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ABSTRACT
We present an analytical method to evaluate embedded network
packet processor architectures, and to explore their design space.
Our approach is in contrast to those based on simulation, which
tend to be infeasible when the design space is very large. We illus-
trate the feasibility of our method using a detailed case study.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Modeling of
computer architecture, System architectures; B.4.1 [Hardware]:
Input/output and data communications—Data communication de-
vices

General Terms
Performance, Design

1. INTRODUCTION
Architectures for embedded packet processing devices likenet-

work processors consist of a heterogeneous combination of differ-
ent hardware and software components. These include micropro-
cessors, domain specific instruction set processors, reconfigurable
hardware modules, IP cores, application specific units, communi-
cation primitives, and memory modules. A high-level designspace
exploration of such packet processors is concerned with resource
allocation and partitioning, mapping of different packet processing
functions to the different hardware and software units, anddeter-
mining a scheduling policy at each of these units. These musttake
into account issues such as cost, power consumption, memoryre-
quirements, delays experienced by the packets that are to bepro-
cessed and their possible throughputs.

There are many issues that are specific to such a design space ex-
ploration in the domain of network packet processors–heterogeneity
of the processing elements that constitute the target architecture,
QoS guarantees that the processed real-time traffic streams(such as
voice and video) must meet, different application scenarios where
such a processor might be deployed. For example, a network pro-
cessor to be used in a backbone network can be characterized by
very high throughput demands but relatively low processingre-
quirements per packet, whereas access networks have lower through-
put demands but high computational requirements. Due to these
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Figure 1: Basic concept for the design space exploration of
packet processing systems.
differences with other target domains for system-level design space
exploration, several questions arise. These involve appropriate mod-
eling of packet streams, packet processing tasks, and hardware and
software resources. Other issues include performance modeling
in the case of several (possibly conflicting) usage scenarios, and
strategies to efficiently explore large design spaces and toobtain a
reasonable compromise between multiple conflicting criteria.

In an attempt to address these issues, we present a framework
which can be used to analytically evaluate packet processing archi-
tectures and identify the different design tradeoffs involved. When
interfaced with a search strategy this gives an efficient means for
exploring large design spaces. The search strategy comes upwith
possible alternatives from the design space, which are evaluated
using our framework and the feedback guides further search.

The essential ingredients of our framework are a task and a re-
source model, and areal-time calculus[2, 12] for reasoning about
packet streams and their processing. The task model represents dif-
ferent packet processing functions such as header processing, en-
cryption, processing for special packets such as voice and video,
etc. The resource model captures the information about different
available hardware resources, the possible mappings of packet pro-
cessing functions to these resources and the costs associated with
each of these mappings. Traffic streams are specified using their
arrival curves[5] and deadlines are associated with the real-time
traffic. Given any architecture, we can now analytically determine
properties such as delay and throughput experienced by the differ-
ent traffic streams, taking into account the underlying scheduling
disciplines at each of the resources.

The overall scheme used to illustrate the feasibility of ourap-
proach for design space exploration is shown in Fig. 1. Here the
search strategy is a multiobjective optimizer (such as an evolution-
ary algorithm [6]) which comes up with possible architectures in-
cluding allocation, binding, and scheduling information.Using this
information, ascheduling networkis constructed (see Section 3.2)
for each usage scenario of the packet processor, which enables the
computation of the memory requirements and delay properties of
each traffic stream. Then the packet rates for each of the input
streams are maximized until one of the delay constraints associated
with the streams, or a memory constraint associated with thearchi-



tecture is violated (see Section 3.3). These values for eachusage
scenario indicate the optimum performance attainable by the archi-
tecture and provide the parameters to guide further exploration by
the multiobjective optimizer.

All the previous work on the design space exploration of net-
work processor architectures (such as [4] and [14]) relied on sim-
ulation techniques, where different architectures are simulated and
evaluated using benchmark workloads. In many cases the search
space being explored is very large, and it might be too expensive
to evaluate all design alternatives using simulation. The focus of
our approach is on a high level of abstraction where the goal is to
quickly identify interesting tradeoffs and architectureswhich can
then be further evaluated, by simulation for example, taking finer
details into account.

The next section describes our models, following which we de-
scribe our method for performance estimation in Section 3. Sec-
tion 4 briefly introduces the design space exploration scheme and
in Section 5 we present our experimental results.

2. MODELING

2.1 Packet Processing
A packet processor operates on interleaved streams of packets

which enter the device. All packets belonging to a stream arepro-
cessed in the same way, i.e. the same set and sequence of tasks
are executed for them. In order to know the load on the processing
device, it is necessary to have information about the set of tasks
associated with a packet stream and the number of packets arriving
per time unit. This information can be formalized as follows:

Definition 1. We define a set of streamsF and a set of tasksT.
To each streamf ∈ F there is associated a directed acyclic graph
G( f ) = (V( f ),E( f )) with task nodesV( f ) ⊆ T and edgesE( f ).
The taskst ∈ V( f ) must be executed for each packet of streamf
while respecting the precedence relations inE( f ).

In other words, the tasksV( f ) must be executed by the packet
processor for each packet in streamf . If there is an edge from
taskt1 to t2, thent1 must be executed beforet2. All tasks can be
combined into one conditional task graph where depending onthe
stream to which a packet belongs, the packet may take different
paths through this graph.

As mentioned in the introduction, a packet processing device
may be used in a variety of usage scenarios. These scenarios may
lead to conflicting design objectives. One of the main ideas in this
paper is to exploit of this fact to design architectures which make
the best out of possible tradeoffs.

Definition 2. We define a set of scenariosB. To each scenario
b∈ B there is associated a memory constraintm(b) ∈ R≥0. There
is a scenario-stream relationC wherec = (b, f ) ∈ C denotes that
a streamf is present in scenariob. To each relationc there is
associated an end-to-end deadlined(c)∈R≥0, a lower arrival curve
αl

c and an upper arrival curveαu
c.

Here,m(b) denotes the maximum number of packets that can be
stored in the processing device in scenariob at any point in time.
The end-to-end deadlined(c) with c= (b, f ) denotes the maximum
allowed time span between the packet entering the processorand
the end of the last task execution for a packet of streamf in scenario
b. The lower and upper arrival curves are defined as follows.

Definition 3. For any∆ ∈ R≥0 and any scenario-stream relation
c = (b, f ) ∈C, the valueαl

c(∆) is smaller than the number of pack-
ets arriving in any time interval of length∆ in the streamf in sce-
nario b. In a similar way, the maximum number of packets in an
interval of length∆ is always smaller thanαu

c(∆).

Therefore, instead of using a stochastic characterizationof the
input streams, we use deterministic bounds. This approach not only
nicely fits into the underlying concept of the SPI model (see [15])
but also follows the usual specification of traffic in the networking
context, see the T-SPEC model from IETF [10].
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Figure 2: Representation of an arrival curve and a service
curve as processed according to Theorem 1.

In Fig. 2, on the upper left corner an example of a packet stream
and associated arrival curves is given. Note that in this figure, the
arrival curves have been scaled with the computation time for a
packet. The steepness of the upper arrival curve until∆ = 0.75 is a
measure for the burstiness of packet arrivals.

There are different possibilities to determine the input character-
izations of the packet streams:

• The input streams have been characterized in a traffic agree-
ment using T-SPECs.

• Characteristics such as burstiness, burst length, and sustained
rates are determined by considering the properties of the gen-
erating components, e.g. a sensor and the network connec-
tion. In a similar way, properties such as jitter can be easily
rephrased in terms of upper and lower arrival curves.

• Measured traffic streams are analyzed with respect to their
maximum and minimum number of packets in any time in-
terval.

Methods using the concept of arrival curves to design and ana-
lyze communication networks can be found in [5].

In summary, we use a formal means for describing packet rates
(using arrival curves), and we gave a model for representingthe se-
quence of tasks to be executed for each packet in a traffic stream,
and a model for describing different usage scenarios. In thenext
section we introduce a representation for packet processing archi-
tectures.

2.2 System Architecture
It is widely accepted that packet processing devices will behet-

erogeneous in nature. In dedicated or application specific instruc-
tion set components, simple tasks with high data rate requirements
will be executed. Longer and more complicated execution chains
will be transferred to software tasks running on (homogeneous)
multiprocessors. In this case, usually run-time scheduling meth-
ods are used in order to fairly share the available resourcesamong
packets belonging to different streams [3]. A sketch of the hetero-
geneous architecture with different packet paths discussed in this
paper is shown in Fig. 3 on the left hand side.

Therefore, our model of a feasible system architecture consists
of (1) available resource types including their processingcapability
and performance described by service curves, (2) cost of imple-
menting a resource on the packet processor and (3) the scheduling
policies and associated parameters. The logical structureof a sys-
tem architecture is shown on the right hand side of Fig. 3. Here
we see that the processing components have (logically) associated
memory which stores packets waiting for the next task to be exe-
cuted on them. A corresponding scheduling policy selects a packet
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Figure 3: Example of a physical (left) and logical (right) struc-
ture of a packet processing architecture.

and starts the execution. The processing of the current packet may
be preempted in favor of another task processing a differentpacket.

Definition 4. We define a set of resource typesS. To each type
s∈ S there is associated a relative implementation costcost(s) ∈
R≥0 and the number of available instancesinst(s) ∈ Z≥0. To each
resource type there is associated a finite set of scheduling policies
sched(s) which the component supports, a lower service curveβl

s
and an upper service curveβu

s. The mapping relationM ⊆ T ×S
defines possible mappings of tasks to resource types, i.e. ifm =
(t,s)∈ M then taskt could be executed on resource types. If a task
t is executed on a resource of typet, then it needsw(t,s) ∈ R≥0
relative computing units for finishing, called the request.

Service curves are defined in a similar way as arrival curves.
They describe bounds on the computation capability of the avail-
able resource components.

Definition 5. For any∆ ∈ R≥0 and any resource types∈ S, the
value βl

s(∆) is smaller than the number of available computing
units in any time interval of length∆. In a similar way, the maxi-
mum number computing units in any interval of length∆ is always
smaller thanβu

s(∆).

For example, let us suppose that we have a processing resource
which is not used by any other task, then it is reasonable to assume
that the lower and upper service curves are equal and proportional
to ∆: βl

s(∆) = βu
s(∆) ∝ ∆. But if the resource is loaded with some

tasks, it is clear that the available computing power withinan in-
terval may vary and hence also the time required for executing a
task.

An example is given in Fig. 2 on the lower left side. Here, the
computing power available is zero in a certain time interval. There-
fore, the lower service curve is smaller than the upper one and is
zero at the beginning.

Now we can informally describe the design space exploration
procedure in the context of packet processors. It selects resources
from a given reserve (allocation), associates (or maps) tasks to these
resources (binding) and determines a scheduling policy andassoci-
ated parameters for selecting active packets (scheduling). Although
we have chosen a particularly simple cost model, it is not at all clear
how to determine the maximum number of stored packets or the
maximum end-to-end delays since all packet streams share com-
mon resources. For example, the computation time for a taskt
depends on its requestw(t,s), on the available processing power of
the resource, i.e.βl

s andβu
s, and on the scheduling policy applied.

In addition, as the packets may flow from one resource to the next
one, there might be intermediate bursts and packet jams.

It is surprising to see, that there exists acomputationally very
efficientpossibility to deriveprovably correct boundson theend-to-
end delaysof packets and on the necessary memory requirements
of the processor.

3. ESTIMATING PERFORMANCE AND
MEMORY

Our estimation of end-to-end delays and memory requirements
is based on the work network calculus [5] from the communication
networks area. Recently this approach has been re-formulated in
an algebraic setting [2]. In [13], a comparable approach wasused
to describe the behavior of processing (and not communication) re-
sources. But the resulting formulas for quantities like intermediate
arrival and service curves, delays and memory were computation-
ally too expensive to be used in a design space exploration. One of
the new results applied in this paper is a simple and efficientpiece-
wise linear approximation. To explain this new methodology, we
start with a description of the basic building blocks of ascheduling
network, describing the flow of packets and resources.

3.1 Basic Building Blocks
The basic idea behind our performance estimation is based on

providing a network theoretic view of the system architecture. In
particular, packet streams and resource streams flow through a net-
work and thereby respectively change their arrival and service curves.
Inputs to a single network node are arrival curves of streamsand
service curves. Outputs describe the arrival curves of the processed
packet streams and the remaining service curves of the (partly) used
resources. These resulting arrival and service curves can then serve
as inputs to other nodes of the scheduling network.

In order to understand the basic concept, let us describe a very
simple example of such a node, namely the preemptive process-
ing of packets of one stream by a single processing resource.Fol-
lowing the previous discussion related to Fig. 3, a packet memory
is attached to a processing resource which stores the packets that
have to wait for being processed. During the processing of a packet
there is no remaining computing power, otherwise it is equalto the
original one.

In [11], the following Theorem has been derived which describes
the processing of a packet stream in terms of the already defined
arrival and service curves.

THEOREM 1. Given a packet stream described by the arrival
curvesαl and αu and a resource stream described by the service
curvesβl and βu. Then the following expressions bound the re-
maining service of the resource node and the arrival function of
the processed event stream:

αl ′(∆) = inf
0≤u≤∆

{

αl (u)+βl (∆−u)
}

(1)

αu′(∆) = inf
0≤u≤∆

{sup
v≥0

{

αu(u+v)−βl (v)
}

+βu(∆−u),βu(∆)} (2)

βl ′(∆) = sup
0≤u≤∆

{

βl (u)−αu(u)
}

(3)

βu′(∆) = sup
0≤u≤∆

{

βu(u)−αl (u)
}

(4)

Note that the arrival function as used above describes bounds on
thecomputing requestandnot on thenumber of packets. In Fig. 2,
an example of the remaining arrival and service curves is given.

Since we deal with packet streams in the system architecture,
we need to convert these streams into corresponding computing re-
quests. Given bounds on a packet stream of the form[αl ,αu] we
can determine bounds on the related computing requests

[αl ,αu] = [wαl ,wαu] (5)

using the computing requestw for each packet. The notation[αl ,αu]
represents the fact thatαl andαu are the lower and the upper curves
of a single stream.
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Figure 4: Block diagram depicting the transformation of
packet and resource streams by a processing device. The dot-
ted arrows represent the resource flow while the others show
the flow of packets and requests.

The conversion of the output stream is slightly more involved,
as we usually suppose that a next component can start processing
after the whole packet arrived:

[αl ′,αu′] = [⌊αl ′/w⌋,⌈αu′/w⌉] (6)

The whole transformation is depicted in Fig. 4.
Using this building block, we can describe commonly used schedul-

ing approaches such asfixed priority preemptive scheduling[3]. In
this case, to each input streamf ∈ F there is assigned a fixed pri-
ority prio( f ) ∈ Z≥0. At any point in time, a processing device op-
erates on the packet in its memory (see Fig. 3, scheduling policy)
which has the highest priority. If there are packets with thesame
priority, they are served following an FCFS (first come first serve)
strategy. This can be modeled directly using our basic building
block shown in Fig. 4.

3.2 Scheduling Network Construction
Following the overview of the design space exploration shown in

Fig. 1, the scheduling network which enables the estimationof per-
formance measures (such as end-to-end deadlines and memoryre-
quirements) is constructed using the specification data in Section 2
and the system architecture provided by the optimization algorithm.
In order to simplify the explanation, we restrict ourselvesto the use
of a fixed priority scheduling policy for all resource types.How-
ever, our approach can be generalized to other policies as well, such
as GPS [8].

Therefore, the data provided by the multiobjective optimization
block in Fig. 1 are as follows.

Definition 6. The allocation of resources can be described by
the functionalloc(s) ∈ Z≥0 which denotes the number of allocated
instances of resource types. The binding of taskst ∈ T to re-
sources in a specific usage scenariob∈ B is specified by the func-
tion bind(c,t) ∈ Swhich maps a task in a specific scenario-stream
relationc = (b, f ) ∈C to a resource types. The scheduling policy
is described by a functionprio(c)∈Z≥0 which associates a priority
to each stream in a scenario-stream relationc = (b, f ) ∈C.

Note that a system architecture is not only described by the type
and the number of resource components but also by the scenario
dependent mapping of tasks to those components.

Now, we can describe the construction of a scheduling network
for a given scenariob∈B. The basic idea is that the packet streams
pass from one resource to the next one. The order is determined by
the precedence relations inE( f ), see Def. 1. The resource flows,
i.e. the capabilities of the resources, also pass through the network.
The order is mainly determined by the priorities associatedwith
packet streams.

The procedure for creating a scheduling network is given as fol-
lows: Add source and target nodes for all allocated resources. Add
source and target nodes for all packet streamsf in scenariob. For
all taskst ∈V( f ), add a scheduling node as shown in Fig. 4 to the
scheduling network and connect its packet stream input/output ac-
cording to the precedence relations inE( f ). Connect the resource
stream input/output of the scheduling nodes according to the prece-
dence relations and according to the stream priorities in scenariob.

As a result of applying this procedure we get a scheduling net-
work for each scenario, containing source and target nodes for the
different packet streams, and resource flows and schedulingnodes
which represent the computations described in Fig. 4. A concrete
example to illustrate this is given in Fig. 9.

Given the arrival curves for all source packet nodes, i.e.[αl
c,αu

c]
with c = (b, f ) for stream f in scenariob, and the initial service
curves for the allocated resources, i.e.[alloc(s)βl

s,alloc(s)βu
s] for

resource typeswith alloc(s) allocated resources, we can determine
the properties of all internal packet streams and resource flows. It
remains to be seen, how we can determine the end-to-end delays of
packets and the necessary memory.

3.3 Performance Optimization
In order to estimate the properties of a packet processing system

architecture we need quantities like bounds on end-to-end delays
of packets to be processed and on memory requirements.

Using well known results from the area of communication net-
works, see e.g. [5], the bounds derived in Theorem 1 can be used to
determine the maximal delay of events and the necessary memory
to store packets waiting to be processed.

The following two equations give bounds on both quantities:

delayc ≤ sup
u≥0

{

inf{τ ≥ 0 : αu
c(u) ≤ βl

c(u+ τ)}
}

(7)

backlogc ≤ sup
u≥0

{αu
c(u)−βl

c(u)} (8)

In other words, the delay can be bounded by the maximal horizon-
tal distance between the curvesαu andβl , whereas the backlog is
bounded by the maximal vertical distance between them.

In case of the scheduling network constructed above, we have
to know which curves to use in (7) and (8). Forαu

c, we need the
initial upper arrival curve of an incoming packet streamf . The ser-
vice curveβl

c to be used is theaccumulatedcurve of all scheduling
nodes through which the packets of streamf pass in the scenario
b. As described in [2], this quantity can be determined through an
iterated convolution.

Finally, we need to determine some measure for the performance
of a given architecture under a certain usage scenario. Therefore,
we introduce a parameterψb, which is the largest scaling factor
of the packet input streamsf with c = (b, f ) ∈ C according to
[ψbαl

c,ψbαu
c], such that the constraints on end-to-end delays and

memory are still satisfied.

3.4 Piecewise Linear Approximation
The only problem that we are left with is the efficient compu-

tation of the expensive equations in Theorem 1. Note that this set
of equations has to be computed for all scheduling nodes in any
scheduling network. In addition, if the design space exploration is
to be based on evolutionary multiobjective algorithms, theperfor-
mance of many system architectures need to be estimated.

To this end, we propose a piecewise linear approximation of all
arrival and service curves. The approximation consists of acombi-
nation of two line segments and is shown in Fig. 5. As a shorthand
notation we can denote curvesγu andγl by the tuplesU(q, r,s) and
L(q, r,s), respectively.
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Figure 5: Simple representation of upper and lower curves.



Based on this approach, the equations in Theorem 1 and the
equations (7) and (8) can be computedsymbolically. We omit the
explicit formulas because of space restrictions.

Referring to our initial Figure 1, we have now finished the de-
scription of the input specification, the construction of the schedul-
ing network, and the performance optimization. It remains to be
shown, how a multiobjective optimization algorithm can be used to
perform the exploration task and come up with candidate architec-
tures which are then evaluated using our scheme.

4. MULTIOBJECTIVE DESIGN SPACE EX-
PLORATION

As described in the introduction, in the case of network processor
design we are faced with conflicting objectives. Here we showhow
to obtain a tradeoff between the performanceψb in different usage
scenariosb and the cost of the system architecture

cost= ∑
s∈S

alloc(s)cost(s) (9)

We can formulate this task as a multiobjective optimizationprob-
lem where with each implementation there is an associated objec-
tive vectorv = (v0, ...,vk−1) with k elements. The goal is to deter-
mine implementations with Pareto-optimal objective vectors. The
following definition supposes that we are trying to find vectors with
small elements, i.e. we are considering a minimization problem.
Note that our design space exploration problem can be formulated
in this way by, for example, usingv0 = costandvi = 1/ψbi

for all
bi ∈ B, i > 0.

Definition 7. Given a setV of k-dimensional vectorsv∈ R
k. A

vectorv∈V dominates a vectorg∈V if for all elements 0≤ i < k
we havevi ≤ gi and for at least one element, sayk, we havevk < gk.
A vector is called Pareto-optimal if it is not dominated by any other
vector inV.

The architectures with Pareto-optimal objective vectors repre-
sent the tradeoffs in the network processor design. There are many
different approaches to multiobjective optimization, e.g. Tabu search,
simulated annealing or evolutionary algorithms [6]. We have cho-
sen evolutionary algorithms, but other options also could have been
used.

The evolutionary multiobjective optimizer that we have used,
called SPEA2 [6], maintains a population of current solutions and
an archive which stores the best solutions found so far. Indepen-
dent of the optimization principle used, the optimizer generates
new solutions (system architectures) based on the already known
set. These new solutions are then evaluated for their objective vec-
tor. The following methods are used in order to include domain
specific knowledge into the search process:

(1) System architectures are represented according to Def.6. In
particular, the representation contains the allocationalloc(s) for all
resource typess ∈ S, the binding of tasks to resourcesfor each
scenario, and the stream prioritiesfor each scenario.

(2) New system architectures are determined usingmutationand
crossoveroperations [6]. In case of the mutation, either allocation,
or the binding for a scenario, or the priorities are mutated.In case
an infeasible system architecture is generated (see Section 3.2) a
repair strategy is invoked which attempts to maintain a highdiver-
sity in the population. In a similar way, crossover combinestwo
selected solutions to generate a new one by combining eitherthe
allocations, the bindings of a selected scenario, or the priorities of
a selected scenario.

Clearly, because of this heuristic search procedure, no statements
about the optimality of the final set of solutions can be made.There
is experimental evidence, that the solutions found are close to opti-
mal even for realistic problem complexities.

5. EXPERIMENTAL RESULTS
Our input traffic consists of a mixture of real-time (RT) and

non-real-time (NRT) streams. We have considered two scenarios
b1, b2 where the first scenariob1 models a configuration in a net-
work backbone where aggregates of streams are forwarded with the
smallest possible computation requirement but at high bandwidths.
This scenario therefore contains a single stream class for packet for-
warding (NRTForward). The second scenariob2 however resem-
bles an access link from a customer to a service provider. Typically
an access network has relatively low bandwidth but high computa-
tion requirements. The computations are in particular required to
perform encryption, e.g. Triple-DES [1] to allow sensitiveinforma-
tion to be transmitted over untrusted networks of a service provider.
Another application is voice coding/decoding (e.g. in accordance
with ITU G.723.1) to use telephony services over the Internet. Of
course, a network processor for an access link could also be used
to simply forward traffic from the customer to the service provider.
Hence, we define a set of five traffic streamsF = {NRT Forward,
RT Send, RTRecv, NRTEncrypt, NRTDecrypt}, containing two
real-time flows based on voice services and three flows with relaxed
quality of service requirements where two of them apply Triple-
DES. To process these five streams we define 25 tasks, i.e.|T|= 25.
The task graph and the dependencies are shown in Fig. 6.
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The scenario-stream relationC can be represented as in Fig. 7.a).
Here, one can also see an example of an end-to-end deadlined(c),
a memory constraintm(b), and arrival curves[αl

c,αu
c] represented

in the piecewise linear form defined in Section 3.4.
Further, we use 8 different resource typesswith S= {Classifier,

PowerPC, ARM9, MEngine, CheckSum, Cipher, DSP, LookUp}.
Each one of these has different computation capabilities that can
be represented in form of the mapping relationM, see Def. 4.
Part of this specification is represented in Fig. 7.b), including an
example for the implementation costcost(s), number of instances
inst(s) and requestw(t,s). The initial service curves are simply set
to [βl

c,βu
c] = [L(0,0,1),U(0,0,1)], i.e. βl

c(∆) = βu
c(∆) = ∆, reflect-

ing the fact that the resources are fully available for the processing
of the tasks.
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Figure 7: Graphical representation of (a) the scenario-stream
relation C and (b) a part of the task-resource relationM.

Fig. 8 (a screen shot from our tool) shows the initialpopulation
on the left and the final population of a specific design space explo-
ration run on the right. Each dot represents one system architecture
(resources, binding and scheduling policy). The axes represent the
total cost of the implementations (see Eqn. (9)) and the maximum
scaling factor for scenariob1 of the packet input streams until either



the end-to-end deadline or the maximum memory is reached. Note
that we are looking at projections of the three-dimensionalobjec-
tive space on two dimensions. Hence, we do not see the “typical”
Pareto-tradeoff curves. Nevertheless, no objective vector (or sys-
tem architecture) dominates another one (see Def. 7). We will not
discuss the details of the tradeoff curves, but would like topoint
out that the different branches that can be seen in the projection
are caused by the availability of specialized hardware components
which are only useful for some of the input streams.

final population

cost

øinitial population

cost

øY_Scen1 Y_Scen1

Figure 8: Initial population and final population of a design
space exploration run.

Finally, let us look more closely at one of the implementations.
It is marked in Fig. 8 and its objective vector consists ofcost= 67,
the maximal scaling for the input streams for scenario 1 (b1) is
ψb1 = 0.644 and that for scenario 2 (b2) is ψb2 = 0.400. The al-
located resource components are CheckSum, Cipher, ARM9 and
LookUp. Therefore, we havealloc(CheckSum) = alloc(Cipher) =
alloc(ARM9) = alloc(LookUp) = 1 (see Def. 6). In scenario 2
(b2) all the 5 streams inF are present. The ordering of the pri-
orities as determined by the design space exploration for this sce-
nario is: NRTEncrypt, NRTForward, RTSend, RTReceive and
NRT Decrypt. Here the stream NRTEncrypt has priority 1 (i.e.
prio(NRT Encrypt) = 1) and NRTDecrypt has priority 5. Due to
space restrictions, not all bindings are given here. The task Veri-
fyIPHeader is mapped to the CheckSum resource, tasks ProcessIP-
Header, Classify, VoiceEncoder, RTPTx, UDPTx, BuildIPHeader
are executed on the ARM9 resource and tasks RouteLookUp are
mapped to the LookUp resource. Based on this information, the
system internally builds the scheduling graph and evaluates it ac-
cording to the methods described in Section 3. Part of the schedul-
ing network (see Section 3.2) is represented in Fig. 9.
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Figure 9: Part of a schedule network constructed for the perfor-
mance estimation of a given system architecture. The schedul-
ing policy is fixed priority and the internal scheduling nodes cor-
respond to the basic blocks shown in Fig. 4.

Our tool performed the above described design space exploration.
It uses the evolutionary optimization tool SPEA [6], and an im-
plementation of performance optimization, population andarchive
handling, mutation, crossover and repair in Java. The graphical
output used the Ptolemy-Plot routine from UC Berkeley [9], the
graphical input and tool integration was based on the modeling and
simulation tool MOSES [7]. The experiments have been run on a
Pentium III under LINUX. The population size was 100 system ar-
chitectures and the optimization was stopped after 300 generations.

Each generation, i.e. the mutation, crossover and performance op-
timization (including scheduling network construction) takes about
2 sec which leads to an overall optimization time of 10 minutes.

6. CONCLUDING REMARKS
We presented several new results concerning the modeling and

design space exploration of packet processing devices, such as net-
work processors. Our work involves a careful combination ofsome
known and some new solutions: (1) modeling the flow of packet
streams through a heterogeneous system architecture consisting of
computation and communication components using a scheduling
network, (2) using a real-time calculus to determine end-to-end
deadlines and memory requirements and using piecewise linear ap-
proximations for fast performance estimation, and finally (3) com-
bining these models and methods in a design exploration system
for packet processors.

These results are based on several abstractions. In particular, we
neglect effects of caching, separate memories, and shared commu-
nication resources in the processor architecture. The extension of
the presented work to incorporate these additional constraints is a
subject of further investigation.
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