.ch

ABSTRACT

We present an analytical method to evaluate embedded retwor
packet processor architectures, and to explore their despgce.
Our approach is in contrast to those based on simulationghwhi
tend to be infeasible when the design space is very largellifge i
trate the feasibility of our method using a detailed casdystu

Categories and Subject Descriptors

C.0 [Computer Systems Organizatio. General—Modeling of
computer architecture, System architectyr@s4.1 [Hardware]:
Input/output and data communication®ata communication de-
vices

General Terms
Performance, Design

1. INTRODUCTION

Architectures for embedded packet processing devicemkie
work processors consist of a heterogeneous combinatioiffef-d
ent hardware and software components. These include mrop
cessors, domain specific instruction set processors, figooable
hardware modules, IP cores, application specific units,neani-
cation primitives, and memory modules. A high-level desigace
exploration of such packet processors is concerned witbures
allocation and partitioning, mapping of different packetqessing
functions to the different hardware and software units, detbr-
mining a scheduling policy at each of these units. These takst
into account issues such as cost, power consumption, mer@ory
quirements, delays experienced by the packets that are poobe
cessed and their possible throughputs.

There are many issues that are specific to such a design space e
ploration in the domain of network packet processors—bgtmeity
of the processing elements that constitute the targetteathie,
QoS guarantees that the processed real-time traffic stresarcis as
voice and video) must meet, different application scersawibere
such a processor might be deployed. For example, a network pr

task graph, scenario graph, construct

streams (arrival curves),—»| scheduling |« > P delacyosgt(:aﬂfsmory
resources (service curves) network performance
Y v
a”fménon system architecture
blndmg fitness vector
scheduling

multiobjective
optimization

mapping relations

Figure 1: Basic concept for the design space exploration of
packet processing systems.

differences with other target domains for system-levelgtespace
exploration, several questions arise. These involve gujai® mod-
eling of packet streams, packet processing tasks, and hezdand
software resources. Other issues include performance Iimgde
in the case of several (possibly conflicting) usage scesasead
strategies to efficiently explore large design spaces awotti@min a
reasonable compromise between multiple conflicting deater

In an attempt to address these issues, we present a framework
which can be used to analytically evaluate packet procgssichi-
tectures and identify the different design tradeoffs imeol. When
interfaced with a search strategy this gives an efficientnadar
exploring large design spaces. The search strategy comesthup
possible alternatives from the design space, which areueted
using our framework and the feedback guides further search.

The essential ingredients of our framework are a task and a re
source model, and al-time calculug2, 12] for reasoning about
packet streams and their processing. The task model rejsedié
ferent packet processing functions such as header progessi-
cryption, processing for special packets such as voice &by
etc. The resource model captures the information aboutreifit
available hardware resources, the possible mappings &&ppoo-
cessing functions to these resources and the costs assbuidh
each of these mappings. Traffic streams are specified usaig th
arrival curves[5] and deadlines are associated with the real-time
traffic. Given any architecture, we can now analyticallyedetine

cessor to be used in a backbone network can be characterzed b Properties such as delay and throughput experienced byiffke-d

very high throughput demands but relatively low processieg
quirements per packet, whereas access networks have lowagh-
put demands but high computational requirements. Due teethe

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage @rat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

DAC 2002 June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006$5.00.

ent traffic streams, taking into account the underlying daling
disciplines at each of the resources.

The overall scheme used to illustrate the feasibility of apf
proach for design space exploration is shown in Fig. 1. Heee t
search strategy is a multiobjective optimizer (such as afuéon-
ary algorithm [6]) which comes up with possible architeesiin-
cluding allocation, binding, and scheduling informatiafsing this
information, ascheduling networls constructed (see Section 3.2)
for each usage scenario of the packet processor, whichentig
computation of the memory requirements and delay propedfe
each traffic stream. Then the packet rates for each of thet inpu
streams are maximized until one of the delay constrainscised
with the streams, or a memory constraint associated withattia-

tecture is violated (see Section 3.3). These values for aaage
scenario indicate the optimum performance attainable éythhi-
tecture and provide the parameters to guide further exiordy
the multiobjective optimizer.

All the previous work on the design space exploration of net-
work processor architectures (such as [4] and [14]) reliedion-
ulation techniques, where different architectures araukited and
evaluated using benchmark workloads. In many cases thersear
space being explored is very large, and it might be too expens
to evaluate all design alternatives using simulation. Tdw$ of
our approach is on a high level of abstraction where the go#d i
quickly identify interesting tradeoffs and architectusgkich can
then be further evaluated, by simulation for example, @Kiner
details into account.

The next section describes our models, following which we de
scribe our method for performance estimation in Section 8-S
tion 4 briefly introduces the design space exploration seharmd
in Section 5 we present our experimental results.

2. MODELING

2.1 Packet Processing

A packet processor operates on interleaved streams of fgacke
which enter the device. All packets belonging to a streanpese

cessed in the same way, i.e. the same set and sequence of tasks

are executed for them. In order to know the load on the praogss
device, it is necessary to have information about the seasKst
associated with a packet stream and the number of packetegrr
per time unit. This information can be formalized as follows

Definition 1. We define a set of streanfsand a set of tasks.
To each streani € F there is associated a directed acyclic graph
G(f) = (V(f),E(f)) with task noded/(f) C T and edge(f).
The taskg € V(f) must be executed for each packet of strem
while respecting the precedence relation&(r).

In other words, the taskg(f) must be executed by the packet
processor for each packet in stredm If there is an edge from
taskt; to tp, thent; must be executed befotg. All tasks can be
combined into one conditional task graph where dependinthen
stream to which a packet belongs, the packet may take differe
paths through this graph.

As mentioned in the introduction, a packet processing @evic
may be used in a variety of usage scenarios. These scenaios m
lead to conflicting design objectives. One of the main ideabis
paper is to exploit of this fact to design architectures \hicake
the best out of possible tradeoffs.

Definition 2. We define a set of scenari@® To each scenario
b € B there is associated a memory constraingb) € R>q. There
is a scenario-stream relati@wherec = (b, f) € C denotes that
a streamf is present in scenarib. To each relatiorc there is
associated an end-to-end deadlitie) € R>q, a lower arrival curve
al and an upper arrival cune!.

Here,m(b) denotes the maximum number of packets that can be
stored in the processing device in scendriat any point in time.
The end-to-end deadliréc) with c = (b, f) denotes the maximum
allowed time span between the packet entering the processbr
the end of the last task execution for a packet of stréamscenario
b. The lower and upper arrival curves are defined as follows.

Definition 3. For anyA € R~ and any scenario-stream relation
c= (b, f) € C, the valuea(A) is smaller than the number of pack-
ets arriving in any time interval of length in the streanf in sce-
nariob. In a similar way, the maximum number of packets in an
interval of lengthA is always smaller thaay(A).

Therefore, instead of using a stochastic characterizaifahe
input streams, we use deterministic bounds. This approaichry
nicely fits into the underlying concept of the SPI model (sEg)[
but also follows the usual specification of traffic in the netking
context, see the T-SPEC model from IETF [10].

events

T‘HTTHHl

speed

t

Figure 2: Representation of an arrival curve and a service
curve as processed according to Theorem 1.

In Fig. 2, on the upper left corner an example of a packet strea
and associated arrival curves is given. Note that in thigéigthe
arrival curves have been scaled with the computation tinneafo
packet. The steepness of the upper arrival curve Anl0.75 is a
measure for the burstiness of packet arrivals.

There are different possibilities to determine the inpurelster-
izations of the packet streams:

e The input streams have been characterized in a traffic agree-
ment using T-SPECSs.

e Characteristics such as burstiness, burst length, andisedt
rates are determined by considering the properties of the ge
erating components, e.g. a sensor and the network connec-
tion. In a similar way, properties such as jitter can be gasil
rephrased in terms of upper and lower arrival curves.

e Measured traffic streams are analyzed with respect to their
maximum and minimum number of packets in any time in-
terval.

Methods using the concept of arrival curves to design and ana
lyze communication networks can be found in [5].

In summary, we use a formal means for describing packet rates
(using arrival curves), and we gave a model for represertiage-
guence of tasks to be executed for each packet in a traffiamatre
and a model for describing different usage scenarios. Imthe
section we introduce a representation for packet procgsasichi-
tectures.

2.2 System Architecture

It is widely accepted that packet processing devices wilhée
erogeneous in nature. In dedicated or application speaiittic-
tion set components, simple tasks with high data rate reménts
will be executed. Longer and more complicated executioninsha
will be transferred to software tasks running on (homogesgo
multiprocessors. In this case, usually run-time schedutireth-
ods are used in order to fairly share the available resoamesng
packets belonging to different streams [3]. A sketch of tateto-
geneous architecture with different packet paths disclss¢his
paper is shown in Fig. 3 on the left hand side.

Therefore, our model of a feasible system architectureistss
of (1) available resource types including their processiaygability
and performance described by service curves, (2) cost ofeimp
menting a resource on the packet processor and (3) the diotgedu
policies and associated parameters. The logical strucfuaesys-
tem architecture is shown on the right hand side of Fig. 3.eHer
we see that the processing components have (logicallyyiased
memory which stores packets waiting for the next task to ke ex
cuted on them. A corresponding scheduling policy selectchet

packet
streams

scheduling
policy

packet
distribution

>
B

fast pgths
heterogeneous
computing resources
Figure 3: Example of a physical (left) and logical (right) stuc-
ture of a packet processing architecture.

packets resource

and starts the execution. The processing of the currenigpacky
be preempted in favor of another task processing a diffgrecket.

Definition 4. We define a set of resource typ8sTo each type
s € Sthere is associated a relative implementation cost(s) €
R>p and the number of available instandast(s) € Z~¢. To each
resource type there is associated a finite set of schedutilicjes
scheds) which the component supports, a lower service ciye
and an upper service cun@s. The mapping relatioM C T x S
defines possible mappings of tasks to resource types, im.=if
(t,s) € M then task could be executed on resource typéf a task
t is executed on a resource of typethen it needsw(t,s) € R>q
relative computing units for finishing, called the request.

Service curves are defined in a similar way as arrival curves.
They describe bounds on the computation capability of tlal-av
able resource components.

Definition 5. For anyA € R~ and any resource typec S, the
value B'S(A) is smaller than the number of available computing
units in any time interval of length. In a similar way, the maxi-
mum number computing units in any interval of lendtis always
smaller tharBg(4).

3. ESTIMATING PERFORMANCE AND
MEMORY

Our estimation of end-to-end delays and memory requiresnent
is based on the work network calculus [5] from the commuincat
networks area. Recently this approach has been re-foratulat
an algebraic setting [2]. In [13], a comparable approach wezsl
to describe the behavior of processing (and not communpichte-
sources. But the resulting formulas for quantities likermediate
arrival and service curves, delays and memory were comipatat
ally too expensive to be used in a design space exploration.ad
the new results applied in this paper is a simple and effigigte-
wise linear approximation. To explain this new methodologg
start with a description of the basic building blocks afceduling
network describing the flow of packets and resources.

3.1 Basic Building Blocks

The basic idea behind our performance estimation is based on
providing a network theoretic view of the system architeetuln
particular, packet streams and resource streams flow thraungt-
work and thereby respectively change their arrival andisersurves.
Inputs to a single network node are arrival curves of streants
service curves. Outputs describe the arrival curves of thegssed
packet streams and the remaining service curves of thdypased
resources. These resulting arrival and service curvesheanderve
as inputs to other nodes of the scheduling network.

In order to understand the basic concept, let us describeya ve
simple example of such a node, namely the preemptive process
ing of packets of one stream by a single processing resotiae.
lowing the previous discussion related to Fig. 3, a packenhorg
is attached to a processing resource which stores the gattiat
have to wait for being processed. During the processing atcagt
there is no remaining computing power, otherwise it is eqouiéhe
original one.

In [11], the following Theorem has been derived which ddsesi
the processing of a packet stream in terms of the alreadyetkfin
arrival and service curves.

THEOREM 1. Given a packet stream described by the arrival

For example, let us suppose that we have a processing resourc curvesa' anda and a resource stream described by the service

which is not used by any other task, then it is reasonablesioras
that the lower and upper service curves are equal and piopatt
to A: B5(A) = BY(A) O A. But if the resource is loaded with some
tasks, it is clear that the available computing power witamin-
terval may vary and hence also the time required for exeguin
task.

An example is given in Fig. 2 on the lower left side. Here, the
computing power available is zero in a certain time interdiere-
fore, the lower service curve is smaller than the upper orkigin
zero at the beginning.

Now we can informally describe the design space exploration
procedure in the context of packet processors. It selestarees
from a given reserve (allocation), associates (or mapk}tasthese
resources (binding) and determines a scheduling policyaaadci-
ated parameters for selecting active packets (schedulixitijough
we have chosen a particularly simple cost model, it is nolf atear

how to determine the maximum number of stored packets or the

maximum end-to-end delays since all packet streams shane co
mon resources. For example, the computation time for a task
depends on its reques(t, s), on the available processing power of
the resource, i.eB!5 andpy, and on the scheduling policy applied.
In addition, as the packets may flow from one resource to tike ne
one, there might be intermediate bursts and packet jams.

It is surprising to see, that there exist€@mputationally very
efficientpossibility to derivgorovably correct boundsn theend-to-

end delayof packets and on the necessary memory requirements

of the processor.

curvesf' and BY. Then the following expressions bound the re-
maining service of the resource node and the arrival fumcté
the processed event stream:

o'@) = inf {dW+p@-u} €
au/(A) = OSirJfSA{ssg{qu(quv)fBl (v)}
AU, @)
'@ = sup {Fw-a'w} ®)
0<u<A
BU(@) = sup {Bu-a'W)} @)
o<u<A

Note that the arrival function as used above describes sand
thecomputing requesindnot on thenumber of packetdn Fig. 2,
an example of the remaining arrival and service curves isrgiv
Since we deal with packet streams in the system architecture
we need to convert these streams into corresponding congprett
quests. Given bounds on a packet stream of the fofna] we
can determine bounds on the related computing requests
[al, oY) = [wa', wal) (5)
using the computing requestfor each packet. The notati([m' ,aY]
represents the fact that anda are the lower and the upper curves
of a single stream.

[(Y],a“] [ﬁl:aﬁw]
L A SEENS—— |
Eqgn. .(1- .

P Ean(5)] Ean(1-4) b Ean.(6) H
o felet G folat] '
[B".B""] [o",a]

Figure 4: Block diagram depicting the transformation of
packet and resource streams by a processing device. The dot-
ted arrows represent the resource flow while the others show
the flow of packets and requests.

The conversion of the output stream is slightly more invdive
as we usually suppose that a next component can start pingess
after the whole packet arrived:

@’ @] = [la /w], [av /w]]

The whole transformation is depicted in Fig. 4.

Using this building block, we can describe commonly use@dohk
ing approaches such &zed priority preemptive schedulifg]. In
this case, to each input streaie F there is assigned a fixed pri-
ority prio(f) € Z>o. At any point in time, a processing device op-
erates on the packet in its memory (see Fig. 3, schedulirigypol
which has the highest priority. If there are packets with shene
priority, they are served following an FCFS (first come firstve)
strategy. This can be modeled directly using our basic mgld
block shown in Fig. 4.

3.2 Scheduling Network Construction

Following the overview of the design space exploration shaw
Fig. 1, the scheduling network which enables the estimatfqrer-
formance measures (such as end-to-end deadlines and mesmory
quirements) is constructed using the specification datzai& 2
and the system architecture provided by the optimizatigorghm.
In order to simplify the explanation, we restrict ourselt@she use
of a fixed priority scheduling policy for all resource typedow-
ever, our approach can be generalized to other policies thssweh
as GPS [8].

Therefore, the data provided by the multiobjective optitian
block in Fig. 1 are as follows.

(6)

Definition 6. The allocation of resources can be described by
the functionalloc(s) € Zx>q which denotes the number of allocated
instances of resource type The binding of tasks € T to re-
sources in a specific usage scendrio B is specified by the func-
tion bind(c,t) € Swhich maps a task in a specific scenario-stream
relationc = (b, f) € C to a resource type. The scheduling policy
is described by a functigprio(c) € Z>o which associates a priority
to each stream in a scenario-stream relatien(b, f) € C.

Note that a system architecture is not only described byyihe t
and the number of resource components but also by the soenari
dependent mapping of tasks to those components.

Now, we can describe the construction of a scheduling ndétwor
for a given scenarib € B. The basic idea is that the packet streams
pass from one resource to the next one. The order is detedrbine
the precedence relations E(f), see Def. 1. The resource flows,
i.e. the capabilities of the resources, also pass throughétwork.
The order is mainly determined by the priorities associateéth
packet streams.

The procedure for creating a scheduling network is giverohs f
lows: Add source and target nodes for all allocated reseursdd
source and target nodes for all packet stredns scenaridb. For
all taskst € V(f), add a scheduling node as shown in Fig. 4 to the
scheduling network and connect its packet stream inpytimutc-
cording to the precedence relationsgff). Connect the resource
stream input/output of the scheduling nodes accordingagtbce-
dence relations and according to the stream prioritiesenadob.

As a result of applying this procedure we get a scheduling net
work for each scenario, containing source and target ncatethé
different packet streams, and resource flows and schedotidgs
which represent the computations described in Fig. 4. A @ac
example to illustrate this is given in Fig. 9.

Given the arrival curves for all source packet nodes, g, al]
with ¢ = (b,) for streamf in scenariob, and the initial service
curves for the allocated resources, i[alloc(s)pL, alloc(s)BY] for
resource typs with alloc(s) allocated resources, we can determine
the properties of all internal packet streams and resouogesfl It
remains to be seen, how we can determine the end-to-endsdzflay
packets and the necessary memory.

3.3 Performance Optimization

In order to estimate the properties of a packet processistgsy
architecture we need quantities like bounds on end-to-etalyd
of packets to be processed and on memory requirements.

Using well known results from the area of communication net-
works, see e.g. [5], the bounds derived in Theorem 1 can liktase
determine the maximal delay of events and the necessary gemo
to store packets waiting to be processed.

The following two equations give bounds on both quantities:

delay < sup{inf{T >0:0d(u) < B'C(U—H)}} 7
u>0
backlog < sup{ag(u) —B(u)} ®)

u>0

In other words, the delay can be bounded by the maximal horizo
tal distance between the curve¥ and@', whereas the backlog is
bounded by the maximal vertical distance between them.

In case of the scheduling network constructed above, we have
to know which curves to use in (7) and (8). Fa, we need the
initial upper arrival curve of an incoming packet streénirhe ser-
vice curveBL to be used is thaccumulatecturve of all scheduling
nodes through which the packets of streémass in the scenario
b. As described in [2], this quantity can be determined thioag
iterated convolution.

Finally, we need to determine some measure for the perfazenan
of a given architecture under a certain usage scenario. efdrer;
we introduce a parametdp,, which is the largest scaling factor
of the packet input streamb with ¢ = (b, f) € C according to
[Wpalk, wpal], such that the constraints on end-to-end delays and
memory are still satisfied.

3.4 Piecewise Linear Approximation

The only problem that we are left with is the efficient compu-
tation of the expensive equations in Theorem 1. Note thatgbt
of equations has to be computed for all scheduling nodesyn an
scheduling network. In addition, if the design space exilon is
to be based on evolutionary multiobjective algorithms, pleefor-
mance of many system architectures need to be estimated.

To this end, we propose a piecewise linear approximatiorllof a
arrival and service curves. The approximation consistsafrabi-
nation of two line segments and is shown in Fig. 5. As a shadha
notation we can denote curvgsandy by the tuples) (q,r,s) and
L(q,r,s), respectively.

lower curve
(@)

upper curve
74(8)

Figure 5: Simple representation of upper and lower curves.

Based on this approach, the equations in Theorem 1 and the5. EXPERIMENTAL RESULTS

equations (7) and (8) can be computsanbolically We omit the
explicit formulas because of space restrictions.

Referring to our initial Figure 1, we have now finished the de-
scription of the input specification, the construction af gthedul-
ing network, and the performance optimization. It remaimdé
shown, how a multiobjective optimization algorithm can Isedito
perform the exploration task and come up with candidateitach
tures which are then evaluated using our scheme.

4. MULTIOBJECTIVE DESIGN SPACE EX-
PLORATION

As described in the introduction, in the case of network pssor
design we are faced with conflicting objectives. Here we show
to obtain a tradeoff between the performanggin different usage
scenariod and the cost of the system architecture

Zsal loc(s)cost(s)

se

cost=

©)

We can formulate this task as a multiobjective optimizapoob-
lem where with each implementation there is an associatgt-ob
tive vectorv = (vo, ..., k_1) with k elements. The goal is to deter-
mine implementations with Pareto-optimal objective vextdrhe
following definition supposes that we are trying to find vestwith
small elements, i.e. we are considering a minimization b
Note that our design space exploration problem can be fated|
in this way by, for example, using, = costandv; = 1/, for all
b, €B,i>0.

Definition 7. Given a seV of k-dimensional vectors € R¥. A
vectorv € V dominates a vectay € V if for all elements 0<i < k
we havey; < g; and for at least one element, daywe havey, < gk.
A vector is called Pareto-optimal if it is not dominated by ather
vector inV.

The architectures with Pareto-optimal objective vectapgre-
sent the tradeoffs in the network processor design. Therenany
different approaches to multiobjective optimization,. elgbu search,
simulated annealing or evolutionary algorithms [6]. Weédnato-
sen evolutionary algorithms, but other options also coaleetheen
used.

The evolutionary multiobjective optimizer that we have dise
called SPEAZ2 [6], maintains a population of current solhsiand
an archive which stores the best solutions found so far. dade
dent of the optimization principle used, the optimizer getes
new solutions (system architectures) based on the alreaohrk
set. These new solutions are then evaluated for their obgeatc-
tor. The following methods are used in order to include domai
specific knowledge into the search process:

(1) System architectures are represented according toeDéxf.
particular, the representation contains the allocagitwc(s) for all
resource types € S, the binding of tasks to resourcésr each
scenarig and the stream prioritifer each scenario

(2) New system architectures are determined usingationand
crossovemperations [6]. In case of the mutation, either allocation,
or the binding for a scenario, or the priorities are mutatedcase
an infeasible system architecture is generated (see 8e2i®) a
repair strategy is invoked which attempts to maintain a hiiyler-
sity in the population. In a similar way, crossover combihse
selected solutions to generate a new one by combining ditleer
allocations, the bindings of a selected scenario, or tharifigs of
a selected scenario.

Clearly, because of this heuristic search procedure, nersents
about the optimality of the final set of solutions can be madere
is experimental evidence, that the solutions found areedo®pti-
mal even for realistic problem complexities.

Our input traffic consists of a mixture of real-time (RT) and
non-real-time (NRT) streams. We have considered two s@Enar
b1, by where the first scenarib; models a configuration in a net-
work backbone where aggregates of streams are forwardéediveit
smallest possible computation requirement but at high Wadttls.
This scenario therefore contains a single stream classifdgt for-
warding (NRTForward). The second scenatig however resem-
bles an access link from a customer to a service providelic@ilp
an access network has relatively low bandwidth but high agayp
tion requirements. The computations are in particular ireguto
perform encryption, e.g. Triple-DES [1] to allow sensitiméorma-
tion to be transmitted over untrusted networks of a serviogiger.
Another application is voice coding/decoding (e.g. in adeoce
with ITU G.723.1) to use telephony services over the Inter@d
course, a network processor for an access link could alscéé u
to simply forward traffic from the customer to the servicepder.
Hence, we define a set of five traffic streafms- {NRT_Forward,
RT_Send, RTRecv, NRTEncrypt, NRTDecrypt, containing two
real-time flows based on voice services and three flows wisixeel
quality of service requirements where two of them apply [Edp
DES. To process these five streams we define 25 taskg[j.e.25.
The task graph and the dependencies are shown in Fig. 6.

ESP AH
Encaps

Calc Encrypt

O Encryption/Decryption

O Voice Processing

Stream
NRT Encrypt

/i IP header Calc Check

Stream NRT Forward
Modify Sum

ARP Schedule Link
Look Up Tx

Voice RTPTx /° UDPTx Build IP Route

Encoder Header Look Up Decoder
Stream RT Send Stream RT Recv

Figure 6: Task graph for a network processor.

The scenario-stream relati@can be represented as in Fig. 7.a).
Here, one can also see an example of an end-to-end deddtipe
a memory constrainin(b), and arrival curvesal, al] represented
in the piecewise linear form defined in Section 3.4.

Further, we use 8 different resource typsasith S= {Classifier
PowerPC, ARM9, MEngine, CheckSum, CiphBXSP, LookUp}.
Each one of these has different computation capabilitias ¢an
be represented in form of the mapping relatigh see Def. 4.
Part of this specification is represented in Fig. 7.b), idizig an
example for the implementation casbs{(s), number of instances
inst(s) and requesiv(t,s). The initial service curves are simply set
to [B, B = [L(0,0,1),U(0,0,1)], i.e. BL(A) = BY(A) = A, reflect-
ing the fact that the resources are fully available for thecpssing
of the tasks.

Voice

for! e]=[L(-0.10.05,0.1).U(2.0,2.0,0.5)]
dc,)=8

[B raros Bliars] =[L(0,0,0,U(0,0,)]
w(Classify, ARM9) = 0.51, COS{ARM9)=40

inst(ARM)=1
AY <y
by NRT_Forward Classify ARM9
m(b,) =10 RT_Send bsp
b, RT_Receive RoutelL.ookUp N
(O NRT_Encrypt Classifier

NRT_Decrypt ARPLookUp LookUp

(@) B ¢ F (b) T oM s

Figure 7: Graphical representation of (a) the scenario-steam
relation C and (b) a part of the task-resource relationM.

Fig. 8 (a screen shot from our tool) shows the inipapulation
on the left and the final population of a specific design spapke
ration run on the right. Each dot represents one systemtaathre
(resources, binding and scheduling policy). The axes sgmtethe
total cost of the implementations (see Eqn. (9)) and the mauxi
scaling factor for scenario; of the packet input streams until either

the end-to-end deadline or the maximum memory is reachete No
that we are looking at projections of the three-dimensiaigéc-
tive space on two dimensions. Hence, we do not see the “fjpica
Pareto-tradeoff curves. Nevertheless, no objective vectosys-
tem architecture) dominates another one (see Def. 7). Wenuatil
discuss the details of the tradeoff curves, but would likgpaomnt
out that the different branches that can be seen in the piajec
are caused by the availability of specialized hardware aorapts
which are only useful for some of the input streams.

Y_s

en1 _initial population

BMEE] @ scent final population = |
~ 5B T e T e

45

0

55
| 5o
|25

20

15

L0
o5

0.14

012

010

c.0s

.08

0.04
0.0z

2.0 cost
x10*

Figure 8: Initial population and final population of a design
space exploration run.

Finally, let us look more closely at one of the implementasgio
It is marked in Fig. 8 and its objective vector consistgo$t= 67,
the maximal scaling for the input streams for scenarid)) (s
Up, = 0.644 and that for scenario) is Y,, = 0.400. The al-
located resource components are CheckSum, Cipher, ARM9 and
LookUp. Therefore, we havaloc(CheckSum = alloc(Ciphen =
alloc(ARM9) = alloc(LookUp) = 1 (see Def. 6). In scenario 2
(bp) all the 5 streams i are present. The ordering of the pri-
orities as determined by the design space exploration fersite-
nario is: NRTEncrypt, NRTForward, RTSend, RTReceive and
NRT_Decrypt. Here the stream NREncrypt has priority 1 (i.e.
prio(NRT_Encrypt) = 1) and NRTDecrypt has priority 5. Due to
space restrictions, not all bindings are given here. Thie asi-
fylPHeader is mapped to the CheckSum resource, tasks BiBees
Header, Classify, VoiceEncoder, RTPTx, UDPTx, BuildIPtea
are executed on the ARM9 resource and tasks RouteLookUp are
mapped to the LookUp resource. Based on this informatiom, th
system internally builds the scheduling graph and evatuitac-
cording to the methods described in Section 3. Part of thedidh
ing network (see Section 3.2) is represented in Fig. 9.

source resource node

| Checksum "\ ARM9

/alloca(ed architecture units

LookUp
in

Cipheri
in):

NRT_Decrypt Ver:yIP Proc:sslP ‘\
L> Classify » Decrypt j
source and target L’ AHVerify —
packei nodes !
NRT_Decrypt MJ
NRTﬁEncrypt ———————

o & 6 &

CheckSum ARM9 LookUp Cipher
Figure 9: Part of a schedule network constructed for the perbr-
mance estimation of a given system architecture. The schelu
ing policy is fixed priority and the internal scheduling nodes cor-
respond to the basic blocks shown in Fig. 4.

target resource nodes:

Our tool performed the above described design space exigiora
It uses the evolutionary optimization tool SPEA [6], and am i
plementation of performance optimization, population anchive
handling, mutation, crossover and repair in Java. The gcaph
output used the Ptolemy-Plot routine from UC Berkeley [8f t
graphical input and tool integration was based on the mogelnd
simulation tool MOSES [7]. The experiments have been run on a
Pentium Il under LINUX. The population size was 100 system a
chitectures and the optimization was stopped after 300rgé&nas.

Each generation, i.e. the mutation, crossover and periocenap-
timization (including scheduling network constructioakés about
2 sec which leads to an overall optimization time of 10 misute

6. CONCLUDING REMARKS

We presented several new results concerning the modelidg an
design space exploration of packet processing deviceb,aainet-
work processors. Our work involves a careful combinatioeamhe
known and some new solutions: (1) modeling the flow of packet
streams through a heterogeneous system architecturestingf
computation and communication components using a scheduli
network, (2) using a real-time calculus to determine endsnd
deadlines and memory requirements and using piecewisa lame
proximations for fast performance estimation, and finaBly¢om-
bining these models and methods in a design exploratioremsyst
for packet processors.

These results are based on several abstractions. In partice
neglect effects of caching, separate memories, and shamrha-
nication resources in the processor architecture. Thenekie of
the presented work to incorporate these additional congsrés a
subject of further investigation.

Acknowledgement

The work presented in this paper has been supported by IBMdRes.
The authors are grateful to Andreas Herkersdorf of IBM Regedurich,
for discussions that influenced the presented results.

7. REFERENCES
[1] American National Standards InstitufEiple Data Encryption
Algorithm Modes of Operation, ANSI X9.52-199898.

[2] J.L.Boudec and P. ThiratNetwork Calculus - A Theory of
Deterministic Queuing Systems for the InternddCS 2050,
Springer Verlag, 2001.

G. Buttazzo.Hard Real-Time Computing Systems - Predictable

Scheduling Algorithms and Applicatiari§luwer Academic

Publishers, 1997.

P. Crowley, M. Fiuczynski, J.-L. Baer, and B. Bershad.

Characterizing processor architectures for programmaéte/ork

interfaces. IrProc. International Conference on Supercomputing

Santa Fe, 2000.

R. Cruz. A calculus for network delayEEE Trans. Information

Theory 37(1):114-141, 1991.

[6] K. Deb.Multi-objective optimization using evolutionary algdmihs
John Wiley, Chichester, 2001.

[7] MOSES projectwww.tik.ee.ethz.ch/"moses/

[8] A.Parekh and R. Gallager. A generalized processor sfapproach

to flow control in integrated services networkBEE/ACM Trans.

Networking 2-2:137-150, 1994.

Ptolemy projectptolemy.eecs.berkeley.edu/

S. Shenker and J. Wroclawski. General characteriagt@ameters

for integrated service network elements. RFC 2215, Interne

Engineering Task Force (IETF), Sept. 1997.

L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, ahdGreutert.

Embedded software in network processors — models and tigwi

In First Workshop on Embedded Softwadr®CS 2211.

Springer-Verlag, 2001.

L. Thiele, S. Chakraborty, and M. Naedele. Real-timieuas for

scheduling hard real-time systems.Rroc. IEEE International

Symposium on Circuits and Systemdume 4, pages 101-104,

2000. Invited paper.

L. Thiele, S. Chakraborty, and M. Naedele. Real-timiewas for

scheduling hard real-time systems.Rroc. |IEEE International

Conference on Circuits and Systemslume 4, pages 101-104, 2000.

T. Wolf, M. Franklin, and E. Spitznagel. Design tradsdbr

embedded network processors. Technical Report WUCS-00-24

Department of Computer Science, Washington Universitytin S

Louis, 2000.

D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and Jiche SPI — a

system model for heterogeneously specified embedded system

IEEE Trans. Very Large Scale Integration (VLSI) Syste2082.

Accepted for publication.

(3]

(4]

(5]

El

[10]

(11]

[12]

[13]

[14]

[15]

