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Delay Analysis for Wireless Networks with Single Hop Traffic and
General Interference Constraints

Gagan Raj Gupta, Ness B. Shroff,Fellow, IEEE

Abstract—We consider a class of wireless networks with
general interference constraints on the set of links that can be
served simultaneously at any given time. We restrict the traffic
to be single-hop, but allow for simultaneous transmissions as
long as they satisfy the underlying interference constraints. We
begin by proving a lower bound on the delay performance of
any scheduling scheme for this system.

We then analyze a large class of throughput optimal policies
which have been studied extensively in the literature. The delay
analysis of these systems has been limited to asymptotic behavior
in the heavy traffic regime and order results. We obtain a tighter
upper bound on the delay performance for these systems. We use
the insights gained by the upper and lower bound analysis to
develop an estimate for the expected delay of wireless networks
with mutually independent arrival streams operating under the
well-known Maximum Weighted Matching (MWM) scheduling
policy. We show via simulations that the delay performance of
the MWM policy is often close to the lower bound, which means
that it is not only throughput optimal, but also provides excellent
delay performance.

Index Terms—Wireless Networks, Scheduling, Delay Analysis,
Interference, Lyapunov function.

I. I NTRODUCTION

In a wireless system, users compete for accessing a shared
transmission medium. Since link transmissions cause mutual
interference, the medium access layer (MAC) is needed to
schedule the links carefully so that packets can be transmitted
with minimal collisions. Many scheduling policies have been
studied at the MAC layer with the objective of maximiz-
ing throughput. These schemes are often called throughput-
optimal scheduling schemes. However, the delay analysis of
these systems has largely been limited. Our focus in this
paper is to analyze the expected delay for this system. To that
end, we will derive upper and lower bounds on the expected
delay, and also provide an accurate estimate of the expected
delay for a well-known and extensively-studied (e.g., [1]–[4])
throughput-optimal scheme called the Maximum Weighted
Matching (MWM).

To simplify the analysis we, in common with related work
[3], [5], [6], restrict the traffic model to single-hop traffic.
Under the single-hop traffic model, all packets transmittedon
a link (s,d) are generated by an exogenous arrival processAd

s

at the source nodes. As shown in Figure 1, the exogenous
arrivals waiting to be transmitted at each link are queued in
their respective queues. This approach has also been adopted
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Fig. 1. Figure showing a wireless network with single-hop traffic. All packets
Ad

s , transmitted on link (s,d) are exogenous and are queued (Qs,d denotes
the queue length). All the links that interfere with link (g,h) are shown.

in the literature while studying the throughput performance
of scheduling policies for wireless networks. This allows us
to study the effect of scheduling policy on the delay of the
system, independent of routing.We note that this model allows
for simultaneous transmissions as long as they satisfy the
underlying interference constraints. Such systems are more
general than the cellular type systems where the system is
divided into non-interfering cells. The results presentedhere
work for any underlying model for interference constraints.

The design of scheduling policies which stabilize the system
even under single-hop traffic is a challenging task. Intuitively,
the scheduler must schedule as many links as possible in
every time slot. Such schedulers are called maximal schedulers
(as opposed to maximum weighted schedulers that also take
the queue length into account). However, even with max-
imal scheduling, some of the queue lengths may become
unbounded. The reason is that if the scheduler does not use the
queue length information, some of the queues may grow large,
while others remain very small or become empty. This, in
turn, does not allow the scheduler to schedule a large number
of queues and leads to instability. Thus a throughput optimal
policy like MWM, carefully uses the information of the queue
lengths while scheduling the links.

The above behavior caused by throughput-efficient sched-
ulers significantly complicates the delay analysis of these
systems, because the service process of each link is governed
not only by the interference constraints, but also by its queue
length.

For example, in a wireless network operating under a
throughput optimal policy, such as the MWM policy, the
expected delay at a link may be large even if the arrival rate



2

is small. This is because these policies try to schedule the
longer queues in the system or in other words, they prevent
the queues from becoming very large. This can be thought of
as a mechanism to balance the queue lengths in the system. It
is not clear how this effects the system-wide expected delay,
especially under light or medium traffic loads.

We now state our main contributions in this paper:

• Development of a fundamental lower bound on the ex-
pected queuing delay of a wireless network regardless of
the scheduling policy used.

• Development of an upper bound on the expected delay of
a throughput optimal scheduling policy, GMWM (a gen-
eralization of MWM), under a single-hop traffic model.

• Development of an estimate for the expected delay in
a wireless network with mutually independent arrival
streams, under a MWM type policy, given the load and
the interference constraints. Further, the estimate is shown
to lie between the upper and lower bounds developed
above. We show through simulations that for single-hop
traffic and any given load within the capacity region, the
estimate is accurate.

II. RELATED WORK

Most of the analysis of scheduling policies for the wire-
less systems has been limited to stability results. A stable
scheduling policy is guaranteed to keep the average queue
lengths in the system finite, but the tightness of the upper
bound on the average queue length is not known. One of
the techniques used for deriving upper bounds on the average
queue length for these systems is the method of Lyapunov
drifts developed in [2], [5], [7], [8]. However, these results
are order results and provide only a limited understanding of
the delay of the system. For example, it has been shown in
[5] that the maximal matching policies achieveO(1) delay for
networks with single-hop independent Poisson traffic when
the input load is in the reduced capacity region. However,
for arbitrary networks, this region may be only a small
fraction of the capacity region,C (see [9]). Informally, the
(maximum) capacity regionC is the set of mean flow rate
vectors (λ1, ..., λN ) such that there exists a scheduling rule
making the queue length process stable.

Simulations have shown that two schemes that guarantee
stability for the full capacity region can have very different
delay characteristics. The results presented in [3] suggest that
a policy that provides stability guarantees in the full capacity
region may have worse delay characteristics than another pol-
icy which provides weaker guarantees. The comparison of an
implementation of a throughput optimal algorithm (Pick and
Compare) with sub-optimal algorithms like maximal matching
is studied in [9]. It is shown that underPick and Comparetype
scheduling algorithms, queues in the system grow very large
and are hence such idealized algorithms are not realizable in
practice.

Since throughput by itself does not seem to be a good
metric to differentiate between scheduling algorithms, the
development of analytical techniques to compare other metrics
of performance such as delay is crucial. In [10], the authors

observe that there is no theoretical result comparing the
delay performance of a RANDOM scheduler to the MWM
algorithm. The upper bound developed in this paper allows us
to show that the expected delay performance of GMWM is
no worse than the performance of any stationary randomized
policy.

In [11]–[13], cellular systems are analyzed and large devi-
ations results are obtained to calculate queue-overflow prob-
ability. The analysis is much harder for the wireless network
considered here, due to the complex interactions of the ar-
rival, service, and backlog process. Order-optimal results for
the expected delay a wireless up-link down-link system are
presented in [8]. The bounds presented here are sharper than
the those obtained by [8] and are also order-optimal in the
context of the system studied in that paper.

One of the results that has been shown about the MWM
scheduling policy is that it is asymptotically optimal in the
heavy traffic regime [14], [15] under the assumption of re-
source pooling. However, this result does not provide any
estimate of the delay. It is also not known whether these
policies continue to be optimal for an arbitrary load in the
capacity region.

The lower bound presented in this paper uses the con-
cept of exclusive sets(defined in Section III) to characterize
constraints on the scheduling policy. We analyze a fictitious
scheduling policy based on exclusive sets that is amenable to
analysis and show that its expected delay is a lower bound on
the performance of any other scheduling policy. The exclusive
sets correspond to cliques in the constraint graph and were
also studied in [16] for the purpose of analyzing the impact of
interference on the throughput capacity of a multi-hop wireless
network. The authors proved that the polytope generated by
these sets is an upper bound on the capacity regionC and
may be loose. We find that these exclusive set constraints
are nonetheless very useful for delay analysis, since they
also constitute some of the faces of the capacity polytopeC.
We observe in our simulations that for several representative
topologies, the performance of MWM scheduling policy is
close to the lower bound. The upper bound on the other hand
captures all the interference constraints in the system and
whenever the upper bound goes to infinity, the average delay
of the system under the GMWM policy also becomes infinite.

Delay optimal schemes have been proposed in the liter-
ature [17] for wireless networks, which typically minimize
an expected delay metric (assuming that the system behaves
as M/M/1). We note that there is no reason to assume that
M/M/1 approximation will be accurate because the service
process could be very complex in this system, given that
the interference constraints have to be met at every time-
slot. Neither are we aware of any result which shows that a
policy that minimizes the M/M/1 delay metric also minimizes
the delay for the system. In fact, we expect that such an
argument will likely not be true given the complexity involved
in scheduling link transmissions in a wireless system. We
provide a more accurate estimate of the expected delay for
wireless networks, which could be used as a delay metric that
would be useful in the development of such delay optimal
schemes.
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Fig. 2. Maximal exclusive sets under2-hop interference model. Each link
in the exclusive set is within two hop distance of every otherlink.

We begin with a brief description of the system model and
notations. We then derive the lower bound and the upper bound
on the expected delay in the system. We then propose a method
to estimate the expected delay of the system. We study the
accuracy of the results for several important classes of wireless
networks through simulations.

III. SYSTEM MODEL

We consider a wireless network,G with N links denoted
by set L. Each link l has its own exogenous arrival stream
{Al(t)}

∞
t=1. Each arrival stream isi.i.d. in time. The distribu-

tion of the number of packets,Al(t), arriving to a linkl in any
given time slott may be arbitrary but time invariant. Assume
that the second moments,E[A2

l ], of the arrival processes are
finite. Different input streams may be correlated with each
other. Let A(t) = (A1(t), . . . , AN (t)) represent the vector
of exogenous arrivals, whereAl(t) is the number of packets
that arrive to link l during time slott (for l ∈ 1, . . . , N ).
Let λ = (λ1, . . . , λN ) represent the corresponding arrival rate
vector.

The packets arriving at each link are queued. LetQl(t)
denote the queue length at linkl. The queue length vector
is denoted byQ(t) = (Ql(t) : l = 1, 2, . . . , N). A link can
be activated in a time slott only if the queue is non empty.
We use the term activation (scheduling) of a link or a queue
interchangeably in the paper. At most, one packet is served at
a queue in a given time slot. After service, each packet leaves
the system. There is a slotted structure in service. For each
link l, the indicator functionIl(t) indicates whether or not
link l received service at time slott. Note that

Il(t) =

{
1 if Ql(t) > 0 and l is scheduled
0 otherwise

(III.1)

The evolution of the queue is as follows,

Ql(t + 1) = Ql(t)− Il(t) + Al(t), l = 1, .., N (III.2)

The vector of the scheduled queues is denoted byI(t) =
(In(t)) : n = 1, ..N . Because of interference, there are
constraints on the combination of links that can be activated

simultaneously. We allow these constraints to be arbitrary. I(t)
is a valid activation vector if it satisfies these constraints. Let
S be the collection of all valid activation vectors. LetIj be
the jth activation vector inS. At each time-slot an activation
vector I(t) is scheduled. A scheduling policy decides which
activation vector is used in every time slot.

For any given linkl, we define anexclusive set, χl, as a set
of links including l in which no more than one link can be
scheduled at any given slot. In particular, we are interested in
the maximalexclusive sets, i.e., sets in which no more links
can be added without violating the above property. A link may
be present in multiple exclusive sets.

In this paper, we will use exclusive sets to derive the
fundamental lower bounds on the delay of the system. We
will be interested in those exclusive setsχl, where the sum of
arrival rates is large. We useλχl

to denote the sum of arrival
rates to the queues in the setχl.

λχl
=

∑

i∈χl

λi (III.3)

Similarly, Aχl
and Qχl

are used to denote the the sum of
arrivals and the sum of queues in the setχl respectively,

Aχl
(t) =

∑

i∈χl

Ai(t) (III.4)

Qχl
(t) =

∑

i∈χl

Qi(t) (III.5)

Figure 2, shows all the maximal exclusive sets of a graph
G under an example interference model called the2-hop
interference model. In a2-hop interference model, any two
active links inI (t) are always separated by two or more hops
in the underlying network graph. Let us consider subgrapha
in Figure 2. Every link in the subgraph interferes with any
other link because it is within two hop distance. Moreover, no
more link from graphG can be added to this subgraph without
violating the above property.

The 2-hop interference model is used again in our simula-
tion studies since it has been often used to model the behavior
of a large class of MAC protocols based on virtual carrier
sensing using RTS/CTS messages, which includes the IEEE
802.11 protocol [18], [19].

Let ‖Y‖ denote the Euclidean norm of vectorY. The
system is considered to be stable [2] iflim

t→+∞
supE[‖Q(t)‖] <

∞. If the system is stable then the throughput is the same as
the arrival rates. A throughput vectorλ is admissible if there is
some scheduling policy under which the system is stable when
the arrival rate vector isλ. Let us denote byΛ the closure of
the convex hull of the set of activation vectors,Ij and byC
the interior of the convex hull. Note thatΛ is a closed convex
set. It has been shown in [1] that if each arrival process isi.i.d.
in time, and the first two moments of all the arrival streams
{Al(t)}

∞
t=1 are finite, thenλ ∈ C is a necessary condition for

a stabilizing scheduling policy to exist. It is also shown that the
MWM policy, that chooses the maximum weighted activation
vector (matching), stabilizes the system for any arrival rate
satisfying the preceding condition.
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MWM Scheduling Policy

I(t) = argmax
Ij∈S

N∑

i=1

Qi(t)I
j
i (III.6)

whereIj
i is the ith component of thejth activation

vector,Ij , in setS.

Fig. 3. MWM Scheduling Policy

The definition of the capacity region of these systems is
related to the existence of a scheduler that chooses to activate
the queues by a stationary process. These results have been
derived in [7].

Lemma 3.1:For any feasible input rate vector
λ = (λ1, ..., λN ) which lies in the interior of the capacity
region, C there exists a vectorµ = (µ1, ..., µN ) ∈ C
such thatλl < µl for all queuesl ∈ L. Also, there exists
a stationary randomized scheduling policy which chooses
activation vectorsIR(t) such thatE[IR

l (t)] = µl and hence
stabilizes the system.

The exclusive sets define the constraints on the rate vector
µ. We let µχl

denote the sum of service rates of the queues
in χl of a stationary randomized policy.A given vectorµ is
in the capacity region ifµχl

is less than one for all exclusive
sets in the system.

IV. FUNDAMENTAL LOWER BOUNDS ON THESYSTEM

In this section, we develop an algorithm to calculate a
lower bound on the delay of the system, independent of the
scheduling policy used. Recall the definition of the exclusive
sets,χl of link l in the system. Only one of the queues in
χl can be scheduled at any given time slot. The notion of
exclusive sets is helpful for deriving fundamental lower bounds
on the expected delay of the system.

Let us consider a fictitious scheduling policyΠlower that
guarantees to schedule one of the links inχl whenever there
is at least one non-empty queue. AlthoughΠlower policy
satisfies the interference constraints withinχl, it ignores the
interference of the scheduled link with other links in the
network. We denote the sum of queue lengths inχl under
the policyΠlower asQχl

.

Qχl
(t) =

∑

i∈χl

Qi(t) (IV.7)

Then, the queue evolution underΠlower is given by the
following Equation.

Qχl
(t + 1) = (Qχl

(t)− 11{Qχl
(t)>0} + Aχl

(t))+ (IV.8)

where 11 is the indicator function andAχl
is as defined in

Equation (III.4).
We now compare the evolution of queues inχl under the

Πlower policy to an arbitrary scheduling policy. We assume
that both the systems are driven by the same sequence of
arrivals. In Lemma 4.1 we compare the sum of queue lengths
Qχl

in χl with Qχl
at a given timeT . The periods of time

in which at least one of the queues inχl is non-empty under
the Πlower policy are calledbusy periods.

Lemma 4.1:For any exclusive setχl in the system, the sum
of queue lengthsQχl

in χl, under any scheduling policy is no
smaller than those underΠlower policy at all times, T, i.e.
Qχl

(T ) ≥Qχl
(T ).

Proof: Depending on whetherT lies in the busy period
of the system under theΠlower policy or not, the following
two cases arise.
Case 1:Qχl

(T ) = 0
SinceQχl

(T ) is always non-negative, the result holds trivially.
Case 2:Qχl

(T ) > 0.
Let To be the time that initiated the current busy period, i.e.
To < T . Then the queue length can obtained by summing
Equation (IV.8), is as follows:

Qχl
(T ) =

T−1∑

t=To−1

Aχl
(t)−

T−1∑

t=To−1

11{Qχl
(t)>0} (IV.9)

Since the system is in the middle of a busy period,
11{Qχl

(t)>0} = 1 for all To ≤ t ≤ T , and the above equation
reduces to

Qχl
(T ) =

T−1∑

t=To−1

Aχl
(t)− (T − To) (IV.10)

Now we consider the evolution of the queues inχl under an
arbitrary scheduling policy. By the definition ofχl , not more
than one of the queues inχl can be scheduled at any given
time-slot, i.e., ∑

i∈χl

Ii(t) = Iχl
(t) ≤ 1 (IV.11)

The evolution of the queues inχl is given by the following
equation.

Qχl
(t + 1) = Qχl

(t)− Iχl
(t) + Aχl

(t) (IV.12)

In particular,

Qχl
(To) = Qχl

(To−1)−Iχl
(To−1)+Aχl

(To−1) (IV.13)

This system (under the arbitrary scheduling policy) may or
may not be in the middle of a busy period atTo − 1. If it is
in the middle of a busy period,Qχl

(To − 1) ≥ 1 and thus,

(Qχl
(To − 1)− Iχl

(To − 1)) ≥ 0. (IV.14)

If the system is not in the middle of a busy period, then

Iχl
(To − 1) = 0 (IV.15)

since an empty queue cannot be scheduled at any time slot
(see Equation (III.1)).

Combining Equations (IV.14) and (IV.15), we obtain the
following.

Qχl
(To) ≥ Aχl

(To − 1) (IV.16)

By summing Equation (IV.12) to obtainQχl
(T ), and simplify-

ing using Equations (IV.16) and (IV.11), we obtain the desired
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result.

Qχl
(T ) =Qχl

(To) +
T−1∑

t=To

Aχl
(t)−

T−1∑

t=To

Iχl
(t)

≥ Aχl
(To − 1) +

T−1∑

t=To

Aχl
(t)−

T−1∑

t=To

Iχl
(t)

≥

T−1∑

t=To−1

Aχl
(t)−

T−1∑

t=To

1

≥Qχl
(T )

(IV.17)

Using the above lemma, we derive the following lower
bound on the queues inχl.

Theorem 4.1:For any exclusive setχl in the system, the
expected value of the sum of queue lengths inχl under any
scheduling policy is lower bounded by the following.

E[Qχl
] ≥

∑

i∈χl

λi + E[Ai(
∑

j∈χl

Aj)]− 2λiλχl

2(1− λχl
)

= LBχl

Proof: Lemma 4.1 shows that at all times, T,Qχl
(T ) ≥

Qχl
(T ). It follows then, that the expected value of the sum

of queue lengths inχl under any other scheduling policyΠ
will be lower bounded by the expected value of sum of queue
lengths inχl underΠlower. Then

E[Qχl
] ≥ E[Qχl

] (IV.18)

The analysis of the exclusive set under theΠlower policy
reduces to that of single server queue being fed by multiple
arrival streams, i.e.Aχl

. Since the arrival streams are assumed
to independent over time, the expected value ofQχl

under
the Πlower policy can be derived using the standard GI/D/1
analysis and is given by.

E[Qχl
] =

λχl
+ E[(

∑

i∈χl

Ai)
2]− 2(λχl

)2

2(1− λχl
)

(IV.19)

It follows that:

E[Qχl
] ≥

∑

i∈χl

λi + E[(
∑

i∈χl

Ai)
2]− 2(

∑

i∈χl

λi)
2

2(1− λχl
)

=⇒ E[Qχl
] ≥

∑

i∈χl

λi + E[Ai(
∑

j∈χl

Aj)]− 2λi(
∑

j∈χl

λj)

2(1− λχl
)

=⇒ E[Qχl
] ≥

∑

i∈χl

λi + E[Ai(
∑

j∈χl

Aj)]− 2λiλχl

2(1− λχl
)

We useLBχl
to denote the lower bound derived above on

the setχl. We now develop a greedy algorithm (see Algorithm
1) to compute a lower bound on the sum of expected queue
lengths on the entire system. At every iteration of the “repeat-
until” loop, an exclusive set with the highest value ofLBχl

is computed among the links in setX. Note that this set is a
maximal exclusive set inX and may not be maximal in the
original set of linksL. For any link l, we useχ̃l to denote

the set of links it was grouped with by the greedy algorithm.
Note thatl ∈ χ̃l.

Assume that theΠlower policy schedules one link in every
exclusive setχ̃l, computed by Algorithm 1, whenever there
is a non-empty queue in the corresponding set. Sinceχ̃l is
an exclusive set, a lower bound on the sum of its queues can
be obtained by applying Theorem 4.1. The value of the lower
bound is incremented and the links in the chosen exclusive
set are removed from further consideration. This process is
repeated until every link in the system has been used. Since
each link appears in exactly one exclusive set, the system-wide
lower bound on the expected queue length can be obtained as
the sum of the contribution of each link towards the lower
bound given by Corollary 4.1.

Algorithm 1 Computing the Lower Bound
1: X ← {1, 2 . . . N}
2: BOUND ← 0
3: repeat
4: Find an exclusive set̃χ ⊂ X which maximizesLBeχ

5: BOUND ← BOUND + LBeχ

6: X ← X \ χ̃
7: until X = φ
8: return BOUND

Corollary 4.1: The sum of expected value of the queue
length satisfies:

N∑

i=1

E[Qi] ≥
N∑

i=1

λi + E[Ai(
∑

j∈fχi

Aj)]− 2λiλfχi

2(1− λfχi
)

(IV.20)

The total expected network delay,̄D, satisfies:

D̄ =

N∑

i=1

E[Qi]

N∑

i=1

λi

≥
N∑

i=1

λi + E[Ai(
∑

j∈fχi

Aj)]− 2λiλfχi

2(

N∑

j=1

λj)(1− λfχi
)

(IV.21)
Note, that the above result only requires each arrival pro-

cesses to be independent over time. In the case where all the
arrival stream are also independent of each other, we obtain
the following result.

Proposition 4.1:When the arrival streams are independent,
the expected value of the sum of queue lengths in the system
under any scheduling policy satisfies:

N∑

i=1

E[Qi] ≥
N∑

i=1

λi + Var[Ai]− λiλfχi

2(1− λfχi
)

(IV.22)

The total expected delay in the network,D̄, satisfies:

D̄ ≥

N∑

i=1

λi + Var[Ai]− λiλfχi

2(
N∑

j=1

λj)(1− λfχi
)

(IV.23)
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A. Discussion

The lower bound is achieved by a fictitious scheduling
policy, Πlower, which schedules one link in every exclusive set
χ̃l, computed by the algorithm, whenever there is a non-empty
queue in the corresponding set. This policy may violate the
interference constraints, because the set of scheduled queues
may not be a valid activation vector. This is because the
links in two exclusive sets may interfere with each other. In
other words, we have relaxed the constraints in the queuing
system to obtain this bound. Therefore, in general, it is not
possible to design a scheduling policy that achieves the lower
bound. However, we observe through simulation studies that
for several different values of the input load, the performance
of the MWM policy is indeed quite close to this bound.

Since the exclusive sets do not completely characterize the
capacity region of the network, it may also be expected that
if the input load is close to a boundary of the capacity region
C, which is different from the boundaries generated by the
exclusive sets, the lower bound may perform poorly. Thus, in
certain cases, the delay of the system under MWM policy may
be close to infinity while the lower bound is much smaller. This
motivates the development of an upper bound for the system,
which is tight in the sense that whenever the upper bound goes
to infinity, the delay of the system under a throughput optimal
policy also becomes infinite.

V. DEVELOPMENT OF ANUPPERBOUND

In this section, we analyze a class of Generalized Maximum
Weighted Matching (GMWM(w)) policies, parametrized by
weightswi which is described in Figure 4. The MWM policy
is a special case, where all the weightswi are unity. We prove

GMWM Scheduling Policy

I(t) = argmax
Ij∈S

N∑

i=1

(wiQi)I
j
i (V.24)

whereIj
i is the ith component of thejth activation

vector,Ij , in setS andwi > 0 are fixed constants.

Fig. 4. GMWM Scheduling Policy

that GMWM achieves 100% throughput for every choice of
w, s.t.∀i, wi > 0, using the Foster-Lyapunov drift criteria for
countable Markov chains. The following well known theorem
provides Foster’s criteria for Positive Recurrent and Ergodic
Markov chains [2], [20]

Theorem 5.1:A countable Markov chain is positive recur-
rent and ergodic if and only if there exists a positive function
V > 0 and a finite set of statesEo, such that the following
hold:

• Bounded drift from the finite setEo:
∀ Q(t) ∈ Eo, ∆(Q(t)) <∞

• Negative drift from the complement:
∀ Q(t) /∈ Eo, ∃ǫ > 0 s.t., ∆(Q(t)) < −ǫ
where

∆(Q(t)) ≡ E[V (Q(t + 1)− V (Q(t))|Q(t)]. (V.25)

We first design an appropriate Lyapunov function for the
system.

V (Q(t)) =
1

2

N∑

i=1

wiQ
2
i (t) (V.26)

Note that if all the weightswi are chosen to be 1, this is
exactly the quadratic Lyapunov function used in [1]. Before
we move on to prove the throughput optimality of GMWM,
we state a couple of useful definitions.

Definition 5.1: B(t) = 1
2

N∑

i=1

wi(Ai(t)− Ii(t))
2

Since the second moments of the arrival processes are
bounded, it follows thatE[B(t)|Q(t)] is bounded from above
by a positive constantc.

Definition 5.2: We defineEo := {0, 1, 2, .. c
ǫwmin

}N to be
a finite set of states as required by the Foster’s criteria, where
wmin is the minimum of the weights amongwi and ǫ > 0.

Theorem 5.2:For any input loadλ ∈ C, the GMWM
scheduling algorithm ensures that the resulting DTMC is
positive recurrent and ergodic.

Proof: See Appendix A.
We now analyze GMWM and derive upper bounds using the
following lemma from Lyapunov drift theory [7], [8].

Lemma 5.1:Let V (Q) be a non-negative function of the
queue vector and the drift∆(Q(t)) be as defined above. Let
P (t) be a non-negative process and letǫ > 0 such that for all
time t and all possibleQ(t),
∆(Q(t)) ≤ E[P (t)−ǫh(t)|Q(t)] where h(t) represents a non-
negative process that might depend on the queue state. Then
the following holds:

lim sup
t→∞

1

t

t−1∑

τ=0

E[h(τ)] ≤ lim sup
t→∞

1

t

t−1∑

τ=0

E[P (τ)]

ǫ
(V.27)

We are now ready to state our main result that bounds the sum
of the expected queue lengths and the expected delay in the
system.

Theorem 5.3:Given any input load vectorλ ∈ C and any
vector µ ∈ C : ∀i, µi > λi, the following bound on the
expectation of the sum of lengths of queues holds true in a
system operating under the GMWM policy where the weights
wi are chosen aswi = 1

(µi−λi)
:

N∑

i=1

E[Qi] ≤

N∑

i=1

(λi + Var[Ai]− λ2
i )

2(µi − λi)
(V.28)

The total expected network delay,̄D, satisfies:

D̄ ≤

N∑

i=1

(λi + Var[Ai]− λ2
i )

2(
∑N

i=1 λi)(µi − λi)
(V.29)

Proof: See Appendix B.

A. Discussion

We have been able to obtain an upper bound that is explicit
in the statistics of the arrival process. Note that the upper
bound also decouples the contribution of each link towards the
total network delay. It is interesting to note that the correlations



7

between the arrival streams do not affect the upper bound. We
have analyzed the system when each arrival process isi.i.d.
in time. The above analysis can be extended to the case when
each arrival process{Al(t)}

∞
t=1, is modulated by a discrete-

time, stationary, ergodic Markov chain using the techniques
developed in [5].

The upper bound derived in [21] (Theorem 2) for the same
system hasǫ in the denominator for each of theN terms
in the sum in Eq. (V.28) (with the same numerator), where
ǫ = mini(µi − λi). Hence, the upper bound obtained here
is numerically smaller than the state-of-the-art. This hasbeen
achieved by choosing the weightswi, such that the second
term on the right hand side of Eq. (B.48) in the Appendix B
is equal to the negative of the sum of queues in the system.
Thus, the contribution of each queue towards the drift is equal
to its queue length, i.e., balanced, resulting in a tighter lower
bound.

The above analysis naturally leads us to the question of
which µ > λ should be selected in the capacity regionC
such that the upper bound is minimized. Intuitively this means
that we have to select a point on the boundary of the capacity
region that is the farthest from the input load vector. This
can be formulated as an optimization problem to compute the
value ofµ that minimizes the upper bound.

Upper Bounding Expected Delay

Minimize
N∑

i=1

(λi + Var[Ai]− λ2
i )

2(µi − λi)

subject toµ ∈ C

Fig. 5. Optimization Problem for Minimizing the Upper Bound

The optimization problem in Figure 5 is convex because
the objective function is convex and the capacity region is
also convex, being a convex hull of the activation vectors.
The formulation of the problem is very similar to the network
utility maximization using convex optimization techniques (see
[22]–[24]). Using Lagrangian techniques, the dual,U(a), of
the above problem can be decomposed into the following two
sub-problems.a is the set of prices.

U(a) = Xi(a) + Y (a) (V.30)

where

Xi(a) = max
µi>λi

{
−

(λi + Var[Ai]− λ2
i )

2(µi − λi)
− aiµi

}

= min
µi>λi

{
(λi + Var[Ai]− λ2

i )

2(µi − λi)
+ aiµi

} (V.31)

and

Y (a) = argmax
Ij∈S

N∑

i=1

aiI
j
i (V.32)

The dual problem can be solved using an iterative sub-
gradient method shown in Algorithm 2. The dual pricesai are
updated in each iteration. It has been shown in the literature
[22]–[24] that if the sequence of values of{h} are chosen

Algorithm 2 Computing the Optimal Value of µopt

1: n← 1
2: Initialize the pricesan

3: repeat

4: µ
(n)
i ← λi +

√
λi + Var[Ai]− λ2

i

2a
(n)
i

5: Y
(n)
i ← Ij

i whereIj = argmaxIj∈S

N∑

i=1

a
(n)
i Ij

i

6: a
(n+1)
i ← a

(n)
i + h(n)(µ

(n)
i − V

(n)
i )

7: n← n + 1
8: until µ converges
9: return BOUND

such that lim
n→∞

h(n) → 0 and
∞∑

n=0

h(n) = ∞, then the values

of µ
(n)
i converge to the optimal valueµopt

i , which minimizes
the upper bound on the expected queue lengths in the system.

The GMWM schemes in which the weightswi satisfy∀i,
wi(µ

opt
i − λi) = 1 achieve the optimal delay bound and will

be referred to as GMWMopt for the rest of the paper. We now
show that the delay performance of GMWMopt is no worse
than any other stationary randomized policy.

B. Comparison with a Stationary Randomized Policy

We analyze the delay of the wireless network when operated
with a stationary randomized scheduler,ΠR. As noted before,
in Lemma 3.1, for each linkl in the system a service rate of
µl > λl is guaranteed. The service process can be analyzed
as follows. The schedulerΠR is unaware of the backlog and
chooses to schedule linkl independent of whether the queue
is empty or not. In every slot, if the link is scheduled, exactly
one packet is served, otherwise the packets in the queue wait
for the next available slot.

We define the following for the system.
• ql(t): Length of the queuel at the beginning of time slot

t.
• Al(t): Number of arrivals at linkl during the time slot t.
• Rl(t): Random variable that is 1 if linkl is scheduled

and is 0 otherwise.
• d̄: Average delay in the system.

The system evolves as follows

ql(t + 1) = ql(t) + Al(t)−Rl(t)11{ql(t)>0} (V.33)

The following is a standard result for GI/D/1 system with
Bernoulli service process [8], i.e.,

E[ql] =
λl + Var[Al]− λ2

l

2(µl − λl)
(V.34)

Under the stationary randomized policy the behavior of each
queue in the system is independent of other queues. Using the
fact that the expectation of the sum of independent random
variables equals the sum of their expectation, the following
lemma follows:

Lemma 5.2:The sum of expected queue lengths of the
queues in a discrete-time system constrained queueing system



8

with arrival processAl (rateλl) and service rateµl, at link l,
operating under a stationary randomized scheduling policyis
given by:

N∑

l=1

E[ql] =

N∑

l=1

λl + Var[Al]− λ2
l

2(µl − λl)

Proof: The proof follows by using Lemma V.34 and using
the fact that the service process is Bernoulli with probability
µi at the queuei independent of other queues in the system.

Theorem 5.4:Given any admissible arrival process
{Al(t)}

∞
t=1 (with mean λl ), the sum of expected queue

lengthsQl under the GMWMopt policy is no worse than the
sum of expected queue lengthsql of any other stabilizing
stationary randomized policy. In other words,

N∑

l=1

E[Ql] ≤
N∑

l=1

E[ql]

It follows then, that the average delaȳD under GMWMopt is
no worse than the average delayd̄ under any other stabilizing
stationary randomized policy.

D̄ ≤ d̄

Proof: Among the class GMWM policies, the upper
bound is minimum for the GMWMopt. The result follows
by comparing the bound established in Theorem 5.3 for the
GMWM policy with weightswi = 1

µi−λi
and expected value

result for the stationary randomized policy in Lemma 5.2.
It is known that in the heavy traffic limit, the scheme

GMWM is asymptotically optimal [14]. However, the result
obtained here is true for all load vectorsλ ∈ C .

VI. ESTIMATING THE DELAY

We noted towards the end of Section IV that the lower
bound may not be achieved by any policy because it may not
be possible to schedule a link in every exclusive set due to the
interference constraints. Therefore, we attempt to develop an
accurate estimate for the delay performance in this section.

The lower bound analysis suggests that those exclusive sets
that have a largeλχl

, must have longer queues lengths because
the sum of the expected queue lengths in the exclusive set
is proportional to 1

1−λχl

. However, since a scheduling policy
like MWM also balances the queue lengths in the system, the
effect of congestion in a particular exclusive set is distributed
over the whole system. Hence, instead of estimating the queue
length at each link, we estimate the contribution of each link
towards the aggregate expected queue length.

The upper bound analysis indicates that the expected ag-
gregate queue length in the system can be expressed a sum
of the individual contributions of each link. It also suggests
that the contribution of each link is inversely proportional to
the congestion, (µl − λl), at the link l. A similar feature is
also noted in the lower bound where the congestion is equal
to (1− λ eχl

), whereχ̃l are the sets computed by Algorithm 1
in Section IV. However, since the sets̃χl used to compute the
lower bound are not maximal, they do not accurately represent
the effect of congestion and multiplexing in the system. Hence,
we consider the setŝχl (defined below).

We defineχ̂l as the exclusive set that has the largest sum of
arrival rates,λχl

=
∑

i∈χl

λi among all exclusive sets containing

l. In the case where all the arrival streams are mutually
independent, we propose to estimate the total expected delay
in the network by the following equation.

N∑

i=1

E[Qi] ≈

N∑

i=1

λi + Var[Ai]− λ2
i

2(1− λcχi
)

(VI.35)

The total expected delay in the network,D̄ can be estimated
as follows:

D̄ ≈

N∑

i=1

λi + Var[Ai]− λ2
i

2(

N∑

j=1

λj)(1− λcχi
)

(VI.36)

We call the r.h.s. of the above Equation (VI.35) as
the Estimate(G,λ). Similarly, we call the r.h.s. of Equa-
tion (IV.22) as theLowerBound(G,λ) and the r.h.s. of
Equation (V.28) as theUpperBound(G,λ) respectively.

Theorem 6.1:Given a wireless network with mutually in-
dependent arrival streams, the estimate lies between the upper
and lower bound.UpperBound(G,λ) ≥ Estimate(G,λ) ≥
LowerBound(G,λ)

Proof: The bounds and the estimates have been expressed
as a sum ofN terms. We first show that each term in the
upper bound is no smaller than the corresponding term in the
estimate.
Part 1: Consider link i in the system. As explained in
Section III, for any exclusive setχi and anyµ > λ : µ ∈ C,

µχi
=

∑

j∈χi

µj ≤ 1

=⇒ 1− λi −
∑

j∈χi,j 6=i

λj ≥ µi − λi +
∑

j∈χi,j 6=i

(µj − λj)

=⇒ 1− λχi
≥ µi − λi

since, eachµj > λj . In particular, we have

1− λcχi
≥ µi − λi (VI.37)

Since both sides in Equation (VI.37) are positive, we have the
following result,

λi + Var[Ai]− λ2
i

2(1− λcχi
)

≤
λi + Var[Ai]− λ2

i

2(µi − λi)
(VI.38)

Now, we show that each term in the Estimate is no smaller
than the corresponding term in the lower bound.
Part 2: Consider link i in the system. By definition of̂χi,
λcχi

is no smaller thanλfχi
for the setsχ̃i, computed by the

Algorithm 1 in Section IV of the paper. Also,λfχi
is no smaller

thanλi, i.e.,
λcχi
≥ λfχi

≥ λi (VI.39)

It follows that (1− λfχi
) ≥ (1− λcχi

) and

(λi + Var[Ai]− λiλfχi
) ≤ (λi + Var[Ai]− λ2

i ) (VI.40)

Using the above two inequalities, we get the desired result,

λi + Var[Ai]− λ2
i

2(1− λcχi
)

≥
λi + Var[Ai]− λiλfχi

2(1− λfχi
)

(VI.41)
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Fig. 8. Grid Topology (Independent Traffic)

VII. S IMULATION RESULTS

We present the simulation results for two types of network
topologies, grid and random quasi unit disk graphs [25]. In
each case, the lower bound is computed using Algorithm 1.
The upper bound on the performance of GMWM policy is
computed using Algorithm 2 and the corresponding weights
are used by theGMWMopt policy. We also simulate MWM
policy to provide comparison with theGMWMopt policy. We
study the accuracy of the estimate for this class of throughput
optimal policies when the arrival streams are mutually inde-
pendent. We use CPLEX [26] to solve the combinatorial prob-
lems of computing the maximum weight scheduling problems
at every iteration. The simulations are run until the half-width
of the 95% confidence interval is within 2.5% of the mean. All
simulation experiments have been conducted under the 2-hop
interference model explained in Section III.

A. Grid topology

We simulate two cases, one with with mutually independent
arrival streams and another with correlated arrival streams.

1) Independent Arrival Streams:For this simulation, the
network is a 7x9 grid with 63 nodes and 110 links as
shown in Figure 8. The direction of data transfer among a
pair of neighboring nodes is chosen randomly. The arrival
process at each link is Poisson with rate parameterλ chosen
independently, randomly between 0 and 1 packets per slot.
This arrival vector may even be outside the capacity region
of the network. Once a random base-line load is chosen,
we use a scaling factor to study the delay performance for
different values of the (normalized) load in the network. The
maximum value of the load that is supported by the system is
determined from the simulations. Since MWM is throughput
optimal, the point where the system becomes unstable must be
outside the capacity region. The input load is then normalized
with value 1 corresponding to the point on the boundary of
the capacity region. It appears from our simulations that a
randomly selected load, when scaled appropriately, usually hits
the boundary generated by the exclusive set constraints.

Figure 6(a) shows the increase in the sum of expected queue
lengths in the system as the load is scaled. The queue length
increases almost like a quadratic function at low to medium
loads. At high loads however, the denominator term (1−λ eχl

),

Fig. 9. Grid Topology (Correlated Traffic)

grows very fast. We observe that both theGMWMopt and
MWM policies perform close to the lower bound. The esti-
mate closely matches the queue lengths of both MWM and
GMWMopt policies, however it is more accurate for the
GMWMopt policy. The upper bound, although tight in an
order sense, is almost always a constant multiple of the average
queue length in the system. It seems that for each linkl, the
term (1−λ eχl

) in the estimate is a constant multiple of (µl−λl),
selected by theGMWMopt policy. This suggests that under
the MWM type scheduling policies, the system behaves as if
all the queues in the exclusive setχl have been multiplexed
into a single queue.

The delay in the system increases rather slowly when the
system load is in the low to medium range. However, as
expected, the increase is sharp as the load approaches the
capacity region boundary. It seems that the lower bound
analysis was rather optimistic for heavy loads because it
assumed that all the exclusive sets generated by the Algorithm
1 can be scheduled at the same time if they have non zero
queue lengths. At low and medium loads, since many of the
exclusive sets are likely to have small queue lengths, the lower
bound appears to be tight. The fact that even for an optimistic
lower bound, the MWM and GMWM perform so close to the
lower bound indicates that they are nearly optimal.

2) Correlated arrival streams:We simulated a 4× 4 grid
with 29 links with link directions as shown in Figure 9. The
arrival process at each link is Poisson with the same rate
parameterλ. All the flows originating from the same node have
exactly the same arrivals, i.e. they are perfectly correlated. The
upper bound and the lower bound analysis is general enough
to correlations in the arrival process and the results are shown
below.

Figure 6(b) shows the increase in the sum of expected
queue lengths in the system as the value ofλ is increased.
We observe that the delay performance of theGMWMopt

policy is better than that of theMWM on account of a better
choice of weights which increase the chances of scheduling
the more congested links in the network. Figure 7(b) shows
that the lower bound is quite close to the performance of
the GMWMopt even when there are correlations among the
arrival streams.

B. Random Quasi Unit Disk Topology

We generate a random quasi unit disk graph shown in Figure
10 with 40 nodes and 92 links. We allow a neighboring pair
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Fig. 6. Expected Queue Lengths From Simulation Experiments
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Fig. 7. Expected Delay From Simulation Experiments

Fig. 10. Quasi Unit Disk Topology

of nodes to transfer data in both directions (for the sake of
simplicity, the links in the figure are shown as undirected
links). The arrival rateλl at each linkl is chosen randomly
between 0.1 and 1 packet per slot. Let Geometric(p) denote a
sample from the geometric distribution with parameter p. The
arrival process at each linkl, is chosen as follows:

Al(t) =

{
Geometric( 2

2+λl
) with probability 16

16+λl

Geometric( 1
9+λl

) with probability λl

16+λl

The first two moments ofAl areλl and9λl + 2λ2
l respec-

tively. This load is scaled in a manner similar to the previous
case, to study the performance of the system at different loads.
The results are practically similar to the previous case. Wenote
that the estimate and lower bound developed here accurately
capture the impact of the variance in the arrival process on the
delay performance.

Thus, even though the lower bound in not guaranteed to be
tight in every case, it nonetheless provides a useful estimate
of the delay. Notice that the upper bound is finite for any
lambda ∈ C. Also note that the delay of any scheduling
policy must be infinite if the load is outside the capacity region.
Therefore, we can conclude that as the upper bound goes to
infinity, the delay of any throughput optimal policy must also
become infinite. Further, from our simulations, it appears that
the upper bound is a constant multiple of the delay of the
MWM/GMWM policy.

VIII. C ONCLUSION

We have established a fundamental lower bound on the
performance of a wireless system with single-hop traffic and
general interference constraints. This result can be used to
study the relative performance of any scheduling policy. We
observed through simulations that the performance of the
throughput optimal policies such as the MWM policy is
very close to the lower bound. It is interesting to note that
the MWM type of policies, which were designed primarily
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for achieving maximum throughput, indeed also have good
delay performance. This can be attributed to two reasons.
Firstly, MWM schedules a maximal set of links in the system.
Secondly, it performs load balancing in the system. We have
analyzed the impact of GMWM type of scheduling policies on
the expected queue lengths and expected delay in the system.
The GMWMopt policy analyzed in the paper, uses the informa-
tion of the arrival rates to the links to achieve load balancing
by assigning higher weightswi to more congested links. Thus,
it improves the delay performance. We have shown that for any
givenλ ∈ C, the performance of GMWMopt is no worse than
any stationary randomized scheduling policy. It is interesting
to note that the MWM policy achieves load balancing without
explicit knowledge of the arrival statistics, simply by using
the information of the backlogs and thus achieves a delay
performance comparable to that of the GMWMopt policy.

Note that our approach is orthogonal to that taken by [27]
where functions of the typeQα

i , α > 0 were used to compute
the weight of the matching. This was explored further in [28]
where it was suggested that a smaller value ofα may decrease
the idling in the system, leading to smaller delays. In our
approach, the knowledge of the arrival rates at different links
in the system is used to compute the weight,wi corresponding
to each linki. In the GMWM policywi is a fixed constant that
serves to increase the chances of scheduling a more congested
link as compared to a less congested one, even when its
instantaneous queue length is small.

Finally, for a network with mutually independent arrival
streams, we have developed an accurate estimate of the per-
formance of MWM type scheduling schemes. This result can
be used to study the relative performance of other scheduling
policies for wireless networks. The proposed delay estimate
can also be used as a more accurate metric for the development
of the scheme studied in [17]. We have developed bounds
and estimates for the expected value of the sum of all queue
lengths in the system. Since the policies like MWM, balance
queue lengths in the system, the above analysis can be used
to estimate the individual queue lengths in the system. Thus,
if the total expected queue length in the network is small, we
can expect the average queue length at an individual link to
be also small.

Since the complexity of implementing MWM/GMWM is
high, the design of distributed algorithms based on these prop-
erties is an important avenue for future investigation. Thestudy
of throughput and stability of MWM has resulted in numerous
interesting works on the development of far simpler practically
implementable throughput-efficient schedulers. Similarly, we
expect that this study of the delay characteristics of MWM
will also result in simpler and more delay efficient schedulers.

As future work, we would like to analyze the delay of a
wireless network with multi-hop traffic.

APPENDIX A
PROOF OFTHEOREM 5.2

We begin with the calculation of the drift for any stateQ(t).

∆(Q(t))

=
1

2

N∑

i=1

wiE[(Qi(t + 1)−Qi(t))(Qi(t + 1) + Qi(t))|Q(t)]

=
1

2

N∑

i=1

wiE[(Ai(t)− Ii(t))(2Qi(t) + Ai(t)− Ii(t))|Q(t)]

=
N∑

i=1

wiE[(Ai(t)− Ii(t))(Qi(t))|Q(t)]

+
1

2

N∑

i=1

wiE[(Ai(t)− Ii(t))
2|Q(t)]

(A.42)

We now invoke the assumption that the arrivals arei.i.d.
over the time slots and hence have expected values that are
independent of the current queue states. Also, sinceλ ∈ C,

λi =

|S|∑

j=1

αjI
j
i such that

|S|∑

j=1

αj < 1

Therefore we have

N∑

i=1

wiE[(Ai(t)− Ii(t))(Qi(t))|Q(t)]

=

N∑

i=1

wiλiQi(t)−

N∑

i=1

wiE[Ii(t)Qi(t)|Q(t)]

=
N∑

i=1

wi

|S|∑

j=1

αjI
j
i Qi(t)−

N∑

i=1

wiIi(t)Qi(t)

(A.43)

Since I(t) is the optimal activation vector chosen according
to the GMWM rule,

∀j,

N∑

i=1

wiIi(t)Qi(t) ≥

N∑

i=1

wiI
j
i Qi(t)

Hence,

N∑

i=1

wiE[(Ai(t)− Ii(t))(Qi(t))|Q(t)]

≤ −(1−

|S|∑

j=1

αj)

N∑

i=1

wiIi(t)Qi(t)

< −ǫ
N∑

i=1

wiIi(t)Qi(t), ǫ > 0

(A.44)

Using Equations (A.42) and (A.44) and Definition 5.1, we
have

∆(Q(t)) < −ǫ

N∑

i=1

wiIi(t)Qi(t) + E[B(t)|Q(t)]

Then forQ(t) ∈ Eo the drift is bounded by c (defined in
Section V).
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For Q(t) /∈ Eo, ǫ

N∑

i=1

wiIi(t)Qi(t) > c and hence∆(Q(t)) <

−η, η > 0. Hence by the Foster-Lyapunov criteria in Theorem
5.1, the DTMCQ(t) is positive recurrent and ergodic.

APPENDIX B
PROOF OFTHEOREM 5.3

We use Equation (A.43) from the proof of Theorem 5.2 to
arrive at the following:

∆(Q(t)) = E[B(t)|Q(t)]+

N∑

i=1

wiλiQi(t)−

N∑

i=1

wiE[Ii(t)Qi(t)|Q(t)]

Note thatI(t) is the activation vector chosen by the GMWM
scheme at time-slott. For any other activation vectorI∗ ∈ S,
the following holds true:

N∑

i=1

wiE[I∗i (t)Qi(t)|Q(t)] ≤

N∑

i=1

wiE[Ii(t)Qi(t)|Q(t)]

(B.45)
Hence,

∆(Q(t)) ≤ E[B(t)|Q(t)] +

N∑

i=1

wiλiQi(t)−

N∑

i=1

wiE[I∗i (t)Qi(t)|Q(t)]

Now, we use Lemma 3.1 which shows the existence of a
stationary randomized policyΠR with rates greater thanλ.
Suppose the activation vector picked byΠR at timet is IR(t).
We define another scheduling policyI∗ which schedules at
time t, all the queues scheduled byIR(t) except for those
whose queues are empty. We defineI∗ as follows:

I∗i (t) =

{
IR
i (t) if Qi(t) > 0

0 if Qi(t) = 0

It follows that

E[I∗i (t)Qi(t)|Q(t)] = E[IR
i (t)Qi(t)|Q(t)],

N∑

i=1

wiE[I∗i (t)Qi(t)|Q(t)] =

N∑

i=1

wiE[IR
i (t)Qi(t)|Q(t)]

(B.46)

Therefore,

∆(Q(t)) ≤ E[B(t)|Q(t)] +

N∑

i=1

wiλiQi(t)

−

N∑

i=1

wiE[IR
i (t)Qi(t)|Q(t)]

(B.47)

But, IR
i is a stationary randomized policy and we have

E[IR
i ] = µi, µi ≥ λi

E[IR
i (t)Qi(t)|Q(t)] = µiQi(t)

Hence,

∆(Q(t)) ≤ E[B(t)|Q(t)] +

N∑

i=1

wi(λi − µi)Qi(t) (B.48)

Plugging the value of the weights,wi = 1
(µi−λi)

in Equa-
tion (B.48), we have

∆(Q(t)) ≤ E[B(t)|Q(t)]−
N∑

i=1

Qi(t)

and thus by the application of Lyapunov drift Lemma 5.1 we
have:

lim sup
t→∞

1

t

t−1∑

τ=0

E[

N∑

i=1

Qi(τ)] ≤ lim sup
t→∞

1

t

t−1∑

τ=0

E[B(τ)]

(B.49)
Let us now computeE[B(t)].

B(t) =
1

2

N∑

i=1

wi(Ai(t)− Ii(t))
2

The queueing system is stable under the GMWM policy and
sinceIi(t) takes value either0 or 1, it follows that

lim supt→∞
1
t

t−1∑

τ=0

E[I2
i (τ)] = lim sup

t→∞

1

t

t−1∑

τ=0

E[Ii(τ)] = λi

Also, E[Ai(t)] = λi and
E[Ai(t)Ii(t)] = E[Ai(t)]E[Ii(t)] = λ2

i

Finally, we arrive at the following:

lim supt→∞
1
t

t−1∑

τ=0

E[B(τ)] =
1

2
[

N∑

i=1

wi(λi + E[A2
i ]− 2λ2

i )].

We have already established the ergodicity of the queue
length process and we conclude that the steady state queue
occupancies can be upper bounded by

N∑

i=1

E[Qi] ≤
1

2
[

N∑

i=1

wi(λi + E[A2
i ]− 2λ2

i )]

=
N∑

i=1

(λi + E[A2
i ]− 2λ2

i )

2(µi − λi)

=

N∑

i=1

(λi + Var[Ai]− λ2
i )

2(µi − λi)

The upper bound for average network delay follows by the
application of Little’s law.

D̄ ≤

N∑

i=1

(λi + Var[Ai]− λ2
i )

2(
∑N

i=1 λi)(µi − λi)
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