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Since random early detection (RED) was proposed in 1993, many active queue management (AQM)
algorithms have been proposed to support better end-to-end Transmission Control Protocol (TCP)
congestion control. In this article, the authors introduce and analyze a feedback control model of the
TCP/AQM dynamics. Then they suggest the concept of an AQM algorithm that can detect and avoid
congestion proactively. Finally, they propose the proportional-integral (PI) proportional-derivative
(PD) controller using proportional-integral-derivative (PID) feedback control to overcome the reactive
control behavior of existing AQM proposals. The PI-PD controller is able to provide proactive
congestion avoidance and control using an adaptive congestion indicator and a control function.
A comparative simulation study under a variety of network environments shows that the PI-PD
controller outperforms RED and the PI controller in terms of the queue length dynamics, the packet
loss rates, and the link utilization.
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1. Introduction

The Internet has been designed to provide best-effort
traffic, and the end-to-end congestion control mecha-
nism performed at the transport layer in end systems
has been developed to support and manage this Inter-
net traffic efficiently. The current Transmission Con-
trol Protocol (TCP)–based end-to-end congestion control
mechanism operates with first-in, first-out (FIFO)–based
tail-drop (TD) queue management at routers. Since TD
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has some drawbacks, such as low link utilization, high
queuing delay, and unfair bandwidth allocation caused
from full-queue and lockout phenomena [1], the perfor-
mance of TCP congestion control is still unsatisfactory,
even with improvements on the end-system algorithms
such as slow start, fast retransmit, and fast recovery.

To remedy the performance degradation of the current
TCP congestion control over TD at routers, active queue
management (AQM) algorithms such as random early de-
tection (RED) [2] have been introduced. An AQM algo-
rithm monitors and controls traffic within a router where
the congestion occurs and is controlled using more accurate
congestion information than at sources.Another advantage
of AQM is that in the absence of cooperation from sources,
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or if sources are not responsive to congestion control,AQM
is capable of controlling congestion solely at routers. Thus,
the AQM algorithm plays like an admission controller at a
router to detect and control congestion effectively.

Two main functions are used inAQM: one is the conges-
tion indicator (i.e., how to detect congestion), and the other
is the congestion control function (i.e., how to avoid and
control congestion). The TD mechanism uses the instan-
taneous queue length as a congestion indicator and drops
packets when the buffer becomes full. Since it is simple and
easy to implement, TD is the most currently used queue
management at Internet routers. RED enhanced the two
functions by introducing queue length averaging and prob-
abilistic early packet dropping. In particular, RED uses the
exponentially weighted moving average (EWMA) queue
length not only to detect incipient congestion but also to
smooth the bursty incoming traffic and its resulting tran-
sient congestion. Following RED [2], many AQM-based
extensions such as BLUE [3], Adaptive-RED [4], SRED
[5], and so on have been proposed.

One important drawback of currently proposed AQM
algorithms is that their congestion detection and control
functions depend only on the current queue status or the
history of the queue status (e.g., average queue length).
Hence, the congestion detection and control in these algo-
rithms are reactive to current or past congestion, not proac-
tive to incipient congestion [6, 7]. For example, RED can
detect the long-term traffic patterns using exponentially
weighted average queue lengths and notify the onset (per-
sistent) congestion to sources. However, it is unable to de-
tect the incipient congestion caused by short-term traffic
load changes. It has been observed that the dynamically
changing traffic is mainly caused by short-lived connec-
tions in size and lifetime (so-called mice) traffic [8-10],
which consists of 50% to 70% of TCP flows. In this case,
the implicit congestion notification that is fed back to end
hosts by a packet drop may be the wrong control signal
and can possibly make the congestion situation worse.

To address these problems, it is necessary for an AQM
algorithm to have a more efficient congestion indicator and
control function.To avoid or control congestion proactively
before it becomes a problem, both the congestion indica-
tor and control function of an AQM should be adaptive to
changes in the traffic environments such as in the amount
of traffic, the fluctuation of traffic load, and the nature of
traffic.

In this article, we propose a proportional-integral (PI)
proportional-derivative (PD) controller algorithm that can
detect and control the incipient congestion as well as the
current congestion effectively and predictively. The goals
of the PI-PD controller are to control congestion predic-
tively, to make the queue length agree with a desired level,
and to give smooth and low packet loss rates. It is impor-
tant to have an efficient congestion prediction and control
capability to achieve these goals. The concept of a classical
proportional-integral-derivative (PID) feedback control is
used in designing the PI-PD controller not only to have

the anticipatory congestion detection and control capabil-
ity but also to achieve the long-term control performance,
such as acceptable queue length behavior (or, equivalently,
delay), acceptable packet loss rates, or high link utilization.

Recently, the AQM problem has been studied using dif-
ferent techniques of control theory [11-14]. In particular,
the concept of PID feedback control has been introduced
in designing an AQM algorithm in a few studies [7, 15-17].
In these studies, continuous PID controllers are designed
first by using the linearized TCP/AQM dynamic model
derived in Hollot et al. [18], and then they are digitized
for practical implementation using the emulation method
[19]. In particular, to design a continuous PID controller,
the time domain design method is used in Ryu and Rump
[7], whereas the frequency domain design method is used
in Fengyuan and Chuang [15] and Yanfei, Fengyuan, and
Chuang [17]. On the other hand, in Ryu and Cho [20], the
PI-PD controller was proposed as an AQM algorithm de-
signed based on the concept of PID feedback control using
the direct design method [21]. In the direct design method,
a discrete PID feedback control equation is used to obtain
feedback control equations.

In this article, the PI-PD controller [20] is extended in
various ways. First, additional analysis of recently pro-
posedAQM algorithms is performed in the context of feed-
back control theory. In addition, control performance of
the PI-PD controller is evaluated extensively under var-
ious traffic situations and compared with those of other
AQM algorithms such as the PID controller [7], RED [2],
and the PI controller [18]. The key features of the PI-PD
controllers are the following:

• The PI-PD controller is able to not only control existing
congestion reactively based on the current (P) and the past
(I) congestion information but also avoid the incipient con-
gestion proactively based on the future (D) congestion.
To achieve these control capabilities, the PI-PD controller
is designed based on the concept of the PID feedback
control.

• The PI-PD-controller controls traffic effectively by main-
taining the queue length around a desired level, with ac-
ceptable deviation around it to avoid unnecessary packet
drop. So, the PI-PD controller can absorb bursty traffic
and gives very low and stable packet loss over time as a
result.

• The PI-PD controller can achieve two conflicting design
goals—stability and responsiveness—simultaneously by
means of PI control and PD control.

• The PI-PD controller maintains only two parameters, the
control gain (α) and the sampling time interval (Ts ). This
feature makes the PI-PD controller scalable and robust.
In contrast, RED, for instance, maintains five parameters
(maxth, minth, maxp , Wq , Qavg ; see [2]), and tuning
these parameters to the dynamically changing traffic situ-
ation is extremely difficult.

• The PI-PD controller gives comparably less computational
overhead. For example, the PI-PD controller can be easily
implemented with less sampling frequency compared to
the link speed implementation of RED.

438 SIMULATION Volume 81, Number 6



PI-PD CONTROLLER FOR ADAPTIVE AND ROBUST ACTIVE QUEUE MANAGEMENT

AQM TCP QueueDelay

Plant
Controller

Feedback

Q
pdQ

ref

+
-

Figure 1. Feedback control modeling of Transmission Control
Protocol (TCP) congestion control with the active queue
management (AQM) algorithm

This article is organized as follows. In the next section,
we review and analyze some representative TCP/AQM dy-
namics, including RED [2], the PI controller [18], BLUE
[3], Adaptive Virtual Queue (AVQ) [22], and the PID con-
troller [7], in the context of feedback control theory. Then,
we design the PI-PD controller using PID feedback con-
trol and propose a practical implementation method at a
router. We compare the control performance of the PI-PD
controller with that of other AQM algorithms, such as the
PID controller, RED, and the PI controller, under various
traffic situations via simulation using ns-2 [23]. Finally,
we conclude our study with suggested directions for future
study.

2. Control-Theoretic Design Consideration of an
AQM Algorithm

2.1 Feedback Control and TCP Congestion Control
with AQM

TCP congestion control dynamics with an AQM can be
modeled as a feedback control system (Fig. 1). In this mod-
eling, the feedback control system consists of (1) a desired
queue length at a router (i.e., a reference input), denoted
by Qref ; (2) the queue length at a router as a plant vari-
able (i.e., a controlled variable), denoted by Q; (3) a plant
that represents a combination of subsystems such as TCP
sources, routers, and TCP receivers that send, process, and
receive TCP packets, respectively; (4) an AQM controller,
which controls the packet arrival rate to the router queue by
generating packet drop probability as a control signal; and
(5) a feedback signal, which is a sampled system output
(i.e., the sampled queue length) used to obtain the control
error term, Q − Qref .

In Misra, Gong, and Towsley [24], a system of non-
linear differential equations for TCP/AQM dynamics was
developed using fluid-flow analysis while ignoring the
TCP timeout and the slow-start mechanism. Then, in Hol-
lot et al. [25], a linearized and simplified TCP/AQM dy-
namic model was developed and analyzed, especially for
TCP/RED dynamics, in terms of (feedback) control the-
ory. The open-loop transfer function of the plant, P(s) =
PT CP (s) · PQueue(s), was given by

AQM
Controller

e-sR 0 )(sP
TCP

)(sPQueue

)()()( sPsPsP
QueueTCP

P W q

Figure 2. A feedback control model of the Transmission
Control Protocol (TCP)/active queue management (AQM)
dynamics

P(s) =
(

R0C2

2N2

s + 2N

R2
0C

)
·
(

N

R0

s + 1
R0

)
, (1)

where N is a load factor (the number of TCP connections),
R0 is roundtrip time, and C is the link capacity. A block di-
agram of a linearized TCP/AQM dynamic model is shown
in Figure 2.

Since the open-loop transfer function of TCP flows (1)
has two nonzero poles, it is a type 0 system [26]. Thus,
there always exists constant steady-state error for the step
function input [26]. Since lims→0 P(s) = (R0C)3/(4N 2),
the steady-state error of the open-loop transfer function is
ess = M/(1 + lims→0 P(s)), where M is the magnitude of
a reference input.

EXAMPLE 1. A Sample Network Configuration. The TCP
flow dynamics (P(s)) is shown to be stable when N ≥ N−

and R0 ≤ R+ [25]. If we set N− = 60 and R+ = 0.246,
similar to the network configuration in Hollot et al. [18,
25],

P(s) =
C2

2N

(s + 2N

R2
0C

)(s + 1
R0

)
= 117187.3

(s + 0.53)(s + 4.05)
.

Then, the undamped system frequency (ωn), the damping
ratio (ξ), and the time domain performance specifications
[26] are as follows:

• ωn = 342.3 rad/sec, ξ = 4.5793/(2ωn) = 0.0067.
• ess = the steady-state error = 1/(1 + lims→0 P(s)) =

1/54985.1 > 0.

• The maximum overshoot (MOS) (%) = 100e
−πξ/

√
1−ξ2 =

97.92%.
• The rise time (tr ) = 1.8/ωn = 5.26 msec.
• The settling time (ts ) � 4/(ξωn) = 1.75 sec.

Figure 3 shows the MATLAB simulation result of the
unit-step response of the TCP flow dynamics (1). Because
of the longer settling time relative to a very short rise time
(tr) with a very small damping ratio, ξ = 0.0067, TCP
flow shows severely oscillating output signal dynamics.
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Figure 3. Unit-step response of the linearized Transmission
Control Protocol (TCP) flow dynamics to the unit-step function

Therefore, a well-designed AQM controller should be able
to compensate for the oscillatory TCP dynamics and give
satisfactory control performance such as fast and stable
control dynamics.

2.2 The RED Controller

With RED, a link maintains the EWMA queue length,
Qavg = (1 − wQ) ∗ Qavg + wQ ∗ Q, where Q is the current
queue length and wQ is a weight parameter, 0 ≤ wQ ≤ 1.
When Qavg is less than the minimum threshold (minth), no
packets are dropped (or marked). When it exceeds the max-
imum threshold (maxth), all incoming packets are dropped.
When it is in between, a packet is dropped with a proba-
bility pd that is increasing in function with Qavg. More
specifically, if minth ≤ Qavg ≤ maxth, then the packet
drop probability, pd , is calculated as

pd = maxp ∗ Qavg − minth

maxth − minth

, (2)

where maxp is the maximum value of pb.
RED attempts to eliminate the steady-state error by in-

troducing the EWMA error terms1 [27] as an integral (I)
control to the open-loop transfer function. However, since
RED introduces a range of reference input values (i.e.,
[minth, maxth]) rather than a unique reference input for
the I control, the TCP/RED model shows oscillatory sys-
tem dynamics. Moreover, a very small weight factor value
(wQ = 1/512 ∼= 0.002) to the current queue length in
calculating the EWMA queue length is one of the main
reasons for queue length oscillation and the bias against

1. The filtering of the queue length is equivalent to the filtering (in-
tegration) of the error terms.

bursty sources [28, 29]. In addition, the small value of wQ

brings an effect of large integral time in I control and may
accompany large overshoot [28]. As a result, RED shows
oscillatory queue length dynamics and gives poor control
performance under a wide range of traffic environments.

2.3 The PI Controller

The idea behind the PI controller [18] is to make the queue
length agree with the desired queue length, Qref , by intro-
ducing an I control to an AQM. The PI controller has been
designed analytically based on the linearized TCP flow dy-
namics model (1) not only to improve responsiveness of
the TCP/AQM dynamics but also to stabilize the router
queue length around a desired queue length. The latter can
be achieved by means of I control, while the former can
be achieved by means of proportional (P) control using
the instantaneous queue length rather than using the aver-
age queue length. Thus, the resulting PI controller is able
to eliminate the steady-state error regardless of the load
level. The PI controller can be implemented at a router as
an alternative AQM algorithm by digitization, where the
packet drop probability at time t = kT is

p(kT ) = a(δQ)(kT ) − b(δQ)(k − 1)T + p((k − 1)T ),
(3)

where fs = 1/T is the sampling frequency, which is rec-
ommended to be 10 to 20 times the system frequency (f )
[18]; a and b are constants; and δQ = Q − Qref is a de-
viation of the queue length from the desired queue length,
Qref . The recommended design rules [18] are

wg = 2N−

(R+)2C
, KPI = wg

∣∣∣∣∣ (
jwg

pqueue
+ 1)

(R+C)3

(2N−)2

∣∣∣∣∣ , (4)

where wg = 2πf is the unity-gain crossover frequency,
and KPI is a PI control gain.

2.4 BLUE

BLUE [3] was proposed to overcome the drawbacks of
RED and other AQM algorithms that use the (EWMA)
queue length as a congestion indicator. BLUE uses packet
loss and link-idle events as a congestion indicator and
maintains a single packet drop probability, p, to control
congestion. BLUE adjusts p in every fixed time interval,
f reeze_t ime, when a packet loss or a link-idle event oc-
curs. In particular, BLUE increases p by a small amount
of d_inc in response to the buffer overflow (i.e., packet
loss) and decreases p by a small amount of d_dec when
the link becomes idle. Thus, BLUE can be considered as
a modified, multipositional ON-OFF controller or a re-
lay controller with hysteresis f reeze_t ime and two con-
trol outputs [30]: if there is a packet loss (ON), the relay
sends a control signal of d_inc units, and if there is an
link idle (OFF), the relay sends a control signal of d_dec.
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However, since BLUE adjusts p only after the packet loss
or link-idle event occurs, BLUE controls congestion re-
actively based on the current or past congestion informa-
tion. Thus, some degree of performance degradation, such
as multiple packet losses and link underutilization, is not
avoidable. Moreover, because of fixed values of the control
parameters—d_inc, d_dec, and f reeze_t ime—BLUE is
unable to provide adaptive control to the changing network
traffic situations.

2.5 Adaptive Virtual Queue

Adaptive virtual queue (AVQ) [22] uses a modified token
bucket model as a virtual queue (VQ) to regulate the buffer
utilization rather than the queue length. AVQ adjusts the
size and link capacity of the VQ proportional to the mea-
sured input rate and drops packets when the VQ overflows.
In detail, AVQ maintains a virtual queue whose capacity of
a link, C̃, is less than the actual capacity of a link, C, and
whose buffer size is the same as the buffer size of the real
queue. At each packet arrival, the virtual queue is updated
according to the differential equation

˙̃C = α(γC − λ),

where λ is the packet arrival rate, γ is a desired link utiliza-
tion, and α is a damping factor. If the new packet overflows
the virtual queue, the packet is dropped in the virtual queue,
and the real packet is dropped in the real queue.

AVQ shows lower average packet loss rates and higher
link utilization than other AQM algorithms, such as RED
and the PI controller, with a packet-marking mode un-
der a certain traffic situation consisting mainly of elephant
FTP flows [22]. However, the control performance of AVQ
should be examined under more realistic traffic situations
consisting mainly of web-like, short-lived mice flows under
the packet drop mode. Moreover, the link speed control of
AVQ will give very heavy computational overhead to the
router or be impossible to implement at a router as the
network evolves to high-speed networks.

2.6 PID Controller

Recently, the concept of classical PID control has been in-
troduced in designing an effective AQM algorithm [7, 15,
17]. In Fengyuan and Chuang [15] and Yanfei, Fengyuan,
and Chuang [17], the frequency response method was used
in designing anAQM algorithm, whereas the time response
method2 is used in Ryu and Rump [7]. In general, the
choice of a design method depends on the designer’s pref-
erence [26]. PID controllers are commonly designed using
time domain methods when the plant model is a second-
order system [26].

The PID controller [7] was designed to improve the
speed of response and to eliminate (or minimize) the
steady-state error of the TCP/AQM system at the same

2. Frequency response and time response methods are often called
frequency domain and time domain methods.

time by applying the classical PID feedback control mech-
anism. The resulting PID controller consists of a PI control
portion connected in serial with a PD control portion. The
PD control part is designed to improve the damping and
speed of response of a control system but cannot elimi-
nate the steady-state error [26]. In contrast, the PI control
part is designed to eliminate the steady-state error at the
expense of an increase of response time. Then, the PID
control equation (7) (in Laplace transform (s-domain)),
D(s) = KP + KI/s + KDs, becomes an equation consist-
ing of the PD and the PI control parts as follows:

D(s) = (KP 1 + KD1s)

(
KP 2 + KI2

s

)
= DPD(s) · DPI (s), (5)

where KP = KP 1KP 2+KD1KI2, KD = KD1KP 2, and KI =
KP 1KI2.

The PID controller was designed based on the TCP
flow dynamics (1) as a plant model by applying (5). Since
the controlled system, the TCP flow dynamics (1), is a
second-order system, time domain performance specifica-
tions such as the rise time, the settling time, the maximum
overshoot (MOS), the time constant, and the steady-state
error are available analytically [26]. Thus, the PID con-
troller has been designed in Ryu and Rump [7] using the
time domain design and analysis method.

The PD control part is designed by finding values of
PD control parameters, KP 1 and KD1, for given accept-
able bounds of the time domain performance specifications
[26]. Once KP 1 and KD1 are decided in the design of the
PD control part, the PID controller is obtained by finding
values of the PI control parameters, KP 2 and KI2. Then,
three term PID control parameters, KP , KD, and KI , are
obtained from (5).

The resulting PID controller can be implemented at a
router by finding an equivalent discrete controller from a
continuous model by emulation [19]. Particularly, once the
sampling frequency (fs = 2πωn = 1/Ts) is decided ana-
lytically or empirically, the digitized PID control equation
is obtained using Tustin’s method for integration and the
backward rectangle method for derivation.

pd(k) = pd(k − 1) + ∆pd(k)

= pd(k − 1) + a1ek − b1ek−1 + c1ek−2, (6)

where pd(k) is the packet drop probability at time k =
�t/Ts� = 0, 1, . . . , a1 =

(
KP + KD

Ts
+ Ts

2TI

)
, b1 =(

KP + 2KD

Ts
− Ts

2TI

)
, c1 = KD

Ts
, and ek = Qk − Qref .

3. PI-PD Controller

3.1 Adaptive Congestion Indicator and Control
Function

Since each TCP source controls its sending rate through
window size3 adjustment [31], the aggregate input traffic

3. Total number of TCP sessions (or IP packets) outstanding in the
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load (the offered load), λt , is proportional to the total win-
dow size of all connections, W (i.e., W ∝ λt (R +Qt/C)),
where R is the average propagation delay of all connec-
tions, Qt/C is the queuing delay at a router, C is the output
link capacity, and Qt is the current queue length. Because
of limited traffic processing capacity at a router (e.g., finite
buffer size and output link capacity), not all the offered
traffic load λt is carried at a router. Thus, the carried traffic
load (or queued traffic, equivalently), λ′

t
, will be a fraction

of the offered traffic load that is not dropped at a router (i.e.,
λ′

t
= λt (1 − Pd)), where Pd is the packet drop probability.
In a time-slotted model,4 the current queue length, Qk,

is a function of λ′
k

(i.e., Qk = (λ′
k
− C)Ts + Qk−1), where

C is the output link capacity and ∆t is the unit length
of a time slot. However, the incipient congestion will be a
function of the queue length of the next time slot, Qk+1, not
a function of Qk. Therefore, to avoid upcoming congestion,
anAQM algorithm should be able to detect and regulate the
incipient congestion proactively, not the current congestion
reactively. On the other hand, an AQM algorithm should
be able to control current congestion using the current and
past congestion information. Therefore, it is necessary for
an AQM to generate the packet drop probability, pd , based
on not only the current and/or the past congestion but also
the incipient congestion to provide effective congestion
control and avoidance at a router.

Unfortunately, most AQM algorithms such as RED [2]
or the PI controller [18] use only the past traffic history
such as Qt (or the average queue length Q) as a congestion
indicator. As a result, these AQM algorithms are unable to
detect incipient congestion adaptively to the traffic load
variations.

3.2 Proportional-Integral-Derivative Control

To detect and control the incipient as well as the cur-
rent congestion proactively by regulating the queue length
around a desired level (Qref ), an elaborate controller hav-
ing the ability to predict and adjust control performance is
required. This can be achieved by the PID feedback control.
The proportional (P), integral (I), and derivative (D) feed-
back in the PID control is based on the past (I), current (P),
and future (D) control error [32]. In particular, PID control
generates a control signal proportional to a linear combi-
nation of current error (P), the integral of previous errors
(I), and the changing rate of current error (D). Thus, the
derivative term plays a very important role in controlling
the future error (i.e., the incipient congestion). A generic
PID control equation is a differential equation:

u(t) = KP e(t) + 1

TI

∫
e(τ)dτ + KD

d

dt
e(t)

network.
4. In this model, time is divided into small time slots (Ts ). At the end

of each time slot, the queue size, Qk , and total amount of queued input
traffic, λ′

k
, are calculated, where k = �t/Ts� = 0, 1, 2, · · · .

= KP

{
e(t) + 1

T ′
I

∫
e(τ)dτ + K ′

D

d

dt
e(t)

}
, (7)

where u(t) is a control signal at time t ≥ 0, KP is the
proportional gain, T ′

I
= KP TI

5 is an integral time (or the
reset time), and K ′

D
= KD/KP is a derivative time (or the

rate time). Then, the corresponding discrete PID control
equation obtained from (7) for a small time interval, Ts ,
becomes a difference equation [33].

u(k) = KP

[
e(k) + Ts

T ′
I

k−1∑
i=0

e(i) +K ′
D

Ts

[e(k) − e(k − 1)]
]
,

(8)

where u(k) is a control signal at a sampling time, k =
�t/Ts� = 0, 1, . . . , and e(k) is a sampled error term at
time k.

3.3 A Summary of the PI-PD Control Concept

The PI-PD controller is designed to detect the incipient
congestion as well as the current congestion by adopting
an adaptive congestion indicator and a control function.
For predictive congestion control, the PI-PD controller
enhanced the control function with the introduction of a
predictive traffic measure for the adaptive congestion in-
dication. The goals of the PI-PD controller are to avoid
and control congestion proactively by anticipating incip-
ient congestion, to stabilize the queue length at a router
around a desired queue length (Qref ), and to provide ac-
ceptable bounded queuing delay, higher link utilization,
and so on.

For practical implementation of the PI-PD controller,
the traffic history of two recent time slots is used for sev-
eral reasons: (1) the dynamic changes of network traffic
with time, (2) the recent observation of Poisson-like net-
work traffic behavior under heavy traffic loads6 [34, 35],
and (3) derivation of the rate of change of the traffic load to
estimate the traffic load for the next time slot in the prac-
tical implementation of PD control. In general, the linear
extrapolating method [36] is used to obtain the estimated
traffic measure for the next time slot using the slope of
the current measure, that is, e(t + Ts) � e(t) + Ts

d

dt
e(t).

However, in cases of monotonic increasing and decreasing
traffic patterns, we can obtain a more accurate estimated
measure using the rate of change of the traffic load in two
recent time slots, e(t + Ts) � e(t) + Ts

d2

dt2 e(t).
Since one major goal of the PI-PD controller is to re-

solve two conflicting control targets—the responsiveness

5. K ′
I

= 1/T ′
I

is the integral gain.
6. As the network traffic load and types of the traffic sources in-

crease, the long-range dependence of the network traffic decreases to
independence. Moreover, because of the statistical multiplexing of the
traffic sources, it has been observed that at a higher traffic rate, the packet
interarrival processes are expected to behave like Poisson arrivals with
independent service times, while at a lower rate, there exists long-range
dependence.
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Figure 4. Two cases of traffic load change situations: (1) surplus slack traffic and (2) rapidly changing case

(the short-term control performance) and the stability (the
long-term control performance)—it is designed based on
two parts, a PI control part for stability and a PD control
part for responsiveness. In addition, to stabilize the queue
length to the desired level, Qref , the concept of a velocity
PID control [33] is also used in the digital implementation
of the PI-PD controller. The rationale for using the concept
of a velocity PID control is that it updates the control sig-
nal recursively by summing the current rate of change of
the control signal, ∆u(k), and the previous control term,
u(k−1). Also, a velocity control can provide better control
performance from its anticipatory control nature.

If two recently sampled queue lengths, Qk and Qk−1, are
larger (smaller) than Qref (Fig. 4), there is a surplus (slack)
amount of the traffic load. In this case, the control signal—
that is, the packet drop probability (pd)—can be adjusted
by taking the surplus (slack) amount of traffic load into
account for adjustment of pd to maintain the queue length
around Qref .

When Qk−1 and Qk are located in different regions
against Qref , as shown in Figure 4 (e.g., Qk−1 < Qref or
Qk ≥ Qref ), it means that the input traffic load is changing
rapidly and tending away from Qref . In this case, it is nec-
essary to estimate a more accurate queue length for the next
time slot than using the linear extrapolating method for reg-
ulating the rapidly changing traffic around Qref effectively.
For example, if Qk−1 < Qref and Qk ≥ Qref (Fig. 4), then
the queue length, Qk−2, sampled at time k − 2 is needed to
get the tendency of the traffic load change in the past two
time slots, [k − 2, k − 1) and [k − 1, k). In this case, there
are three possible cases, as shown in Figure 5.

• When Qk−2 > Qk−1 (case 1 in Fig. 5), the linear extrap-
olating method can be used to estimate the queue length
for the next time slot, Q̂k+1, because traffic tendency has
been changed in the last time slot. Thus, a will be the
estimated value for Q̂k .

Q
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Q
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Qk+1

Q
k-1

2Q
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s
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extrapolating

T
s

T
s

Queue
Length

time

Q
k-2

Qk-2

Q
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Q
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the rate of change

k-2 k-1 k k+1

1

2

b
a

c

3

Figure 5. Example cases of the traffic load change in two
recent time slots

• When Qk−2 ≤ Qk−1 (cases 2 and 3 in Fig. 5), the queue
length in the past two time slots is monotonically increas-
ing. In these cases, application of the rate of change of
the traffic load will give a better estimated value for Q̂k+1
than of the linear extrapolating method for it. However,
there will be two different estimated values for Q̂k+1 de-
pending on the rate of change, as shown in Figure 5 (i.e.,
b for case 2 and c for case 3).
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Figure 5 describes three possible cases for the estima-
tion of Q̂k+1 and shows the superiority of our method in
accuracy on estimating Q̂k+1 over the linear extrapolating
method.

3.3.1 PI Control

The first part of the PI-PD controller is the PI control.
A discrete PI control equation is obtained from (8) when
K ′

D
= 0.

u(k) = KP

[
e(k) + Ts

T ′
I

k−1∑
i=k−2

e(i)

]
.

Then, the velocity control implementation of this PI control
is u(k) = u(k − 1) + ∆u(k). Since the integral time, T ′

I
,

is assumed to consist of two time slots (TI = 2Ts) and
e(k − 1) + e(k − 3) = (Qk−1 − Qref ) + (Qk−3 − Qref ) =
Qk−1 + Qk−3 − 2Qref , the instantaneous PI control signal,
∆u(k) = u(k) − u(k − 1), is

∆u(k) = KP

{
e(k) − 1

2
[e(k − 1) + e(k − 3)]

}
= KP

{
e(k) −

[
Qk−1 + Qk−3

2
− Qref

]}
.(9)

Since the current queue length, Qk, and at most two recent
queue lengths, Qi, i = k − 1, k − 2, can be used for the
integration (or summation) of errors, (9) is modified to use
at most two recent queue lengths rather than using Qk−3

for a discretized velocity PI control. In particular, if both
Qk and Qk−1 are greater than Qref (or less than Qref ), the
average surplus (or slack) amount of traffic is calculated us-
ing the trapezoidal-integral rule [26]. Then the packet drop
probability pd is adjusted proportionally to the amount of
surplus or slack traffic. In the case of surplus traffic, the
packet drop probability becomes aggressive by increasing
pd proportional to the amount of surplus traffic. In the case
of slack traffic, the packet drop probability becomes con-
servative by decreasing pd proportional to the amount of
slack traffic. Thus, the PI control equation is

pd(k) = pd(k − 1) + α

[
Qk + Qk−1

2
− Qref

]
, (10)

where α is a control gain. For better scaling of the PI con-
trol implementation, the current amount of surplus/slack
traffic, [(Qt + Qt−1)/2] − Qref , is normalized by Qref .
This value represents the fraction of the amount of current
surplus/slack traffic to the desired queue level. Thus, the
normalized PI control equation is

pd(k) = pd(k − 1) + α

[ [(Qt + Qt−1)/2] − Qref

Qref

]
.

(11)

3.3.2 PD Control

The second part of the PI-PD controller is the derivative
(D) control. A discrete D control equation is obtained from
(8) when KP = 0 and KI = 1/TI = 0.

u(k) = KP K ′
D

Ts

[
e(k) − e(k − 1)

]
.

Then, similar to the PI control part, a discretized velocity D
control is u(k) = u(k −1)+∆u(k), and the instantaneous
control signal, u(k), is

∆u(k) = KP K ′
D

Ts

[
e(k) − 2e(k − 1) + e(k − 2)

]
= KP K ′

D

[
e(k) − e(k − 1)

Ts

− e(k − 1) − e(k − 2)

Ts

]
.

From the relation between a differential equation and a
difference equation,

d2e(t)

dt 2
≈ e(k) − 2e(k − 1) + e(k − 2)

(Ts)2
and

∆u(k) ≈ KP K ′
D

[
Ts

d2

dt 2
e(t)

]
.

Thus, Ts
d2

dt2 e(t) represents the predicted amount of an ac-
celeration of changes on e(t) in time Ts ahead, that is,
e(t + Ts) = e(t) + KP K ′

D
[Ts

d2

dt2 e(t)]. Then, the tendency
(acceleration) of the input traffic is obtained from the dis-
cretized implementation of a velocity D control using the
traffic history. The derivative time, K ′

D
, is assumed to be

the unit length of a time slot (i.e., K ′
D

= Ts). Hence,

∆u(k) = KP K ′
D

[
e(k) − 2e(k − 1) + e(k − 2)

Ts

]
= KP

[
Qk − 2Qk−1 + Qk−2

]
. (12)

To obtain the predicted amount of error for the next time
slot, Ts

d2

dt2 e(t), and the incipient congestion indicator (i.e.,

the predicted queue length for the next time slot (Q̂k+1)),
the traffic status at sampling time i, Si , is set from the
surplus or slack amount of traffic, γi = Qi − Qi−1:

Si =
{

1 , if γi ≥ 0
−1 , otherwise. (13)

Then, the tendency of the input traffic of the previ-
ous two time slots, S = Sk ∗ Sk−1, is used to predict the
queue length change. If S = 1, then this indicates ei-
ther a monotonic building or draining of queued traffic,
in which case the tendency (or changing rate) is γk/γk−1,
and the predicted amount of change in the queued traffic
is γ̂k+1 = γk(γk/γk−1). If S �= 1, then this indicates that the
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tendency of the input traffic has changed, in which case
the predicted amount of change in the queued traffic is ob-
tained by linearly extrapolating [36] the current change in
the queued traffic (i.e., γ̂k+1 = Ts(γk/Ts) = γk). Thus,

γ̂k+1 =
{

γk

γk

γk−1

, if S = 1

γk , otherwise.
(14)

With the above two cases of the velocity D control im-
plementation, PI-PD is able to give a more accurate esti-
mate of the predicted error and generate a more accurate
control signal for the next time slot. The predicted queue
length for the next time slot is Q̂k+1 = γ̂k+1 + Qk, and the
corresponding predicted error is ê(k + 1) = Q̂k+1 − Qref .
Then the D control equation is

pd(k) = pd(k − 1) + α[Q̂k+1 − Qref ],
where α is a control gain. For better scaling of D control for
implementation, the predicted amount of surplus or slack
traffic in the next time slot, ê(k + 1) = Q̂k+1 − Qref , is
normalized by the surplus buffer capacity, B −Qref . Since
the normalization factor, B − Qref , represents the buffer
capacity for absorbing the transient surplus bursty traffic
without losses, the normalized value represents the fraction
of the amount of surplus/slack traffic to the surplus buffer
capacity. The normalized D control equation is

pd(k) = pd(k − 1) + α

[
Q̂k+1 − Qref

B − Qref

]
. (15)

4. Simulation Study

In this section, we compare the control performance of
the PI-PD controller with the other AQM algorithms such
as the PID controller [7], RED [2], and the PI controller
[18] in terms of the queue length dynamics and the packet
loss rate via simulation over a wide range of traffic environ-
ments using thens-2 simulator [23]. First, we examine the
control performance of AQM algorithms to different traf-
fic load levels. Then, we evaluate the sensitivity of AQM
algorithms to two different cases: (1) a case of a sudden
increase of traffic load and (2) a case of increased roundtrip
time.

4.1 Simulation Setup

We use a simple bottleneck network topology with two
routers, nc0 and nc1, and 9 TCP/Reno sources and 9 log-
ically connected destinations.7 These 9 pairs of TCP/Reno
sources and destinations are connected to nc0 and nc1,

7. In general, Internet flows go through many routers and may expe-
rience congestion at some of those routers on the way from a source to its
destination. However, if congestion at a router is more severe than conges-

respectively. The link between nc0 and nc1 is assumed
to have 30 Mbps of link speed and 10 msec of propaga-
tion delay. Since all TCP connections are connected to the
routers, nc0 and nc1, with link speed of 50 Mbps, the
link between nc0 and nc1 is the only bottleneck. Each
logically connected pair between the TCP source (srci)
and the destination (desti), i = 1, · · · , 9, is connected
with propagation delays from 40 to 200 msec. We consider
two types of traffic flows: an elephant long-lived FTP flow
and mice short-lived flows. To obtain realistic TCP flows,
n FTP flows and 2n with 1 second of average lifetime are
connected to each srci. Then, 66% of TCP flows will be
mice flows. The network setup is shown in Figure 6. The
packet is assumed to have an average size of 1000 bytes.
All sources and destinations are assumed to use TD queue
management with sufficient buffer capacity. The buffer at
the bottleneck link uses an AQM algorithm and has a ca-
pacity of 800 packets, which is twice the bandwidth-delay
product (BDP).8

We compare the control performance of the PI-PD con-
troller with that of the PID controller [7], RED [2], and the
PI controller [18] under the packet drop mode. In RED,
recommended parameter values [37] are used. In the PI
controller, we use the parameters a, b and Ts , used in Hol-
lot et al. [18]. In the PI-PD controller, the sampling time
interval (Ts) must be selected so that the buffer does not
experience overflow or underflow. The amount of packets
that arrive in a Ts is λ ∗ Ts , where λ is the packet arrival
rate. Consider a design requirement that the queue length
should not be increased/decreased by the amount of Qref

in a Ts . Then, Ts should be less than Qref /C to prevent
the buffer from underflow. On the other hand, the maxi-
mum number of queued packets in a Ts , λ(1 − pd) ∗ Ts ,
must be less than the buffer capacity (B) to prevent the
buffer from overflow, where pd is the packet drop proba-
bility. Thus, Ts must be selected so that the buffer does not
experience overflow. For example, if the maximum packet
queuing rate is assumed to be twice the link capacity (i.e.,
λ(1−pd) = 2·C = 7500 packets/sec), in this network con-
figuration, the maximum surplus traffic will be 3750 · Ts

packets. Therefore, to satisfy the design requirement, Ts

should be less than Qref /C = 200/3750 = 53.3 msec. In
this article, we use Ts � 50 msec as a Ts for the PI-PD
controller.

The amount of unit adjustment (i.e., unit increase or
decrease) of pd (or increase or decrease of queued pack-
ets) in a Ts is a function of α. Thus, the value of the

tion at other routers, the network topology can be simplified into a simple
dumbbell shape having a single congested router. In this simplification,
congestions at other routers can be considered as additional propagation
delays for each flow. Therefore, in this study, we used a simple dumbbell
network topology with different propagation delays ranging from 40 to
200 msec.

8. Since the average propagation delay is 120 msec, BDP is 450
packets (120 msec · 30 Mbps) and 2 · BDP = 900 packets. However, to
compare AQM algorithms under the same network configuration used in
Hollot et al. [18], we set the buffer size at 800 packets.
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Figure 6. Simulation network topology

control gain is proportional to the buffer capacity (B).
However, α should be determined by a trade-off between
two conflicting design goals of an AQM, that is, the re-
sponsiveness (the short-term design goal) and the stability
(the long-term design goal) to produce satisfactory con-
trol performance. We select a fractional value of the buffer
size, B · 10−6 = 8.0 · 10−4, as a control gain of the PI-PD
controller empirically via extensive simulation studies.

In the PID controller [7], we set the desired maximum
overshoot to 5% (i.e., ξ = 0.6901 equivalently) and the
settling time (ts) to the time to reach and stay within ±2%
of the steady-state value in the design of a PD control part
for a given network configuration. We set R0/2 as the time
constant for the design of the PD control part because it
gives better control dynamics than R0 in terms of speed of
response and the steady-state error. Then, corresponding
bounds of the transient performance specifications and PD
control parameters are ωn = 2/R0ξ = 11.78 radian/sec,
ts � 0.492 sec, KP 1 = 1.166 · 10−3, KD1 = 9.97 · 10−5.
Then, ω2

n
= 11.782 = (117187.3)(1.166 · 10−3)KP 2 =

136.7KP 2.9 Finally,

KP = 1.24 ∗ 10−3, KD = 1.02 ∗ 10−4,

and KI = 6.23 ∗ 10−4. (16)

Although we can explore the key factors governing the
TCP/AQM dynamics through simplified theoretical anal-
ysis, this simplification may introduce substantial error
[38]. In general, three external signals—the reference input
(Qref ), load disturbance, and measurement noise—affect a
control system [36]. However, the simplified TCP dynamic
model (1) does not include load disturbances such as the
slow-start and timeout mechanisms. Thus, PID control pa-
rameters (16) need to be tuned to generate proper control

9. See Ryu and Rump [7] for details of the design process for the
PID controller.

Table 1. A summary of the parameter setting of each active
queue management (AQM) algorithm

PID controller KP = 6.2 · 10−5, KD = 5.1 · 10−5,
KI = 3.12 · 10−5, fs = 29.5 Hz

PI-PD controller α = 8.0 · 10−4,
Ts = 50 msec (fs = 20 Hz),

RED wQ = 0.002, maxp = 0.1,
maxth = 200, minth = 70

PI controller a = 1.822 · 10−5, b = 1.816 · 10−5,
Qref = 200, fs = 160 Hz

signals. Since simulation is used not only to check the cor-
rectness of analytic approaches but also for allowing ex-
ploration of complicated network situations that are either
difficult or impossible to analyze [38], tuned PID control
parameters and a proper sampling frequency can be found
empirically via extensive simulation studies. From the tun-
ing process via simulation study, we selected κ = 0.05 and
fs = 10f = 29.5 Hz as the tuning constant and sampling
frequency, respectively, for digital implementation.

The desired queue length (Qref ) for the PID controller,
PI-PD controller, and PI controller is set to 200 packets. A
summary of the parameter setting of each AQM algorithm
is shown in Table 1.

Note: In Hollot et al. [18], the frequency of the PI control
system, ωg = 0.53 rad/sec, has been derived ana-
lytically, and the sampling frequency (fs) for imple-
mentation has been recommended at 10 ∼ 20 times
of the system frequency (f = ωg/(2π)). For exam-
ple, under the network configuration of Figure 6 with
the number of background flows, N− = 60, the rec-
ommended sampling frequency is about 3 ∼6 Hz in
Hollot et al. [18]. However, a much faster sampling
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frequency, 160 Hz, was used in Hollot et al. [18]
for implementation of the PI controller via simula-
tion. Through extensive simulation, it turns out that
the PI controller with a lower sampling frequency
(i.e., 3 ∼ 6 Hz) shows poor control performance.
Therefore, in this study, we use the sampling fre-
quency (160 Hz) that is higher than recommended
(3 ∼ 6 Hz) to examine the control performance of
the PI controller.

4.2 Performance Metrics

4.2.1 The Queue Length

The control performance of an AQM consists of two el-
ements: the transient control performance (i.e., speed of
response) and the steady-state error control (i.e., stability).
We use the instantaneous queue length as a metric for the
transient control performance. For the steady-state control
performance, we use the quadratic average of control de-
viation (QACD) [33], defined as follows:

Se =
√√√√ 1

N + 1

N∑
i=1

(Qi − Qref )2, (17)

where Qi is the ith sampled queue length, i = 1, . . . , N ,
and N is the number of sampling intervals.

4.2.2 The Packet Loss Rate

Since one of goals of an AQM algorithm is to remove bias
against bursty sources, maintaining a stable packet loss rate
is important. A high and bursty packet loss involves many
packet losses at about the same time. If these packets be-
long to different flows, these flows experience losses about
at the same time and then experience global synchroniza-
tion as a result. On the other hand, if these packets belong
to bursty sources, there exists bias against bursty sources.
In general, the bias against bursty sources and the global
synchronization can be eliminated effectively by achieving
a stable and low packet loss rate over time. In addition, to
achieve higher throughput (or goodput) or to accommodate
more traffic, maintaining a low average packet loss rate is
important.

4.3 Control Performance of AQM Algorithms

First, we examine the effect of the traffic load on the control
performance of the PI-PD controller, PID controller, PI
controller, and RED in terms of the queue length and the
packet loss rate under two different traffic load levels (i.e.,
189 flows and 378 flows consisting of 33% FTP and 67%
mice flows).

4.3.1 The Queue Length Dynamics

Figure 7 shows the queue length dynamics of the PI-PD
controller, PID controller, PI controller, and RED, respec-
tively, under 189 flows (left) and 378 flows (right). The

Table 2. Summary of ANOVA analysis of traffic load factor on
quadratic average of control deviation (QACD) of active queue
management (AQM) algorithms

AQM
Algorithms FFF ppp FFF critical

PI-PD controller 1.6426 0.2122 3.3541
PID controller 4.7159 0.0175 3.3541
PI controller 426.3 3.76 · 10−21 3.3541

PI-PD controller and PID controller show good control
performance under two different traffic load levels in terms
of the queue length dynamics staying around Qref = 200
packets. As shown in Figure 7, the PI controller fails to
maintain the queue length around Qref . Instead, the queue
length stays below Qref most of time under all traffic load
levels. Thus, the PI controller behaves like a TD having
a buffer size of Qref with severe fluctuation. RED main-
tains the (average) queue length between minth = 70 and
maxth = 200 effectively under 189 flows. However, RED
behaves like a TD with a buffer size of Qref under 378
flows, similar to the PI controller. This means that as the
traffic load increases, RED behaves like a TD with a buffer
size of maxth, as observed in Ott, Lakshman, and Wong [5].

The steady-state control performance of the PI-PD
controller, PID controller, and PI controller is evaluated
in terms of the QACD10 for three different traffic load
levels of 189, 270, and 378 flows. Table 2 shows a sum-
mary of the analysis of variance (ANOVA) of the traffic
load factor on QACD of the PI-PD controller, PID con-
troller, and PI controller. We run 10 different simulation
runs for each combination of an AQM algorithm and a
traffic load level. As shown in Table 2, the p value of the
PI-PD controller is larger than the significance level (α)
(i.e., p = 0.2122 > α = 0.05). However, the p value of
the PID controller and PI controller is smaller than α (i.e.,
p = 0.0175 < 0.05 and p = 3.76 · 10−21 ∼= 0 < 0.05).
Thus, we conclude that the PI-PD controller shows satisfac-
tory steady-state control performance in terms of QACD,
independent of the traffic load level. However, the traffic
load level significantly affects the steady-state control per-
formance of the PID controller and PI controller in terms
of QACD.

Figure 8 shows 95% confidence intervals of the QACD
of the PI-PD controller, PID controller, and PI controller
for each traffic load level. The PI-PD controller and PID
controller show robust and stable control performance re-
gardless of traffic load level. However, the PI controller
shows traffic load-dependent performance with larger vari-
ance than the PI-PD controller and PID controller, and the
steady-state control error (QACD) is reduced as the traffic
load increases.

10. Since only the PI-PD controller and PI controller maintain the
unique desired queue length, Qref , we use QACD to compare steady-
state control performance of these three AQMs.
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Figure 7. The queue lengths of the PI-PD controller, PID controller, PI controller, and RED under light (n = 7, left) and medium
(n = 14, right) load levels
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Figure 8. The quadratic average of control deviation (QACD)
of the active queue management (AQM) algorithms for
different traffic load levels

4.3.2 The Packet Loss Rate

Figure 9 shows the packet loss rates of the PI-PD controller,
PID controller, PI controller, and RED, respectively, over
time under the same traffic load levels used in Figure 7.
The PI-PD controller and PID controller show stable and
low packet loss rates over time for each traffic load level,
which are slightly increased as the traffic load increases.
RED shows stable and low packet loss rates under 178
flows, whereas the PI controller shows a high and severely
fluctuating packet loss rate. However, the PI controller and
RED show fluctuating and high packet loss rates under 378
flows. As a result, the PI-PD controller can remove the bias
against bursty sources effectively, whereas the PI controller
and RED may give bias against bursty sources because of
multiple packet losses.

Figure 10 shows distributions of the frequencies of the
packet loss rates of the PI-PD controller, PID controller, PI
controller, and RED under 189 and 378 flows, respectively.
As shown in Figure 10, most packet loss rates of the PI-
PD controller, PID controller, and RED under 189 flows
are distributed below 0.07, whereas a significant amount
of the frequencies of the high packet loss rates appears
with the PI controller. Thus, under 189 flows, the PI-PD
controller, PID controller, and RED can remove the bias
against bursty sources and/or global synchronization by
maintaining low and stable packet loss rates. However,
as the traffic load increases (under 378 flows), the packet
loss behavior of RED changes significantly and gives high
packet loss rates, whereas the PI-PD controller and PID
controller show the same smooth and low packet loss
pattern with a slightly larger average value. Thus, RED
fails to remove bias against the bursty sources and may

cause a global synchronization. Packet loss rates of the PI
controller become higher and burstier as the traffic load
increases.

Figure 11 shows the average packet loss probability and
the link utilization of each AQM algorithm under different
traffic load levels. Packet loss rates of the PI-PD controller
and PID controller are stable and low (i.e., robust) over time
and significantly lower than that of other AQM algorithm
under all traffic loads. The link utilization of the PI-PD
controller is almost the same as that of the PID controller
and higher than that of the PI controller and RED.

4.3.3 Summary of Control Performance Study

In this experiment, we examine the control performance
of the PI-PD controller, PID controller, PI controller, and
RED under two different traffic load levels (i.e., 189 and
378 flows), consisting of 33% FTP and 67% mice flows.
The PI-PD controller and the PID controller outperform the
PI controller and RED in terms of the queue length dynam-
ics and the packet loss rates. In particular, the PI-PD con-
troller controls traffic effectively by maintaining the queue
length around the desired queue length, Qref , with accept-
able queue length deviation from Qref to avoid unneces-
sary packet drops. Also, the PI-PD controller shows ro-
bust steady-state control performance independent of traf-
fic load level in terms of QACD.

In contrast, the queue length of the PI controller stays
below Qref instead of being regulated around Qref . Thus,
the PI controller behaves like a TD with a buffer size of
Qref . The steady-state control performance of the PI con-
troller is highly dependent on the traffic load level in terms
of QACD. RED shows a good control performance un-
der 189 flows by maintaining the queue length within the
desired range [minth, maxth]. However, as the traffic load
increases, RED behaves like a TD with a buffer size of
Qref , similar to the PI controller. Furthermore, the PI con-
troller and RED give more multiple packet losses as the
traffic load increases.

4.4 Sensitivity Analysis

In general, the control performance of anAQM algorithm is
affected by several network components such as the buffer
size (B), the link capacity (C), the traffic load factor (i.e.,
the number of flows [N ]), and the roundtrip time (RTT).
Since the buffer size and the link capacity are fixed when
an AQM is installed in a router, these parameters are static
(i.e., time-invariant) factors. In contrast, the traffic load
factor (N ) and the RTT are dynamic (i.e., time-varying)
factors because they are changing dynamically over time.
Thus, it is important for anAQM algorithm to have adaptive
and robust control performance for the dynamic factors. In
this section, we examine the sensitivity of the control per-
formance of the PI-PD controller, PID controller, PI con-
troller, and RED to the changes of network environments,
particularly on the dynamic factors, the traffic load factor
(N ), and the RTT.
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Figure 9. The packet loss rate of the PI-PD controller, PID controller, PI controller, and RED under 189 flows (left) and 378 flows
(right)
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Figure 10. Distributions of the frequencies of the packet loss rate of the PI-PD controller, PID controller, PI controller, and RED
under 189 and 378 flows

4.4.1 Sensitivity to the Number of Flows

In this experiment, we examine the control performance
and adaptability of AQM algorithms to sudden traffic load
changes over time. In Floyd and Kohler [39], it is shown
that recently proposedAQM algorithms such as the PI con-
troller and REM [40] perform poorly with traffic situations,
where traffic consists of mostly web-like, short-lived mice
traffic and the traffic load varies over time. Thus, we exam-
ine the control performance of the PI-PD controller, PID
controller, PI controller, and RED under a traffic situation
consisting of 75% mice flows and 25% elephant flows,
with the traffic load varying over time. The simulation be-
gins with a light traffic load that consists of three sources
spawning 30 FTP and 90 mice flows. Thus, the initial total
number of flows is 120. Then, an additional three sources
(i.e., 30 FTP and 90 mice flows) are added at time 50.0 sec.

Thus, from time 50.0, the traffic consists of six sources with
240 flows (60 FTP and 180 mice). Finally, an additional
three sources (i.e., 30 FTP and 90 mice flows) are added at
time 100.0 sec. Thus, from time 100.0, the traffic consists
of nine sources with 360 flows (90 FTP and 270 mice).
Figure 12 shows the above traffic scenario.

Figure 13 shows the control dynamics of AQM algo-
rithms in terms of the queue length and the packet loss rate
with respect to time. We analyze the control dynamics of
AQM algorithms in terms of the queue length first. The
queue length of the PI-PD controller stays around Qref , in-
dependent of the traffic load levels. The PI-PD controller
shows transient overshoots of the queue length when the
traffic load is increased suddenly at time 50.0 sec and 100.0
sec. However, these transient responses vanish rapidly, and
the queue length stays around Qref most of time. The queue
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Figure 11. The average packet loss probabilities and the link utilization of active queue management (AQM) algorithms under
several different load levels
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Figure 12. A scenario of varying traffic load over time

length of the PID controller stays around Qref , except dur-
ing the time interval [0.0, 50.0] sec, because the number of
elephant (FTP) flows (30) in this time interval is smaller
than the lower bound (N− = 60) assumed in (1) [7]. The
queue length of the PI controller stays below Qref and
fluctuates over time. In particular, under a light traffic load
(i.e., in the time interval [0.0, 50.0] sec), the queue length
severely fluctuates and shows underutilization of the link
by allowing the link to idle occasionally. RED maintains
the queue length within the range between minth = 70 and
maxth = 200. However, as the traffic load increases, the
(average) queue length approaches Qref = 200 and stays
around Qref , especially under heavy traffic loads (i.e., after
100.0 sec).

In terms of the packet loss rate, the PI-PD controller
and PID controller show low and stable dynamics under
this traffic situation. In particular, the PI-PD controller and
PID controller can effectively prevent the buffer from mul-
tiple packet losses by allowing acceptable queue length
deviation from Qref . On the other hand, the PI controller
allows multiple packet losses over time, and it becomes
more frequent as the traffic load increases. RED is able to
maintain stable and low packet loss rates under light traffic
(i.e., in the time interval [0.0, 50.0] sec). However, as the
traffic load increases, RED allows more multiple packet
losses.

Figure 14 shows the average packet loss rates of the
PI-PD controller, PID controller, PI controller, and RED
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Figure 13. The queue length and packet loss rates of active queue management (AQM) algorithms over time (continued on next
page)
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Figure 13. (continued from previous page)
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algorithms for three different time intervals: [0.0, 50.0],
[50.0, 100.0], and [100.0, 150.0]. The average packet loss
rate of the PI-PD controller and PID controller is shown
to be almost the same under three time intervals and lower
than those of the PI controller and RED under all time
intervals. Therefore, for the same average packet loss rate
requirement, the network can accommodate more traffic
with the PI-PD controller (and the PID controller) than
with the PI controller and RED.

4.4.2 Sensitivity to the Roundtrip Time

An increase of RTT not only degrades the control perfor-
mance of an AQM algorithm but also leads the system to
fall into instable status. Thus, the effect of RTT should be
taken into account in designing an AQM that is robust,
especially in wide-area networks (WAN) environments.
In this experiment, we examine the effect of an increase
of RTT on the control performance of the PI-PD con-
troller, PID controller, PI controller, and RED. We use the
same network configuration shown in Figure 6, except that
the link delay between routers nc0 and nc1 is increased
from 10 to 60 msec. Thus, RTTs of all pairs of sources
and destinations are increased from [93.3, 253.3] to
[193.3, 353.3] msec.

Figure 15 shows the queue length dynamics of the PI-
PD controller, PID controller, PI controller, and RED under
270 flows. The control performance of the PI controller and
RED is very sensitive to the increase of RTT and may lead
the system to fall into instable status. The PI-PD controller
and PID controller are less sensitive to the increase of RTT
than the PI controller and RED, and they regulate the queue
length around Qref with a slightly larger deviation than for
the case of a smaller RTT.

Figure 16 shows the average packet loss rate of the PI-
PD controller, PID controller, PI controller, and RED al-
gorithms to the increased RTT under different traffic load
levels. Both the PI-PD controller and PID controller out-
perform the PI controller and RED under all traffic load
levels. In particular, by allowing a slightly larger devia-
tion than the PID controller, the PI-PD controller is able
to achieve a lower average packet loss rate than the PID
controller. The PI-PD controller shows significantly lower
average packet loss rates than the PI controller and RED
under all traffic load levels. Moreover, the difference on
the average packet loss rate between the PI-PD controller
and other AQM algorithms such as the PI controller and
RED becomes larger as traffic load increases.

4.4.3 Summary of the Sensitivity Analysis

In the sensitivity analysis, we first examine adaptability
and sensitivity of the PI-PD controller, PID controller, PI
controller, and RED to suddenly increased traffic loads
over time. The PI-PD controller and PID controller show a
satisfactory transient and steady-state control performance
in terms of the queue length dynamics and the packet loss
rates. In addition, these two AQM algorithms, designed
based on the classical PID control mechanism, are able to
maintain a low and stable packet loss rate over time. The
control performance of the PI controller is sensitive to the
traffic load factor (N ), especially to the number of FTP
flows. The PI controller shows fluctuating queue length
dynamics below Qref and multiple and high packet losses
over time. RED is able to maintain the queue length within
the desired range of [minth, maxth] and shows stable and
low packet loss. However, as the traffic load increases, RED
gives more multiple and high packet losses and behaves
like a TD with a buffer size of Qref .

Second, we examine the sensitivity of the control per-
formance of AQM algorithms to the increased RTT. The
PI-PD controller and PID controller outperform the PI con-
troller and RED in terms of the queue length dynamics and
the packet loss rate. In other words, the PI-PD controller
and PID controller are less sensitive to the changes on RTT
than the PI controller and RED.

5. Conclusion

It is necessary for an AQM-based congestion control algo-
rithm to control congestion adaptively under a wide range
of traffic loads to provide an acceptable quality of service
(QoS) such as a bounded and stable delay, a low packet
loss rate, and a high link utilization. We have outlined re-
quirements for an AQM to avoid and/or control congestion
adaptively to dynamically changing traffic loads. These
requirements include an ability to detect and control con-
gestion proactively based on the incipient congestion, not
reactively based on the current congestion.

We designed an adaptive and proactiveAQM algorithm,
called the PI-PD controller, using the concept of classical
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Figure 15. The queue lengths of the PI-PD controller, PID controller, PI controller, and RED with 270 flows and longer roundtrip
time (100 msec) (continued on next page)

PID feedback control. On one hand, with the introduction
of a PD control, the PI-PD controller was able to achieve
the short-term system performance such as fast response
and proactive control to the changing traffic load via antic-
ipatory traffic prediction and control. On the other hand,
with the introduction of a PI control, the PI-PD controller
was also able to achieve long-term performance such as
the elimination of steady-state error. In the PI controller,
the unit sampling time interval for digital implementation
is determined by the system frequency, that is, the TCP
flow dynamic model (1). Unlike the PI controller, the PI-
PD controller does not rely on assumptions on the plant

dynamic model. For example, the unit sampling time in-
terval of the PI-PD controller is determined by the buffer
size and the input traffic load, independent of the plant
dynamic model.

Control performance of the proposed the PI-PD con-
troller has been examined and compared with that of other
AQM algorithms, such as the PI controller and RED, un-
der a variety of traffic situations via extensive simulation
studies using the ns-2 simulator. In addition, to take ad-
vantage of a well-designed continuous PID controller, the
control performance of the PI-PD controller also has been
compared with that of the PID controller [7], developed
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Figure 15. (continued from previous page)

based on TCP flow dynamics (1) and digitized by emu-
lation. The PI-PD controller shows robust and adaptive
congestion control performance to a variety of traffic sit-
uations in extensive simulation studies. In particular, the
PI-PD controller outperforms other AQM algorithms such
as RED and the PI controller in terms of the queue length
dynamics, the packet loss rates, and the link utilization. The
steady-state control dynamics (QACD) of the PI-PD con-
troller is robust and independent of the traffic load. More-
over, the PI-PD controller shows a robust control perfor-
mance to the changes of network environments, such as
the traffic mix, the traffic load, and the roundtrip time. In

contrast, the PI controller and RED show very sensitive
control performance to the changes of the above network
environments.

In practical implementation, the PI-PD controller has
comparably little computational overhead. In RED, the
EWMA queue length and the packet drop probability are
calculated at every packet arrival while maintaining several
parameters such as wQ, minth, maxth, maxp, and so on. In
contrast, the PI-PD controller can be easily implemented
with less sampling frequency (20 Hz) compared to the link
speed (i.e., 3750 Hz) implementation of RED and 160 Hz
of the PI controller while maintaining fewer parameters
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than RED. Therefore, the computational complexity and
overhead at a router can be reduced significantly with the
PI-PD controller.

There are several issues for further study. First, by ex-
amining the impact of the queue length sampling frequency
(or, equivalently, the length of the time slot value, T ) on
the performance of the PI-PD controller, we hope to find a
relationship between the optimal T value and the offered
traffic load. Then, the PI-PD controller can be implemented
with an adaptive sampling time interval to the dynamically
changing traffic situations. We are also working on find-
ing the optimal control gain, α, and the stability margin
of the PI-PD controller control through control-theoretic
modeling and analysis. In this study, we focused only on
the end-to-end congestion control of TCP traffic. Control
of the traffic consisting of TCP and UDP flows will be
another future study issue.
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