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. . . Set of links that
Abstract—We consider a class of wireless networks with A interfere with link (g,h)

general interference constraints on the set of links that can be
served simultaneously at any given time. We restrict the traffic
to be single-hop, but allow for simultaneous transmissions as
long as they satisfy the underlying interference constraints. We
begin by proving a lower bound on the delay performance of
any scheduling scheme for this system.

We then analyze a large class of throughput optimal policies
which have been studied extensively in the literature. The delay
analysis of these systems has been limited to asymptotic behavior
in the heavy traffic regime and order results. We obtain a tighter
upper bound on the delay performance for these systems. We use
the insights gained by the upper and lower bound analysis to
develop an estimate for the expected delay of wireless networks
with mutually independent arrival streams operating under the A?\' Quy
well-known Maximum Weighted Matching (MWM) scheduling Al
policy. We show via simulations that the delay performance of
the MWM policy is often close to the lower bound, which means
that it is not only throughput optimal, but also provides excellent
delay performance.

Q.0

Fig. 1. Figure showing a wireless network with single-hagiftc. All packets
A4, transmitted on link (s,d) are exogenous and are quedkd,(denotes
the queue length). All the links that interfere with link liy,are shown.

Index Terms—Wireless Networks, Scheduling, Delay Analysis,
Interference, Lyapunov function.

in the literature while studying the throughput performanc
of scheduling policies for wireless networks. This allows u
to study the effect of scheduling policy on the delay of the
In a wireless system, users compete for accessing a shaggetem, independent of routingle note that this model allows
transmission medium. Since link transmissions cause Mutyg simultaneous transmissions as long as they satisfy the
interference, the medium access layer (MAC) is needed {§dderlying interference constraints. Such systems areemor
schedule the links Carefu"y so that paCketS can be tratﬁdﬂitgenera| than the cellular type Systems where the System is
with minimal collisions. Many scheduling policies have beegivided into non-interfering cells. The results presentesle
studied at the MAC layer with the objective of maximizwork for any underlying model for interference constraints
ing throughput. These schemes are often called throughputThe design of scheduling policies which stabilize the syste
optimal scheduling schemes. However, the delay analysis &®fen under single-hop traffic is a challenging task. Intaltj,
these systems has largely been limited. Our focus in thise scheduler must schedule as many links as possible in
paper is to analyze the expected delay for this system. To tegery time slot. Such schedulers are called maximal sckesiul
end, we will derive upper and lower bounds on the expectggs opposed to maximum weighted schedulers that also take
delay, and also provide an accurate estimate of the expecigd queue length into account). However, even with max-
delay for a well-known and extensively-studied (e.g., [4> imal scheduling, some of the queue lengths may become
throughput-optimal scheme called the Maximum Weighteghbounded. The reason is that if the scheduler does not ese th
Matching (MWM). queue length information, some of the queues may grow large,
To simplify the analysis we, in common with related workyhile others remain very small or become empty. This, in
[3]. [S], [6], restrict the traffic model to single-hop traffi turn, does not allow the scheduler to schedule a large number
Under the single-hop traffic model, all packets transmitied of queues and leads to instability. Thus a throughput optima
a link (s,d) are generated by an exogenous arrival proc&ss policy like MWM, carefully uses the information of the queue
at the source node. As shown in Figure 1, the exogenousengths while scheduling the links.
arrivals waiting to be transmitted at each link are queued inThe above behavior caused by throughput-efficient sched-
their respective queues. This approach has also been adopfiers significantly complicates the delay analysis of these
) . ) systems, because the service process of each link is gaverne
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is small. This is because these policies try to schedule tbbserve that there is no theoretical result comparing the
longer queues in the system or in other words, they prevedelay performance of a RANDOM scheduler to the MWM
the queues from becoming very large. This can be thoughtaforithm. The upper bound developed in this paper allows us
as a mechanism to balance the queue lengths in the systeno Ishow that the expected delay performance of GMWM is
is not clear how this effects the system-wide expected delay worse than the performance of any stationary randomized
especially under light or medium traffic loads. policy.

We now state our main contributions in this paper: In [11]-[13], cellular systems are analyzed and large devi-

« Development of a fundamental lower bound on the edtions results are obtained to calculate queue-overflow-pro
pected queuing delay of a wireless network regardless pility. The analysis is much harder for the wireless nekwor
the scheduling policy used. considered here, due to the complex interactions of the ar-

« Development of an upper bound on the expected delay'®fal, service, and backlog process. Order-optimal restdt
a throughput optimal scheduling policy, GMWM (a genthe expect_ed delay a wireless up-link down-link system are
eralization of MWM), under a single-hop traffic model. presented in [8_]. The bounds presented here are _sharp_er than

« Development of an estimate for the expected delay fhe those obtained by [8] and are also order-optimal in the
a wireless network with mutually independent arrivafontext of the system studied in that paper.
streams, under a MWM type policy, given the load and One of the results that has been shown about the MWM
the interference constraints. Further, the estimate iwshoScheduling policy is that it is asymptotically optimal ineth
to lie between the upper and lower bounds develop&§avy traffic regime [14], [15] under the assumption of re-
above. We show through simulations that for single-hopPurce pooling. However, this result does not provide any

traffic and any given load within the capacity region, th€Stimate of the delay. It is also not known whether these
estimate is accurate. policies continue to be optimal for an arbitrary load in the

capacity region.
The lower bound presented in this paper uses the con-
cept of exclusive setgdefined in Section Ill) to characterize
Most of the analysis of scheduling policies for the wireeonstraints on the scheduling policy. We analyze a fictitiou
less systems has been limited to stability results. A staldeheduling policy based on exclusive sets that is amenable t
scheduling policy is guaranteed to keep the average quearmalysis and show that its expected delay is a lower bound on
lengths in the system finite, but the tightness of the uppgtte performance of any other scheduling policy. The exchusi
bound on the average queue length is not known. One s#ts correspond to cliques in the constraint graph and were
the techniques used for deriving upper bounds on the averagso studied in [16] for the purpose of analyzing the impdct o
queue length for these systems is the method of Lyapuniewerference on the throughput capacity of a multi-hop iese
drifts developed in [2], [5], [7], [8]. However, these rewul network. The authors proved that the polytope generated by
are order results and provide only a limited understanding these sets is an upper bound on the capacity regioand
the delay of the system. For example, it has been shownnray be loose. We find that these exclusive set constraints
[5] that the maximal matching policies achief®1) delay for are nonetheless very useful for delay analysis, since they
networks with single-hop independent Poisson traffic whexiso constitute some of the faces of the capacity polytGpe
the input load is in the reduced capacity region. Howevawe observe in our simulations that for several represemtati
for arbitrary networks, this region may be only a smallopologies, the performance of MWM scheduling policy is
fraction of the capacity region;’ (see [9]). Informally, the close to the lower bound. The upper bound on the other hand
(maximum) capacity regior©” is the set of mean flow rate captures all the interference constraints in the system and
vectors (A1, ..., An) such that there exists a scheduling rulevhenever the upper bound goes to infinity, the average delay
making the queue length process stable. of the system under the GMWM policy also becomes infinite.
Simulations have shown that two schemes that guarante@elay optimal schemes have been proposed in the liter-
stability for the full capacity region can have very diffate ature [17] for wireless networks, which typically minimize
delay characteristics. The results presented in [3] sughes an expected delay metric (assuming that the system behaves
a policy that provides stability guarantees in the full cd@pa as M/M/1). We note that there is no reason to assume that
region may have worse delay characteristics than another pdd/M/1 approximation will be accurate because the service
icy which provides weaker guarantees. The comparison of process could be very complex in this system, given that
implementation of a throughput optimal algorithfRi¢gk and the interference constraints have to be met at every time-
Comparg with sub-optimal algorithms like maximal matchingslot. Neither are we aware of any result which shows that a
is studied in [9]. It is shown that undd?ick and Comparéype policy that minimizes the M/M/1 delay metric also minimizes
scheduling algorithms, queues in the system grow very largee delay for the system. In fact, we expect that such an
and are hence such idealized algorithms are not realizableargument will likely not be true given the complexity invel
practice. in scheduling link transmissions in a wireless system. We
Since throughput by itself does not seem to be a go@iovide a more accurate estimate of the expected delay for
metric to differentiate between scheduling algorithmsg thwireless networks, which could be used as a delay metric that
development of analytical techniques to compare otheriosetrwould be useful in the development of such delay optimal
of performance such as delay is crucial. In [10], the authosghemes.
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simultaneously. We allow these constraints to be arbitiry

is a valid activation vector if it satisfies these constsirtet

S be the collection of all valid activation vectors. LEt be
the 5" activation vector inS. At each time-slot an activation
vector I(¢) is scheduled. A scheduling policy decides which
activation vector is used in every time slot.

For any given linkl, we define arexclusive sety;, as a set
of links including ! in which no more than one link can be
scheduled at any given slot. In particular, we are inteteste
the maximalexclusive sets, i.e., sets in which no more links
can be added without violating the above property. A link may
be present in multiple exclusive sets.

In this paper, we will use exclusive sets to derive the
fundamental lower bounds on the delay of the system. We
Maximal Exclusive Sets of Graph G will be interested in those exclusive sats where the sum of
arrival rates is large. We usk,, to denote the sum of arrival

Fig. 2. Maximal exclusive sets underhop interference model. Each link

in the exclusive set is within two hop distance of every otlek. rates to the queues in the set
Ao =D A (111.3)
We begin with a brief description of the system model and i€x1

notations. We then derive the lower bound and the upper bougﬁjn"a”y A,, and Q,, are used to denote the the sum of
1 L L

on the expected delay in the system. We then propose a methad,ais ‘and the sum of gueues in the getrespectively,
to estimate the expected delay of the system. We study the

accuracy of the results for several important classes aflegs A, ) = Z A;i(¥) (1.4)
networks through simulations. ="
I1l. SYSTEM MODEL Q. (t) =D Qi(t) (111.5)
We consider a wireless network; with N links denoted i€X1

by set L. Each link[ has its own exogenous arrival stream Figure 2, shows all the maximal exclusive sets of a graph

{Al(t)},?gl. Each arrival stream iisi.d..in. time. The distribu— G under an example interference model called thiop
tion of the number of packetsl;(t), arriving to a linklin any e terence model. In @-hop interference model, any two

given time slott may be arbit;ary but time' invariant. ASSUME, /o links inl(t) are always separated by two or more hops
that the _second_momentE,[Al]. of the arrival processes arej, y,q underlying network graph. Let us consider subgraph
finite. Different input streams may be correlated with eacilﬂ Figure 2. Every link in the subgraph interferes with any
other. LetA(t) = (Ai(t),...,An(?)) represent the vector other link because it is within two hop distance. Moreover, n

of exogenous arrivals, whers () is the number of packets 1, e jink from graph? can be added to this subgraph without
that arrive to link/ during time slot¢ (for [ € 1,...,N). violating the above property.

Let A = (A1,..., Aw) represent the corresponding arrival rate The 2-hop interference model is used again in our simula-

ve_(I:_tr(])r. ket - i h link d y tion studies since it has been often used to model the bahavio
e packets arriving at each link are queued. LA(?) of a large class of MAC protocols based on virtual carrier

denote the queue length at liik The queue length vector (i ; o
. B L g g using RTS/CTS messages, which includes the IEEE
is denoted byQ(¢t) = (Q;(¢t) : 1 = 1,2,...,N). A link can 802.11 protocol [18], [19].

be activated in a time slat only if the queue is non empty. Let [ Y| denote the Euclidean norm of vectdf. The

We use the term activation (scheduling) of a link or a queue . .
interchangeably in the paper. At most, one packet is sert/edSXStem 's considered to be stable [2t]1>f+moo sup B[ Q)] <

a queue in a given time slot. After service, each packet eas: f the system is stable then the throughput is the same as
the system. There is a slotted structure in service. For edf§ amival rates. A throughput vectaris admissible if there is
link 7, the indicator functionZ;(¢) indicates whether or not SOMe scheduling policy under which the system is stable when
link 1 received service at time slot Note that the arrival rate vector is\. Let us denote by the closure of

1 if Qi(t) > 0 and! is scheduled the convex hull of the set of activation yectoié,and byC
Ii(t) = { 0 othelrvvise (I11.1)  the interior of the convex hull. Note thadt is a closed convex
set. It has been shown in [1] that if each arrival process.cs
The evolution of the queue is as follows, in time, and the first two moments of all the arrival streams
- - Ay(t)}e2, are finite, thenm\ € C' is a necessary condition for
@t +1) =Qut) - L(t) + Ault), L =1,.. N (ll.2) f{;\st;t))i}ifzi;lg scheduling policy to exist. It is also showattthe
The vector of the scheduled queues is denotedIfzy = MWM policy, that chooses the maximum weighted activation
(I.(t)) : n = 1,..N. Because of interference, there ar@ector (matching), stabilizes the system for any arrivaéra
constraints on the combination of links that can be activatsatisfying the preceding condition.



MWM Scheduling Policy - Lemma 4.1:For any exclusive sey; in the system, the sum

B g of queue lengthg),, in x;, under any scheduling policy is no
I(t) = afgmaxz Qi) (11.6) smaller than those unddi,,.. policy at all times, T, i.e.

Ves o
Q@ (T) = Qy(T).
where jg is the i*" component of thej*" activation Proof: Depending on whethef' lies in the busy period
vector, I/, in setS. of the system under th#,,,., policy or not, the following

two cases arise.

Case 1:9,,(T) =0

SinceQ,, (T') is always non-negative, the result holds trivially.
The definition of the capacity region of these systems fs25€ 2:Qx,(T) >0. o

related to the existence of a scheduler that chooses teateti-€t 7o Pe the time that initiated the current busy period, i.e.

the queues by a stationary process. These results have ber~ - Then the queue length can obtained by summing

Fig. 3. MWM Scheduling Policy

derived in [7]. Equation (1V.8), is as follows:

Lemma 3.1:For any feasible input rate vector T_1 T_1
A = (A1,...,Any) which lies in the interior of the capacity 9.,(T) = Ay, () — 1 (IV.9)
region, C' there exists a vectop = (p1,....un) € C ! t:%:,l * t:;,l 12 >0}

such that\; < y; for all queuesl € L. Also, there exists o _ .
a stationary randomized scheduling policy which choos&ince the system is in the middle of a busy period,
activation vectord®(t) such thatE[I7(t)] = ; and hence l{g, (>0} =1forall T, <¢ <T, and the above equation

stabilizes the system. reduces to
The exclusive sets define the constraints on the rate vector T_1
- We let iy, Qenote the sum of service rates of the queues Q.,(T) = Z Ay, (t) — (T —T,) (IV.10)
in x; of a stationary randomized policA given vectoru is t=To1
in the capacity region if.,, is less than one for all exclusive . ) .
sets in the system Now we consider the evolution of the queuesyinunder an

arbitrary scheduling policy. By the definition gf; , not more

IV. FUNDAMENTAL LOWER BOUNDS ON THESYSTEM than one of the queues iy can be scheduled at any given

. . . time-slot, i.e.,
In this section, we develop an algorithm to calculate a
lower bound on the delay of the system, independent of the Z Li(t) = Ly (1) <1 (IV.11)
scheduling policy used. Recall the definition of the exalesi vEX

sets, x; of link [ in the system. Only one of the queues ifrpe eyolution of the queues ig; is given by the following
xi can be scheduled at any given time slot. The notion gfaion.

exclusive sets is helpful for deriving fundamental loweuhds

on the expecte_d delay_ o_f_the system. _ _ Qu(t+1)=Qy, (1) — L, (t) + Ay, (t) (IV.12)
Let us consider a fictitious scheduling polity;,.., that

guarantees to schedule one of the linksyinwhenever there In particular,

is at least one non-empty queue. Althou§h,.., policy

satisfies the interference constraints within it ignores the  Qx,(To) = Qx, (To — 1) = Iy, (To — 1) + Ay, (T, — 1) (IV.13)

interference of the scheduled link with other links in the . ) ) )

network. We denote the sum of queue lengthsyinunder This system (under the arbitrary scheduling policy) may or

the policy I, asQ, may not be in the middle of a busy period&f — 1. If it is
ower e

in the middle of a busy period?,, (7, — 1) > 1 and thus,
Q)= Qi(t) (Iv.7)

1EX1L (sz (To - 1) - Ixz (To - 1)) > 0. (IV-14)

Then, the queue evolution undéi;,... is given by the

i . If the system is not in the middle of a busy period, then
following Equation.

Qu(t+1) = (2 (1) ~ Lig,, >0 + Au(0) " (IV.8) La(To=1) =0 (1V:15)
where 1 is the indicator function andd,, is as defined in since an empty queue cannot be scheduled at any time slot
Equation (111.4). (see Equation (111.1)).

We now compare the evolution of queuesypunder the
IT;ower policy to an arbitrary scheduling policy. We assume Combining Equations (IV.14) and (IV.15), we obtain the
that both the systems are driven by the same sequencefaiibwing.
arrivals. In Lemma 4.1 we compare the sum of queue lengths _
Q,, in x; with Q,, at a given timeT". The periods of time Qi (To) = Ay, (To — 1) (IV.16)
in which at least one of the queuesn is non-empty under By summing Equation (1V.12) to obtai},, ('), and simplify-
the I, policy are calledousy periods ing using Equations (1V.16) and (IV.11), we obtain the desir



result. the set of links it was grouped with by the greedy algorithm.

T—1 T—1 Note thatl € ;.
Q. (T) =Q,,(T,,) + Z Ay, (1) Z I, (t) Assume that thél;,,,., policy schedules one link in every
=T, t=T, exclusive sety;, computed by Algorithm 1, whenever there
T—1 T—1 is a non-empty queue in the corresponding set. Siicés
> A, (T, — 1)+ Z A, (t) — L, (t) an exclusive set, a lower bound on the sum of its queues can
t=T, =T, be obtained by applying Theorem 4.1. The value of the lower
T—1 T—1 bound is incremented and the links in the chosen exclusive
> Z Ay, (t) — 1 set are removed from further consideration. This process is
t=T,—1 t=T, repeated until every link in the system has been used. Since
>9Q,,(T) each link appears in exactly one exclusive set, the systeta-w

(IV.17) lower bound on the expected queue length can be obtained as
the sum of the contribution of each link towards the lower

Using the above lemma, we derive the following IoweF)Ound given by Corollary 4.1.

bound on the queues ixy;.
Theorem 4.1:For any exclusive sef; in the system, the
expected value of the sum of queue lengthsinunder any 1: X — {1,2...N}

Algorithm 1 Computing the Lower Bound

scheduling policy is lower bounded by the following. 2: BOUND <0
Xi + B[4 A)] - 20, 3: repeat _ _ o
e 4:  Find an exclusive sef C X which maximizesL By
RCMEDY 51— ) = LBy, 5. BOUND — BOUND + LBy
Lex - . 60 X — X\¥x
Proof: Lemma 4.1 shows that at all times, @, (T) = . |0l x — é
8:

Q.. (T). It follows then, that the expected value of the sum
of queue lengths in; under any other scheduling polidy

will be lower bounded by the expected value of sum of queue
lengths iny; underIl;, ... Then Corollary 4.1: The sum of expected value of the queue

length satisfies:

return BOUN D

E[Qy] > E[Qy,] (IV.18)
. . _ Xi +E[A Z Aj)
The analysis of the exclusive set under the,,.. policy N
reduces to that of single server queue being fed by multiple ZE[Qi] > Z 2(316"‘ pu (IV.20)
arrival streams, i.e4,,. Since the arrival streams are assumed =1 i=1 Xi

to independent over time, the expected valuedf, under
the 11, policy can be derived using the standard GI/D/
analysis and is given by.

)‘Xz + E[(Z AZ)Q] - 2()‘X1)2

ir he total expected network dela#), satisfies:

ZE v A +E[A(D A - 20
: D= Z JEXi
o 1EX1 N
E[Q,]= 20 =) (IV.19) ZA — 23 A1 -
It follows that: j=1

SONHED A -200 M) _ (Iv.21)

Note, that the above result only requires each arrival pro-

Q] > =4 Z2€(>1<l_ . iexi cesses to be independent over time. In the case where all the
L . . .
\; + EJA; AN — 20 A arrival stream are also independent of each other, we obtain
+ B ’(];XL i) j;a 2 the following result.
E[Qy,] > Z 21— ) Proposition 4.1: When the arrival streams are independent,
i€x X the expected value of the sum of queue lengths in the system
Ai + E[4;( Z Al =20, under any scheduling policy satisfies:
JEXI
= E[QXL]—Z 2(1— Ay) " al A +Var W
> E[Q Z (IV.22)
We useL B, to denote the lower bound derived above on >\ 2)

the sety;. We now develop a greedy algorithm (see Algorithm _ ~ o
1) to compute a lower bound on the sum of expected quelige total expected delay in the network, satisfies:
lengths on the entire system. At every iteration of the “egpe

; . . . N
until” loop, an exclusive set with the highest value bB,, D> Z Ai + Var[4;] — Midg (IV.23)
is computed among the links in s&t. Note that this set is a T = N '
maximal exclusive set it and may not be maximal in the 20> M)

original set of linksL. For any linkl, we useyx; to denote



A. Discussion We first design an appropriate Lyapunov function for the

The lower bound is achieved by a fictitious schedulingyStem- N
policy, IT;,..., Which schedules one link in every exclusive set ) — 1 02(1 V.26
X1, computed by the algorithm, whenever there is a non-empty viQ) = 2 ;W’Q’( ) (V.26)
qgueue in the corresponding set. This policy may violate the . . - o
interference constraints, because the set of schedulambque!\mte that if all the weightsw; are chosen to be 1, this is

may not be a valid activation vector. This is because tf?é(aCtly the quadratic Lyapunov function ,“SG‘?' in [1]. Before
links in two exclusive sets may interfere with each other. e move on 1o prove the throughput optimality of GMWM,

other words, we have relaxed the constraints in the queuilt§ Staté a couple of usefuJIVdeflmtlons.
system to obtain this bound. Therefore, in general, it is not pefinition 5.1 B(t) = lzwi(Ai(t) —I(t))?
possible to design a scheduling policy that achieves therdow 2 =
bound. However, we observe through simulation studies tHaince the second moments of the arrival processes are
for several different values of the input load, the perfonge bounded, it follows thaE[B(¢)|Q(t)] is bounded from above
of the MWM policy is indeed quite close to this bound. by a positive constant.

Since the exclusive sets do not completely characterize theDefinition 5.2: We defineE, := {0,1,2,.. ;*— W to be
capacity region of the network, it may also be expected thatfinite set of states as required by the Foster's criterigrash
if the input load is close to a boundary of the capacity regiow,:» is the minimum of the weights among; ande > 0.
C, which is different from the boundaries generated by the Theorem 5.2:For any input loadA € C, the GMWM
exclusive sets, the lower bound may perform poorly. Thus, #cheduling algorithm ensures that the resulting DTMC is
certain cases, the delay of the system under MWM policy m@gsitive recurrent and ergodic.
be close to infinity while the lower bound is much smaller.sThi Proof: See Appendix A. [
motivates the development of an upper bound for the systeWile now analyze GMWM and derive upper bounds using the
which is tight in the sense that whenever the upper bound gdelowing lemma from Lyapunov drift theory [7], [8].
to infinity, the delay of the system under a throughput opktima Lemma 5.1:Let V(Q) be a non-negative function of the

policy also becomes infinite. queue vector and the drifA(Q(¢)) be as defined above. Let
P(t) be a non-negative process anddet 0 such that for all
V. DEVELOPMENT OF ANUPPERBOUND time ¢ and all possibleQ(t),

A(Q(t)) < E[P(t)—eh(t)|Q(t)] where h(t) represents a non-
Hégative process that might depend on the queue state. Then

Weighted Matching (GMWM§)) policies, parametrized by the following holds:

weightsw; which is described in Figure 4. The MWM policy

is a special case, where all the weightsare unity. We prove 1t 1 2 gp
P ghts y-vep limsup S B(r)] < limsup = 3 BT (y07)
- - t—o00 t —0 t—o00 t —0 €
GMWM Scheduling Policy = =
al ; We are now ready to state our main result that bounds the sum
— ONTI
I(t) = arggl;XZ; (w; Qi) (V.24) of the expected queue lengths and the expected delay in the
‘ = system.
where I is thei** component of thej*” activation Theorem 5.3:Given any input load vectoh € C and any
vector, 17, in setS andw; > 0 are fixed constants. vectorp € C': Vi, p; > )\, the following bound on the

expectation of the sum of lengths of queues holds true in a

system operating under the GMWM policy where the weights
that GMWM achieves 100% throughput for every choice dfi are chosen as; = ¢

w, S.t.Vi,w; > 0, using the Foster-Lyapunov drift criteria for N

Fig. 4. GMWM Scheduling Policy

N
countable Markov chains. The following well known theorem ZE[Qi] < Z (Ai + Var[A;] = \9) (V.28)
provides Foster’s criteria for Positive Recurrent and Eigo =1 = 2(pi — i)
Markov chains [2], [20] - e
Theorem 5.1:A countable Markov chain is positive recur-The total expected network delag, satisfies:
rent and ergodic if and only if there exists a positive fuoeti (O + VarlA.] — A
V > 0 and a finite set of state§,, such that the following D < Z ( = _[ sy (V.29)
hold: = 20250 A (ki — i)
« Bounded drift from the finite sef,: Proof: See Appendix B. ]
VQ(t) €&, A(Q() < oo
o Negative drift from the complement: A. Discussion
jvr%(rg ¢ &, Je>0st, AQ()) < —e We have been able to obtain an upper bound that is explicit

in the statistics of the arrival process. Note that the upper
A(Q(t) = E[V(Q(t + 1) — V(Q(t)|Q(t)]. (v.25) bound also decouples the contribution of each link towainds t
total network delay. It is interesting to note that the clatiens



between the arrival streams do not affect the upper bound. Wgorithm 2 Computing the Optimal Value of p°*
have analyzed the system when each arrival procegsgds 1: n <« 1

in time. The above analysis can be extended to the case when Initialize the pricesa™

each arrival proces$A,;(t)}s2,, is modulated by a discrete- 3: repeat
time, stationary, ergodic Markov chain using the techngque (n) X\i + Var[A;] — \?
developed in [5]. 4 pp e At 5

The upper bound derived in [21] (Theorem 2) for the same N
system has in the denominator for each of th& terms . 3/1,(") — [Z,j wherel’ = argmaxpeszagn)lij
in the sum in Eq. (V.28) (with the same numerator), where ’ im1
e = min;(1; — A;). Hence, the upper bound obtained heres: ("™ — (") 4 p(m) (") — (7))
is numerically smaller than the state-of-the-art. Thishasn 7., — n+1
achieved by choosing the weights;, such that the second sg: until p converges
term on the right hand side of Eq. (B.48) in the Appendix Bg: return BOUND
is equal to the negative of the sum of queues in the system.

Thus, the contribution of each queue towards the drift isaqu

to its queue length, i.e., balanced, resulting in a tighterelr such that lim 7™ — 0 anth(") — o, then the values
bound. n— 00 g
opt

Jhﬁ abovi aﬂalylzsbnatuzall)t/ (Ijegdsthus to th(.:’t ques_tﬁlﬁn (ﬂ‘fuln converge to the optimal value;”", which minimizes
which p = A snould be selected In the capacily reg| the upper bound on the expected queue lengths in the system.

such that the upper bound is minimized. Intuitively this mea The GMWM schemes in which the weights satisfy i
that we have to select a point on the boundary of the capacqilty( vt _ ),) = 1 achieve the optimal delay bound and ,Wi||

region that is the farthest from the input load vector. Thi e referred to as GMWRA! for the rest of the paper. We now
can be formulated as an optimization problem to compute téﬁow that the delay performance of GMWM is no worse

value of p that minimizes the upper bound. than any other stationary randomized policy.

Upper Bounding Expected Delay B. Comparison with a Stationary Randomized Policy
We analyze the delay of the wireless network when operated
Minimize Z (Ai + Var[4;] — \7) with a stationary randomized schedulHr,. As noted before,
2(pi — A) in Lemma 3.1, for each link in the system a service rate of
subject top € C 1 > A; is guaranteed. The service process can be analyzed
as follows. The scheduldi i is unaware of the backlog and
Fig. 5. Optimization Problem for Minimizing the Upper Bound chooses to schedule linkindependent of whether the queue

is empty or not. In every slot, if the link is scheduled, ekact
The optimization problem in Figure 5 is convex becausgne packet is served, otherwise the packets in the queue wait
the objective function is convex and the capacity region {gr the next available slot.
also convex, being a convex hull of the activation vectors. We define the following for the system.

The formulation of the problem is very similar to the network q.(t): Length of the queué at the beginning of time slot

utility maximization using convex optimization techniq;(esee ‘.
[22]-[24]). Using Lagrangian techniques, the duéka), o « A;(t): Number of arrivals at link during the time slot t.
the above problem can be decomposed into the foIIowmg tWo, R, (¢): Random variable that is 1 if link is scheduled
sub-problemsa is the set of prices. and is 0 otherwise.
Ua) = Xi(a) + Y(a) (V.30) « d: Average delay in the system.
The system evolves as follows
where
X,(a) = (i + Var[4;] — \2) a(t+1) = q(t) + Ai(t) — Ri(t)1g,0)>0 (V.33)
na =N 2(pi — A\i) ditti (V31) The following is a standard result for GI/D/1 system with
) {()\i + Var[4;] — \2) N } ' Bernoulli service process [8], i.e.,
= min - Qg
> Ai 2(ps — i) ® Blg] = A + Var[4)] — (V.34)
and = 2(m — i) '
, Under the stationary randomized policy the behavior of each
Y(a) = arlgm;xz a;l} (V.32)  queue in the system is independent of other queues. Using the
= =1

fact that the expectation of the sum of independent random
The dual problem can be solved using an iterative subariables equals the sum of their expectation, the follgwin

gradient method shown in Algorithm 2. The dual priecgsare lemma follows:

updated in each iteration. It has been shown in the litegeatur Lemma 5.2:The sum of expected queue lengths of the

[22]-[24] that if the sequence of values ¢h} are chosen queues in a discrete-time system constrained queueingnsyst



with arrival process4; (rate )\;) and service ratey, at link [, We definey; as the exclusive set that has the largest sum of
operating under a stationary randomized scheduling pddicyarrival rates \,, = Z A; among all exclusive sets containing

given by: i€x1 .
N N+ Var[A]] — A2 [ In the case where all the grrlval streams are mutually
> Elgl=> 0m A independent, we propose to estimate the total expecteg dela
L — AN

=1 . . in the network by the following equation.
lows by using Lemma V.34 and using

=1
Proof: The proof fol
the fact that the service process is Bernoulli with probigpbil N N \; + Var[4,] — X
;i at the queue independent of other queues in the system. Y EQi]~) 20 _[/\A]) ‘ (VI.35)
] i=1 i=1 Xi
Theorem 5.4:Given any admissible arrival processThe total expected delay in the netwotR, can be estimated
{A(t)};2, (with mean ); ), the sum of expected queueas follows:

lengths@; under the GMWMP?! policy is no worse than the D EN: i + Var[A4;] — A2 (V1.36)
sum of expected queue lengtlys of any other stabilizing - — '
stationary randomized policy. In other words, = 2(2 A1 =Ag)

N N j=1

ZE[QZ] < ZE[ql] We call the rh.s. of the above Equation (VI.35) as

=1 =1

the Estimate(G, ). Similarly, we call the r.h.s. of Equa-
tion (IV.22) as the LowerBound(G,\) and the r.h.s. of
Equation (V.28) as thé& pper Bound(G, A) respectively.

It follows then, that the average__deliy under GMWM?! is
no worse than the average del@yinder any other stabilizing

stationary randomized po%cy<. b Theorem 6.1:Given a wireless network with mutually in-

_ = . dependent arrival streams, the estimate lies between therup

PrO_Of' Among the class GMWM policies, the upperyq |oyer boundUpper Bound(G, ) > Estimate(G,\) >
bound is minimum for the GMWNPt. The result follows LowerBound(G, )
by comparing the bound establish?d in Theorem 5.3 for the  prof The bounds and the estimates have been expressed
GMWM policy with weightsw; = ;=< and expected value 55 5 sym of N terms. We first show that each term in the
resulj[ for the staﬂongry randomized poll|cy_ |n. Lemma SK. upper bound is no smaller than the corresponding term in the
It is known that in the heavy traffic limit, the schemesgtimate.

GMWM is asymptotically optimal [14]. However, the resultpart 1: Consider linki in the system. As explained in

obtained here is true for all load vectaokse C . Section IIl, for any exclusive set; and anyp > A : p € C,
o = ;<1
VI. ESTIMATING THE DELAY jexi

We noted towards the end of Section IV that the lower = 1 — i — Z Aj 2 i = i + Z (5 = Aj)
bound may not be achieved by any policy because it may not JEXIF JEXiJF
be possible to schedule a link in every exclusive set duegoth = 1 — Ay, > pi — A;
interference constraints. Therefore, we attempt to devalo  gjnce, each:; > A;. In particular, we have
accurate estimate for the delay performance in this section
The lower bound analysis suggests that those exclusive sets =g 2pi—A (V1.37)
that have a larga,,, must have longer queues lengths becauSince both sides in Equation (VI1.37) are positive, we haee th
the sum of the expected queue lengths in the exclusive fsitowing result,
I§ proportional toﬁ. However, since a sc_hedulmg policy i+ Var[A;] — A2 _ A + Var[4,] — A2
like MWM also balances the queue lengths in the system, the 21— ) < 2 — \o) (VI1.38)
effect of congestion in a particular exclusive set is distted xi e )
over the whole system. Hence, instead of estimating theegueu NOW, we show that each term in the Estimate is no smaller
length at each link, we estimate the contribution of eack lifhan the corresponding term in the lower bound.
towards the aggregate expected queue length. Part 2: Consider link: in the system.~By definition o,
The upper bound analysis indicates that the expected ﬁf is no smaller thanmy; for the setsy;, computed by the
gregate queue length in the system can be expressed a %)rlthm 1in Section IV of the paper. Alsdy; is no smaller
of the individual contributions of each link. It also sugges &N i-e.,
that the contribution of each link is inversely proportibha AG 2 A0 2 A (V1.39)
the congestion,;( — A;), at the linki. A similar feature is |t follows that (1 — M) > (1—Ag) and
also noted in the lower bound where the congestion is equal
to (1 — Ay), wherey; are the sets computed by Algorithm 1 (), + Var[A;] — M) < (A + Var[4,] — A2)  (VI.40)
in Section IV. However, since the sefs used to compute the . . .
lower bound are not maximal, they do not accurately reprteseLrJ]S'ng the above two inequalities, we get the desired result,
the effect of congestion and multiplexing in the system.¢¢gn \i + Var[4;] — \? - i + Var[4;] — \iAy; N
we consider the setg; (defined below). 2(1 = Ag) - 2(1-Xg7) (Vi-41)
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m grows very fast. We observe that both th&\/TW M°F* and
MWM policies perform close to the lower bound. The esti-
mate closely matches the queue lengths of both MWM and

) ) GMW MP°P" policies, however it is more accurate for the
We present the simulation results for two types of network » ry17 psort policy. The upper bound, although tight in an

topologies, grid and random .quasi unit disk_graphs [_25]- IBrder sense, is almost always a constant multiple of theageer
each case, the lower bound is computed using Algorithm dueye length in the system. It seems that for each ljrtke
The upper bound on the performance of GMWM policy igerm, (L—\g,) in the estimate is a constant multiple f ¢ \;),
computed using Algorlthnz 2 a_lnd the corres_pondlng weight$ected by the&xM W M policy. This suggests that under
are used by thesMW M policy. We also sllr)rtlulatg MWM  the MWM type scheduling policies, the system behaves as if
policy to provide comparison with th& M W M policy. We g the queues in the exclusive set have been multiplexed
study the accuracy of the estimate for this class of throughpptg 4 single queue.

optimal policies when the arrival streams are mutually inde Tpe delay in the system increases rather slowly when the
pendent. We use CPLEX [26] to solve the combinatorial pro'%ystem load is in the low to medium range. However, as
lems of computing the maximum weight scheduling problemg yected, the increase is sharp as the load approaches the
at every iteration. The simulations are run until the haidiv capacity region boundary. It seems that the lower bound
of the 95% confidence interval is within 2.5% of the mean. Aglnalysis was rather optimistic for heavy loads because it

simulation experiments have been conducted under the 2-hQR\\med that all the exclusive sets generated by the Algorit

VIl. SIMULATION RESULTS

interference model explained in Section Iil. 1 can be scheduled at the same time if they have non zero
gueue lengths. At low and medium loads, since many of the
A. Grid topology exclusive sets are likely to have small queue lengths, tiverlo

We simulate two cases, one with with mutually independeFPund appears o be tight. The fact that even for an optienisti
arrival streams and another with correlated arrival steam o o bound, the MWM and GMWM perform so close to the

1) Independent Arrival StreamsFor this simulation, the Iov;;:r C?grligg tlgc?I;?rﬁ?/zltzzte;?r?:v?/:ees?riirl%gggmg. 4 arid
network is a 7x9 grid with 63 nodes and 110 links as. ) 9

shown in Figure 8. The direction of data transfer among vgnh 29 links with link directions as shown in Figure 9. The

: . . ) ; arrival process at each link is Poisson with the same rate
pair of neighboring nodes is chosen randomly. The arriva L
process at each link is Poisson with rate paramatehosen parameten. All the flows originating from the same node have

independently, randomly between 0 and 1 packets per sl%)t(.aCtIy the same arrivals, i.e. they are perfgcyly coreelalhe
pper bound and the lower bound analysis is general enough

This arrival vector may even be outside the capacity reglcg : . .
. ; Q correlations in the arrival process and the results aogveh
of the network. Once a random base-line load is chosen

we use a scaling factor to study the delay performance O?Iqw. . .
Figure 6(b) shows the increase in the sum of expected

different values of the (normalized) load in the networkeTh . o
maximum value of the load that is supported by the system yeue lengths in the system as the valuexds increased.
e observe that the delay performance of tHa/W M ePt

determined from the simulations. Since MWM is throughputOIiCy is better than that of tha/ T M on account of a better

opt|r_nal, the point yvhere.the system becomgs unstable mu.srg?u%ice of weights which increase the chances of scheduling
outside the capacity region. The input load is then norredliz

: ) . trf]e more congested links in the network. Figure 7(b) shows
With value_ 1 corr_espondlng to the point on_the bpundary ?hat the lower bound is quite close to the performance of
the capacity region. It appears from our simulations thattﬁe GMW MeP* even when there are correlations among the
randomly selected load, when scaled appropriately, ushé#

the boundary generated by the exclusive set constraints. arrival streams.
Figure 6(a) shows the increase in the sum of expected queue o
lengths in the system as the load is scaled. The queue len§thRandom Quasi Unit Disk Topology
increases almost like a quadratic function at low to medium We generate a random quasi unit disk graph shown in Figure
loads. At high loads however, the denominator teiira-Q¢,), 10 with 40 nodes and 92 links. We allow a neighboring pair
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Fig. 7. Expected Delay From Simulation Experiments

The first two moments of4; are \; and9\; + 2)? respec-
tively. This load is scaled in a manner similar to the pregiou
case, to study the performance of the system at differedsloa
The results are practically similar to the previous case nédte
that the estimate and lower bound developed here accurately
capture the impact of the variance in the arrival processhen t
delay performance.

Thus, even though the lower bound in not guaranteed to be
tight in every case, it nonetheless provides a useful etima
of the delay. Notice that the upper bound is finite for any
lambda € C. Also note that the delay of any scheduling
policy must be infinite if the load is outside the capacityioeg
Therefore, we can conclude that as the upper bound goes to
infinity, the delay of any throughput optimal policy mustals
become infinite. Further, from our simulations, it appe&et t
the upper bound is a constant multiple of the delay of the
MWM/GMWM policy.

Fig. 10. Quasi Unit Disk Topology

. o VIIl. CONCLUSION
of nodes to transfer data in both directions (for the sake of

simplicity, the links in the figure are shown as undirected We have estabhs_hed a fundamer_1ta| !ower bound on the
links). The arrival rate\; at each linkl is chosen randomly performa_nce of a wireless system W!th single-hop traffic and
between 0.1 and 1 packet per slot. Let Geometric(p) denotd deralh mte:‘fe_rence ;:onstramts. fTh'S reﬁul(; clzlan bel_ueesvt
sample from the geometric distribution with parameter pe T tudy the relative performance of any scheduling policy. We

arrival process at each link is chosen as follows: observed throu_gh simu_lgtions that the performance_ of _the
o . 3 6 throughput optimal policies such_as_ the MWM policy is

Al(t) = { GeometricG ) with probability 15,7 very close to the lower bound. It is interesting to note that
Geometncﬁ) with probablllty%;h the MWM type of policies, which were designed primarily
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for achieving maximum throughput, indeed also have good APPENDIXA

delay performance. This can be attributed to two reasons. PROOF OFTHEOREM5.2

Firstly, MWM schedules a maxima_l SeF of links in the system. We begin with the calculation of the drift for any Stmt)
Secondly, it performs load balancing in the system. We have

analyzed the impact of GMWM type of scheduling policies or\ (Q(?))

the expected queue lengths and expected delay in the system; ~

The GMWM** policy analyzed in the paper, uses the informa= 5 S wiB[(Qi(t+1) — Qi) (Qit +1) + Qi(1)|Q(1)]
tion of the arrival rates to the links to achieve load balagci i=1

by assigning higher weights; to more congested links. Thus, 1 X

itimproves the delay performance. We have shown that for any 3 > wiB[(Ai(t) = Li(1)(2Qs(t) + As(t) — Ii(1))|Q(1)]
given \ € C, the performance of GMW®F! is no worse than Ni—l

any stationary randomized scheduling policy. It is intéres

to note that the MWM policy achieves load balancing without™ ZwiE[(A"(t) — Li0))(@i(1))IQ(1)]

explicit knowledge of the arrival statistics, simply by ngi Zle

the information of the backlogs and thus achieves a delay 1 ‘ 1Y T ()2

performance comparable to that of the GMW¥I policy. ¥ 2 ;w’E[(A’(t) L)1)

(A.42)

Note that our approach is orthogonal to that taken by [2¥/e now invoke the assumption that the arrivals arel.
where functions of the typ&¢, o > 0 were used to compute over the time slots and hence have expected values that are
the weight of the matching. This was explored further in [28ndependent of the current queue states. Also, sheeC,
where it was suggested that a smaller valuer ofiay decrease
the idling in the system, leading to smaller delays. In our .
approach, the knowledge of the arrival rates at differamtdi Ai = _a;I] such thaty a; <1
in the system is used to compute the weightcorresponding =t =1
to each linki. In the GMWM policyw; is a fixed constant that Therefore we have
serves to increase the chances of scheduling a more codgeste

IS S|

. . N
link as compared to a less congested one, even when its
instantaneous queue length is small. Z;wiE[(Ai(t) — I;(1))(Qi(1)|Q(1)]
N N
Finally, for a network with mutually independent arrival ~ — Z“’i)‘iQi(t) - ZwiE[Ii(t)Qi(tﬂQ(t)] (A.43)
streams, we have developed an accurate estimate of the per- 121 8] =1

formance of MWM type scheduling schemes. This result can j
be used to study the relative performance of other scheglulin ~ — sz Zo‘ﬂli Q
policies for wireless networks. The proposed delay estmat
can also be used as a more accurate metric for the developnfgince I(¢) is the optimal activation vector chosen according
of the scheme studied in [17]. We have developed bounttsthe GMWM rule,

and estimates for the expected value of the sum of all queue N N

lengths in the system. Since the policies like MWM, balance V5, zwili(t)Qi(t) > zwingi(t)

qgueue lengths in the system, the above analysis can be used =1 =1

to estimate the individual queue lengths in the system. ,Thl.ll_?ence

if the total expected queue length in the network is small, we '

N
i(t) — sz‘fi(t)Qz‘(t)

i=1  j=1

can expect the average queue length at an individual link to N
be also small. > wiE[(As(t) — L(1))(Qi(1))|Q(D)]
i=1
S| N
Since the complexity of implementing MWM/GMWM is < —(1- Zaj)ZwiIi(t)Qi(t) (A.44)
high, the design of distributed algorithms based on thesp-pr j=1 i=1

erties is an important avenue for future investigation. $tugly N

of throughput and stability of MWM has resulted in humerous < _GZwiIi(t)Qi(t)y €>0

interesting works on the development of far simpler pradijc i=1

implementable throughput-efficient schedulers. Simjlawe Using Equations (A.42) and (A.44) and Definition 5.1, we
expect that this study of the delay characteristics of MWMave

will also result in simpler and more delay efficient schedsile N
AQ(1) < =€y wili(t)Qi(t) + E[B(1)|Q(t)]
=1

As future work, we would like to analyze the delay of a Then forQ(¢) € E, the drift is bounded by c (defined in
wireless network with multi-hop traffic. Section V).
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Plugging the value of the weightsy;, = m ,.i,\,. in Equa-
ForQ(t) ¢ E.,, GZwl ; ) > cand henceA(Q(1)) < (B.48), we have )
—n,n > 0. Hence by the Foster-Lyapunov criteria in Theore
5.1, the DTMCQ(t) is positive recurrent and ergodic. nl (1) < E[B Z @i(t)
and thus by the appllcat|on of Lyapunov drift Lemma 5.1 we
APPENDIXB have:
PROOF OFTHEOREM5.3 1 i1
1
We use Equation (A.43) from the proof of Theorem 5.2 to  limsup — Z E[ Z Qi(7)] < limsup - ZE )]
arrive at the following: R i R =
(B.49)
Let us now computd&[B(t)].
AQ() = +Z WA Qu(t) sz Olle10) N
1 2
Note thatI(t) is the activation vector chosen by the GMWM Blt) =5 ;wl(Al(t) — L)
scheme at time-slat For any other activation vectdr € S, -
the following holds true: The queueing system is stable under the GMWM policy and
N sinceI;(t) takes value eithed or 1, it foIIows that
; I* t—1
Zw g IQ®) limsup,_, %ZE[I?( = limsup — ZE
(B.45) =0 fmoe
Hence, Also, E[4,(t)] = A\; and )
N E[Az'”(t)fi(t)] = E[Ai(th)]]?([flzi(f)] =\
Finally, we arrive at the fo owin
AQ(1) < E[BOIQN)] + > widiQu(t)— Y i 8
. 1 2 2
N limsup, .., ¢ ;E[B Z w; (N + E[A7] — 2X7)].
ZwiE[I;‘(t)Qi(t)\Q(t)] We have already estabhshed “the ergodicity of the queue
i=1 length process and we conclude that the steady state queue

Now, we use Lemma 3.1 which shows the existence Ofog,cupancies can be upper bounded by
stationary randomized policylp with rates greater than.

Suppose the activation vector picked Hy; at timet is IR (¢). Z E[Q;] < Z w;(\; + E[A2] — 2)2)]
We define another scheduling polidy which schedules at i=1
time ¢, all the queues scheduled W§#(¢) except for those N (i +E Az] —2A2)
whose queues are empty. We defirieas follows: = Z )
[ IR0 Qi(t) >0 o Z
I (t){ 0 if Qi(t) =0 :Z (A +Var ] =A%)
: - i)
It follows that i=1
E[I; (1)Q:(1)|Q(t)] = E[I'(H)Q ) J(D)|Q(1)], The upper bound for average network delay follows by the
N application of Little’s law.
. * R
;wlm (1)Qs sz L)@ . <i (0 + Var[Aj] 2
(B.46) TS 2T M) (s — )
Therefore,
N
A(Q(1)) < E[B()IQ()] + ZwiAiQi<t> REFERENCES
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