Multi-objective Mapping for Mesh-based NoC Architectures

Giuseppe Ascia
Dipartimento di Ingegneria
Informatica e delle
Telecomunicazioni
University of Catania, ltaly

gascia@diit.unict.it

ABSTRACT

In this paper we present an approach to multi-objective exploration
of the mapping space of a mesh-based network-on-chip architec-
ture. Based on evolutionary computing techniques, the approach
is an efficient and accurate way to obtain the Pareto mappings that
optimize performance and power consumption. Integration of the
approach in an exploration framework with a kernel based on an
event-driven trace-based simulator makes it possible to take ac-
count of important dynamic effects that have a great impact on
mapping. Validation on both synthesized traffic and real appli-
cations (an MPEG-2 encoder/decoder system) confirms the effi-
ciency, accuracy and scalability of the approach.

Categories and Subject Descriptors

B.4.3 [Input/Output and Data Communications]: Interconnec-
tions (Subsystems); 1.6.7 [Simulation and Modeling]: Simula-
tion Support Systems—Environments; G.1.6 [Numerical Analy-
sis]: Optimization

General Terms

Performance, Design

Keywords

Network-on-chip, mapping, multi-objective optimization, genetic
algorithms, simulation.

1. INTRODUCTION

Continuous improvements in semiconductor technology mean
that a whole processing system comprising processors, memories,
accelerators, peripherals, etc. can now be integrated in a single
silicon die. In addition, a reduction in the time-to-market has led
researchers to define methods based on the reuse of pre-designed,
pre-verified modules in the form of intellectual properties (IPs).
Despite this, hardware designers are not yet able to fully exploit the
abundance of transistors that can be integrated with current technol-
ogy. Designer productivity, in fact, is growing by just 20% a year,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+ISSS’04, September 8-10, 2004, Stockholm, Sweden.

Copyright 2004 ACM 1-58113-937-3/04/0009 ...$5.00.

Vincenzo Catania
Dipartimento di Ingegneria
Informatica e delle
Telecomunicazioni
University of Catania, ltaly

vcatania @diit.unict.it

182

Maurizio Palesi
Dipartimento di Ingegneria
Informatica e delle
Telecomunicazioni
University of Catania, Italy

mpalesi @diit.unict.it

as compared to an increase of over 60% a year by technology. Pro-
jections show that synchronous regions will occupy an increasingly
lower fraction of a chip [13] giving rise to locally synchronous,
globally asynchronous solutions [7]. Applications will be mod-
eled as a set of communicating tasks with different characteristics
and origins, which will make implementations extremely hetero-
geneous. A type of architecture which lays emphasis on modular-
ity and is intrinsically oriented towards supporting such heteroge-
neous implementations is represented by Network-on-Chip (NoC)
architectures [3]. These architectures loosen the bottleneck due to
delays in signal propagation in deep-submicron technologies and
provide a natural solution to the problem of core reuse by stan-
dardizing on-chip communications. In this paper we will focus on
mesh-based NoC architectures, in which resources communicate
with each other via a mesh of switches that route and buffer mes-
sages. A resource is generally any core: a processor, a memory, an
FPGA, a specific hardware block or any other IP compatible with
the NoC interface specifications.

One of the most onerous tasks in this context is the topological
mapping of the resources on the mesh in such a way as to opti-
mize certain performance indexes (e.g. power, performance). It is
therefore of strategic importance to define methods to search for a
mapping that will optimize the desired performance indexes.

The problem of mapping in mesh-based NoC architectures has been
addrees in three previos papers. Hu and Marculescu [8] present
a branch and bound algorithm for mapping IPs/cores in a mesh-
based NoC architecture that minimizes the total amount of power
consumed in communications with the constraint of performance
handled via bandwidth reservation. Murali and De Micheli [11]
address the problem under the bandwidth constraint with the aim
of minimizing communication delay by exploiting the possibility
of splitting traffic among various paths. Lei and Kumar [9] present
an approach that uses genetic algorithms to map an application,
described as a parameterized task graph, on a mesh-based NoC ar-
chitecture so as to minimize the execution time.

These papers do not, however, solve certain important issues. The
first relates to the mapping evaluation model used, which can be de-
fined as “static”. The exploration algorithm decides which mapping
to explore without taking important dynamic effects of the system
into consideration, such as the variation in delay due to the switch
input buffers which, as we will see, have a great impact on choice
of the mapping. In agreement with [12], we believe that analyt-
ical methods make too many assumptions about the network and
traffic to get accurate values for real systems. The second problem
relates to the optimization method used. It refers in all cases to a
single performance index (power in [8], performance in [11, 9]).
As we will see in the section devoted to experiments, optimiza-
tion of one performance index may lead to unacceptable values for



another performance index (e.g. high performance levels but unac-
ceptable power consumption). We therefore think that the problem
of mapping can be more usefully solved in a multi-objective envi-
ronment, i.e. one in which there is no single solution but a set of
mapping alternatives (which we will indicate as Pareto mapping),
each featuring a different tradeoff between performance indexes,
from which the designer (or decision maker) will choose the most
suitable.

In this paper is to propose a multi-objective approach to solving
the problem of mapping IPs/cores in mesh-based NoC architec-
tures. The approach will use evolutionary computing techniques
to explore the mapping space. The mappings visited during the
exploration process will be evaluated using a simulation-based ap-
proach and the optimization objectives will be performance and
power consumption. The simulation-based approach makes it pos-
sible to evaluate the impact of the main architectural and applica-
tion parameters on performance and power.

The rest of the paper is organized as follows. Section 2 presents the
simulation and evaluation framework used. The impact of the ar-
chitectural and application parameters on the performance indexes
considered is assessed in Section 3. Section 4 presents the algo-
rithm for exploration of the mapping space and evaluates it in terms
of accuracy and efficiency in different traffic scenarios. Finally,
Section 5 summarizes our contribution and outlines some direc-
tions for future work.

Tile (0,0) Tile (0,1) ( \ Tile (0,2)
Switch Switch Switch
Resource Resource Resource
Tile (1,0) \ Tile (1,1) ( *\ Tile (1,2) (
Switch Switch Switch
Resource Resource Resource
Tile (2,0) \W Tile (2,1) \ Tile (2,2) (
Switch Switch Switch
Resource Resource Resource

Figure 1: Structure of a 3x3 mesh-based NoC architecture.

2. EVALUATION OF A MAPPING

Figure 1 shows the NoC topology we will refer to. It is a two-
dimensional mesh of processing resources. Each processing re-
source is connected to the communication network by a switch.
We will call the pair formed by a resource and a switch a tile. The
term mapping will be used to indicate assignment of an IP/core to
each tile in the NoC. In this section we will describe the simulation
and power and delay estimation model used to evaluate a mapping.
Each switch in the NoC is connected to the four adjacent switches
except for those at the network boundaries. On each side of a switch
there is an output and an input port. The input port has a finite-
length FIFO buffer in which packets to be routed are queued. The
routing algorithm features static XY routing in which a packet is
first routed in a horizontal direction (X) and then, when it reaches
the column where the destination tile is located, it is routed in a
vertical direction (Y). The point-to-point connections between two
switches and between a switch and a resource are taken to be 256-
bit (which corresponds to the size of a packet). As a transmission
scheme we use wormhole routing.

To describe the functioning of the various components of the sim-

183

Condition

Figure 2: Behavioural annotated graph (BAG).

ulation framework we will use a representation based on a variation
of a finite-state machine which we will indicate as a behavioral an-
notated graph (BAG). Each machine state is identified by a name,
a set of operations (op1,...,0p,) and two attributes which we will
call latency and power (Figure 2). Transition from one state to
another is represented by an oriented arc associated with a condi-
tion (transition only occurs when the condition is met). The con-
ditions are evaluated after a time equal to the value of the attribute
latency, starting from the instant at which the state is entered. If
none of the conditions on the arcs are met, the machine remains
in the current state and the process is repeated. Otherwise there is
a state transition and the total energy consumption is calculated as
the product between power and the time spent in the state. Figure 3

Buffering
a.Pop()

Core Buffer

p.Head() OR
p-Body()

p=a.Top()

true

Figure 3: Behavioural annotated graph of a generic core.

shows the BAG for a generic core. In the Idle state the average
amount of power consumed by a core is Pl.iicloere). If there is at least
one packet in the input queue it passes to a fictitious state (fea-
turing latency = 0 and power = 0) in which the type of packet is
evaluated. If it is the first in a data flow directed towards the core
involved (head packet, H) or an intermediate packet (body packet,
B) the core switches to the Buffering state, with an average power
consumption of g;;r;) and a latency of Tb(:';;e>. This state allows us
to simulate situations in which a core starts to process the data, not
on a packet basis but on a set of data that cannot be contained in a
single packet. If, on the other hand, the packet is the last in a com-
munication flow, the core switches to the Process state in which the
packet is actually processed, with an average power consumption
of Pf,jﬁc’i}s and a latency of T}ﬁf{j}x The operation performed in
both these states is to consume the packet at the head of the queue
and then, when the latency time ends, to switch unconditionally
back to the Idle state.

Figure 4(a) shows the interface of a switch. Each of the five input
ports has an associated queue (bufter). Each output port is associ-
ated with an input signal (with the suffix Ready) which is asserted
whenever the element connected to the relative port is ready to ac-
cept a packet. Figure 4(b) shows the BAG for a generic switch. In

the Idle state a switch consumes on average PiS;:tCh). If there is
at least one packet in at least one of the 5 input queues the switch

passes to a fictitious state (with larency = 0 and power = 0) in



No Ni

A1
NReady
wi o Ei
Wo +—— Switch |——»ko
WRead!  —
EReady
N /' z
N \’?@0& J ISReady
Si So

Routing
d=Route(p),

WiEmpty()

Figure 4: Switch interface (a), Behavioural annotated graph of
a switch (b).

which the packet is read and immediately afterwards to the Rout-
ing state. In this state (which features an average power consump-
tion of Pf{f;vlli;c:) and a latency of Trgfxifh)) the output port on which
to route the packet is determined ancig the relative fictitious state
(LOCAL, NORTH, SOUTH, EAST, WEST) is entered. Only when
the packet is ready to be transmitted (ready=true) does the switch
pass to the Transmit state in which the packet at the head of the
input queue is extracted and then, on expiry of the latency time

switch .- .
ls;v:l;lrflit), unconditionally returns to the Idle state, with an average

power consumption of ﬂs;v:llglfn}:t) , which models the power consumed
on the interconnection buses between the switches.

The simulation is event-based and is performed by stimulating the
network with concurrent trace files. Each trace file is a sequential
list of communication patterns. Each pattern comprises three fields:
a source identifier, a destination identifier, and the amount of infor-
mation exchanged. The amount of traffic sent by the source core to
the destination core is subdivided into packets and each packet is
routed according to the routing scheme and BAGs described above.

3. MOTIVATION

In this section we wish to demonstrate (using an experiment-
based approach) that accurate modeling of the communication dy-
namics is essential in order to evaluate a network.

We will begin our analysis by considering as our performance pa-
rameter the speed at which a network handles a certain amount of
incoming traffic. This mainly depends on the speed at which the
switches route packets. If, for example a switch A has to forward
the packet at the head of the input queue from its port o to the
port 3 in the adjacent switch B, two events can occur: (i) the input

184

queue in the port f is not full, or (ii) the input queue in the port
is full. In the former case, A can forward the packet, thus freeing
a slot in the queue in port . In the latter case, A has to wait for
B to eliminate at least one packet from the input queue in port 3
before it can forward the packet. In general, therefore, the overall
performance of the network (measured as the time required to han-
dle all the incoming traffic) improves if the size of the switch input
queues increases. With an increased input queue capacity, in fact,
a generic switch needing to forward a packet to another switch will
have a greater probability of being able to queue the packet in the
input port of the other switch.

Figure 5 shows the time required to handle traffic versus the size

13501

1300

1250

delay metric

1200

1150

queue length (packet)

Figure 5: Traffic draining time vs. switch input queue size.

of input queues in the switch ports. The values were obtained on
a 5x5 network. The latency and power attributes of the core BAGs
were randomly set between O and 1 for each core and 0.1 for all
the switches. The traffic was generated considering communica-
tion between the network nodes to be equally probable (that is, the
probability that node A will communicate with node B is equal to
the probability that node C will communicate with node D, how-
ever A, B, C and D are taken). The flow of data exchanged be-
tween two nodes has a Gausssian distribution with an average of
128 bytes and a variance of 64 bytes. Eight different traces formed
by 100 patterns were injected in parallel, so as to simulate 8 con-
current communications at each instant. Each point in the graph
was obtained by measuring the time taken to handle the traffic in
100 different mappings and calculating the average value.

It can, however, be observed that in some cases an increase in the

6~ queue length = 2
&~ queue length =4

1450

1400

13s0(-

delay metric

g

12501

5 6
mapping

Figure 6: Traffic draining time for 10 different mappings and
two different networks (with switch input queues of 2 and 4
packets).

size of the switch queues may increase the traffic handling time.
Figure 6 shows this possibility. It gives the traffic handling time
for 10 different mappings with switches having input queues that
allow a maximum of two and four packets to be queued. The traffic



handling times for the second network are generally shorter than
those for the first network, with one exception. With mapping 6, in
fact, the traffic is handled faster in the first network. This behavior
can only be detected via a dynamic analysis of the system, that is
by taking into account the dynamic interaction between the various
traffic flows, which is only possible by performing trace-based sim-
ulations.
It should also be observed that the optimal mapping is greatly af-
fected by the architectural parameters of the network. Let us con-
sider, for example, the size of the switch input buffers. In Figure 6
it can be seen that a mapping may be optimal for one network but
not for another. Of the 10 mappings considered, in fact, mapping
5 is by far the best for the second network but the second worst for
the first network.

To evaluate the impact of mapping and relate it to the traffic char-

6
concurrent communications

Figure 7: Relation between maximum and minimum traf-
fic draining time for 1,000 random mappings with varying
numbers of concurrent communications and different network
sizes.

acteristics the following experiment was performed. 1000 map-
pings were randomly generated for each network n x n,n € {3,4,5}.
[nz /2] simulations were run for each mapping, relating to different
traffic scenarios. These scenarios differed in the number of pairs of
cores simultaneously communicating with each other. They range
from an absolute lack of concurrency (that is, one and only one pair
of cores are communicating at any one time) to maximum concur-
rency (at any one time there are [n? /2] pairs of cores communicat-
ing with each other). Figure 7 shows the relationship between the
maximum and minimum traffic draining times for 1,000 random
mappings in the traffic scenarios described above. As can be seen,
when the size of the network increases, so does the impact of map-
ping on performance. For a 5x5 network, for example, choosing a
suitable mapping can improve performance by over 40%. It should
be pointed out that these values are extremely conservative. They
were obtained considering only 1,000 random mappings as com-
pared with the 25! ~ 102> that are possible. It should also be noted
that the impact of mapping depends greatly on the traffic character-
istics. In all the cases considered, the maximum impact is obtained
in traffic scenarios in which the number of pairs of cores communi-
cating concurrently is equal to half the maximum number of pairs
that can communicate concurrently.

4. MULTI-OBJECTIVE EXPLORATION OF
THE MAPPING SPACE

In this section we will describe our proposal for multi-objective
exploration of the mapping space. To the best of our knowledge,
our work is the first to address the mapping problem in an multi-
objective fashion. The approach uses evolutionary computing tech-

185

niques, specifically genetic algorithms (GAs), to obtain an approx-
imation of the Pareto-optimal performance/energy front.

4.1 Exploration Framework

Figure 8 shows the framework for exploration of the space of
possible mappings in mesh-based NoC architectures. It comprises

Computation Task Graph

Ips/cores
portfolio

Assign/Schedule

Architectural
parameters

Application

BAGs parameters

NoC simulator

Performance
indexes

Mappings

Exploration engine

Mappings
archive

Pareto mappings

Figure 8: Framework for simulation and exploration of the
mapping space.

two macro blocks: a NoC simulator (to evaluate the performance
indexes to be optimized for any mapping), and an Exploration en-
gine (which determines the next mapping to be evaluated). The
inputs to the framework are:

o Architectural parameters: for example, topology, network
size, communication protocols, size of buffers in switches,
priority assignment schemes, etc.

o Application parameters: these mainly refer to the character-
istics of the communication traffic involved in the application
being considered.

e Set of BAGs: these specify the functional behavior of each
element in the NoC and also contain characterization infor-
mation for estimation of the timing and power consumption
parameters.

The flow of operations involved in exploration generally consists of
repeating two phases: evaluation of one or more mapping alterna-
tives, and determination of the next mapping/s to be evaluated. The
first phase is carried out using a NoC simulator, which evaluates
the performance indexes to be optimized. These represent the input
for the second phase, which implements the exploration algorithm
and produces the next mapping/s to be evaluated. The mappings
evaluated are stored and can be used by the exploration algorithm
to decide the next step. This iterative process is concluded when
a stop criterion is met. Then the non-dominated mappings (Pareto



mappings) are extracted from the mappings evaluated. In this pa-
per we will focus on the second phase of the framework, the one
referring to the mapping space exploration algorithms.

4.2 GA-based Multi-objective Exploration of
the Mapping Space

When the exploration space is too vast to be explored exhaus-
tively, a solution is to use evolutionary computing techniques. Ge-
netic Algorithms (GAs) have found application in various VLSI
design environments [10]: in problems relating to layout such as
partitioning, placement and routing; in design problems including
power estimation, low-power synthesis, technology mapping and
netlist partitioning and in reliable chip testing through efficient test
vector generation. All these problems are untreatable, in the sense
that no polynomial time algorithm can guarantee an optimal solu-
tion.
In this paper we propose to use GAs for multi-objective mapping
space exploration in a mesh-based NoC architecture in order to ob-
tain an accurate approximation of the Pareto-optimal front of the
mappings that optimize performance and power consumption. The
approach is general because the solution to any problem using GAs
only requires definition of a representation of the configuration, ge-
netic operators and objective functions to be optimized. It is also
an efficient approach because, as we shall see below, it only needs
to visit a very limited number of configurations to provide an accu-
rate approximation of the Pareto-optimal set. More specifically, we
chose SPEA2 [14], which is very effective in sampling from along
the entire Pareto-optimal front and distributing the solutions gener-
ated over the trade-off surface.
To apply a GA to the problem being examined, it is necessary to
define the chromosome and genetic operators. The chromosome is
a representation of the solution to the problem, which in this case
is described by the mapping. Each tile in theNoC has an associated
gene which encodes the identifier of the core mapped in the tile. In
an n x m NoC, for example, the chromosome is formed by n x m
genes. The i-th gene encodes the identifier of the core in the tile
in row [i/n] and column i%n (where the symbol % indicates the
modulus operator). We use single-point-crossover and mutation to
generate the next new population. More specifically, the function
performed by the genetic operators is to remap hot spot cores in
a random fashion (a hot spot core being one whose switch has a
greater average buffer occupation). The definition of suitable and
more effective genetic operators has a great impact on the results
of the optimization. This is not, however the aim of this paper and
remains a topic for future research.

4.3 Experiments

We will start by evaluating the performance of the exploration
strategy on a synthesized case, i.e. one in which the traffic is gen-
erated statistically without particular reference to a specific appli-
cation. We considered a 4x4 network and 8 traces of concurrent
communications. The statistical distribution of the destination ad-
dresses was randomly chosen for each trace, and the size of the
data flow exchanged between two nodes had a Gaussian distribu-
tion with an average of 128 bytes and a variance of 64 bytes. The at-
tributes of the BAGs for the cores and switches were chosen at ran-
dom between 0 and 1 and four input queues were assigned to each
switch. As it is computationally unfeasible to explore each pos-
sible mapping exhaustively, the solutions obtained using the pro-
posed approach were compared with those obtained by randomly
sampling the mapping space in 200,000 different points.

Figure 9 shows the 200,000 random mappings evaluated and the
Pareto fronts obtained by the proposed approach after 10, 20, 50

186

+ random
-6 GA, 10 gens
—— GA, 20 gens
—— GA,50gens []
—5- GA, 100 gens

energy metric

1300 1350 1400 1450 1500

delay metric

1100 1150 1200 1250 1550

Figure 9: Evaluation of 200,000 random mappings and Pareto
fronts obtained using the proposed approach.

and 100 generations. As can be seen, after only 10 generations
(using a population size and archive size of 50 and 10 elements re-
spectively), the solutions obtained are not dominated by any of the
200,000 random mappings. The solutions obtained after 10 gener-
ations are better than those obtained by evaluating 200,000 random
mappings. 10 generations required evaluation of only 680 map-
pings, i.e. less than 0.7%, with a consequent speedup of 147.

To evaluate the proposed approach on a real case study, it was ap-
plied to a system comprising an MPEG-2 encoder and decoder [1].
The encoder was subdivided into 9 separate tasks and the decoder
into 4 tasks, communicating with each other using a shared mem-
ory. They were assigned and scheduled on 12 IPs [4, 5, 6] compris-
ing DSPs, generic processors, embedded DRAMs and customized
ASICs. Figure 10 shows the partitioning of the application and as-
signment of the IPs.

Encoder

cPu2

Motion
Estimation

Inverse
Quantization

DSP2

DCT Type
Estimation

Decoder

Figure 10: Partitioning of the MPEG-2 (encoder and decoder)
application.

The traffic traces were obtained directly by executing the encoder-
/decoder application on the first 5 frames of two different movie
clips. The application was partitioned by identifying the parts that
were to be implemented by the IPs chosen and then adding moni-
toring code in order to capture the inter-communication traffic be-
tween the IPs. The data for characterization of the IPs were taken
from their respective datasheets. To characterize the switches, a
5x5 switch was implemented in VHDL following the architecture
described in [2]. It was synthesized with Synopsys Design Com-
piler using the Virtual Silicon 0.13um, 1.2V technological library



High performance Low energy
L o ! 2 LIl o ! 2|
0 || ASIC2 ASICS ASICI 0 || ASIC2 ASIC5 ASICI
1 || ASIC3 ASIC4 MEMI1 1 || ASIC3 ASIC4 MEMI
2| DSP3 DSP2 CPU2 2 || CPU1 DSP1 CPU2
3 || MEM2 CPU1 DSPI 3 || MEM2 DSP3 DSP2

Execution time: 40.6 ms
Energy: 18.9 mJ
(a)

Execution time: 41.4 ms
Energy: 16.2 mJ
(b)

Figure 12: High performace mapping (a), and low energy mapping (b).

and analyzed using Synopsys Design Power.
Figure 11 shows the power and execution time values for 100,000

005 0052 0054 0056 0058
time (sec)

0044 0046  0.048

0.042

0.06

Figure 11: Evaluation of 100,000 random mappings and Pareto
fronts obtained using the proposed approach on a 4x3 NoC in
which an MPEG-2 encoder and decoder are mapped.

random mappings. It also gives the Pareto front of the mappings
obtained by the proposed approach after 5, 20 and 100 generations.
As can be seen, after only 20 generations (which correspond to just
over 1,000 simulations), the solutions obtained by the proposed ap-
proach are not dominated by any of the 100,000 random mappings
and are very close to those obtained after 100 generations.

Figure 12 shows the two mappings relating to the end points of the
Pareto front which respectively determine maximum performance
and minim power consumption. This example clearly shows the
usefulness of multi-objective exploration Mono-objective explo-
ration aiming at optimizing performance alone, for example, would
have produced the mapping shown in Figure 12(a), neglecting the
mapping in Figure 12(b) which, although it performs 2% less well,
is 17% more efficient from the point of view of power consumption.
In Figure 12 the cores for the decoder subsystem are shown in bold
type. It is interesting to note that the two subsystems are mapped
in two disjoint partitions of the mesh. The genetic algorithm gener-
ally partitions the mesh into highly interactive clusters of cores and
then optimizes the positioning of the cores in each cluster. At the
same time it also optimizes inter-cluster communications, as can be
seen by observing the two mappings shown in Figure 12. In both
cases DSP1, which implements calculation of the DCT and IDCT,
is mapped on the boundary between the two partitions as the core
is used by both subsystems.

S. CONCLUSIONS

In this paper we have proposed a strategy for topological map-
ping of IPs/cores in a mesh-based NoC architecture. The approach
uses heuristics based on multi-objective genetic algorithms to ex-

187

plore the mapping space and find the Pareto mappings that optimize
performance and power consumption. The experiments carried out
on both synthesized traffic and real applications (an MPEG-2 en-
coder/decoder system) confirm the efficiency, accuracy and scala-
bility of the approach. Future developments will mainly address
the definition of more efficient genetic operators to improve the
precision and convergence speed of the algorithm. Evaluation will
also be made of the possibility of optimizing mapping by acting
on other architectural parameters such as routing strategies, switch
buffer sizes, etc.

6. REFERENCES

[1] L D. 13818-2. MPEG-2 video. ISO standard, 1994.

[2] N. Banerjee, P. Vellanki, and K. S. Chatha. A power and performance model
for network-on-chip architectures. In Design, Automation and Test in Europe,
pages 1250-1255, Feb. 16-20 2004.

W. J. Dally and B. Towles. Route packets, not wires: On-chip interconnection
networks. In Design Automation Conference, pages 684-689, Las Vegas,
Nevada, USA, 2001.

M. Graphics. Inventra intellectual property cores.
http://www.mentor.com/inventra/cores/.

Altera. Altera intellectual property: IP megastore.
http://www.altera.com/products/ip/.

Philips Electronics. Philips’ IP portfolio.
http://www.semiconductors.philips.com.

A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson, J. Oberg,
P. Ellervee, and D. Lundqvist. Lowering power consumption in clock by using
globally asynchronous locally synchronous design style. In ACM IEEE Design
Automation Conference, pages 873—-878. ACM Press, 1999.

J. Hu and R. Marculescu. Energy-aware mapping for tile-based NoC
architectures under performance constraints. In Asia & South Pacific Design
Automation Conference, Jan. 2003.

T. Lei and S. Kumar. A two-step genetic algorithm for mapping task graphs to
a network on chip architecture. In Euromicro Symposium on Digital Systems
Design, Sept. 1-6 2003.

P. Mazumder and E. M. Rudnick. Genetic Algorithms for VLSI Design, Layout
& Test Automation. Prentice Hall, Inc., 1999.

S. Murali and G. D. Micheli. Bandwidth-constrained mapping of cores onto
NoC architectures. In Design, Automation, and Test in Europe, pages 896-901.
IEEE Computer Society, Feb. 16-20 2004.

S. G. Pestana, E. Rijpkema, A. Radulescu, K. Goossens, and O. P. Gangwal.
Cost-performance trade-offs in networks on chip: A simulation-based
approach. In Design, Automation, and Test in Europe, pages 896-901. IEEE
Computer Society, Feb. 16-20 2004.

D. Sylvester and K. Keutzer. Getting to the bottom of deep submicron. In
IEEE/ACM International Conference on Computer-aided design, pages
203-211. ACM Press, 1998.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the performance
of the strength pareto evolutionary algorithm. In Evolutionary Methods for
Design, Optimization and Control with Applications to Industrial Problems,
pages 95-100, Athens, Greece, Sept. 2001.

3

[4]

[5

[6

[7]

[8

9

[10]

[11]

[12]

[13]

[14]



	Main Page
	CODES+ISSS'04
	Front Matter
	Table of Contents
	Author Index




