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A Fast Wavelet-Based Algorithm for Global and
Local Image Sharpness Estimation

Phong V. Vu and Damon M. Chandler

Abstract— In this paper, we present a simple, yet effective
wavelet-based algorithm for estimating both global and local
image sharpness (FISH, Fast Image Sharpness). FISH operates
by first decomposing the input image via a three-level separable
discrete wavelet transform (DWT). Next, the log-energies of the
DWT subbands are computed. Finally, a scalar index correspond-
ing to the image’s overall sharpness is computed via a weighted
average of these log-energies. Testing on several image databases
demonstrates that, despite its simplicity, FISH is competitive
with the currently best-performing techniques both for sharpness
estimation and for no-reference image quality assessment.

I. INTRODUCTION

A useful goal in image processing is to determine whether
one image (region) appears sharper than another. Algorithms
which can automatically predict perceived sharpness or blur-
riness are known as sharpness estimators or blurriness es-
timators, respectively. Such algorithms have been shown to
be useful for tasks such as main-subject detection, image
quality assessment, and image restoration (see [1] for relevant
references).

Previous methods of sharpness/blurriness estimation have
employed a wide variety of approaches [2]–[6]. The vast ma-
jority of these methods operate under the assumption that the
appearance of edges is affected by blur, and accordingly these
methods estimate sharpness/blurriness by using various edge-
appearance models. For example, Ferzli et al. [3] measure
edge widths in 8 × 8 blocks, which are then weighted by a
Mean Just-Noticeable Blur factor (see also [4]). Liu et al.
[5] employ edge features extracted by using a Sobel edge
detector, and then combine these features via a circular back-
propagation neural network system for blur estimation. Li et
al. [6] compare the kurtoses of blocks of dominant edge pixels
in the input image with those of a purposely re-blurred version.

Other methods have used spectral information to estimate
sharpness [7]–[9]. For example, Shaked et al. [7] use the DFT
to estimate sharpness based on the ratio of high-pass to low-
pass energy of the the spatial derivative of each line/column.
Sharpness has also been estimated based on the peakedness of
the energy spectrum [8], and on the uniformity of the energy
spectrum [9].
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Various DCT, DWT, and other transforms have also been
used either to detect edges and/or to model edge-appearance.
Sharpness/blurriness has been estimated based on the kurtosis
of DWT coefficients corresponding to edge blocks [10], based
on the Lipschitz exponent of the sharpest edges [11], based on
edge types [12], and based on local phase coherence measured
via complex wavelets [13].

More recently, hybrid approaches have been developed
which employ a combination of edge-/pixel-based and
transform-based methods [14], [1]. For example, Chen et al.
[14] proposed a blur metric that employs the statistics of the
image gradient histogram and a wavelet-based detail map. Vu
et al. [1] used a block-based approach to develop the first
method specifically designed to measure local sharpness. Their
method estimates the spatial and spectral sharpness of local
image regions using the slope of the local magnitude spectrum
and the local total variation; these values are then combined
to generate an image sharpness map. Hybrid approaches have
generally proven to perform better than edge-only-based or
transform-only-based methods, though at the expense of added
computational complexity.

In this paper, we present a sharpness estimator, called
FISH (Fast Image Sharpness), which offers the simplicity
of a spectral-based method but with the improved predictive
performance of a hybrid method. Following from [7] and [8],
FISH operates under the assumption that perceived sharpness
can be estimated by examining the energy in high-frequency
bands. Here, we use a three-level separable discrete wavelet
transform (DWT) and measure the log-energy of the DWT
subbands. Sharpness is estimated based on a weighted geo-
metric mean of these log-energies. As we will demonstrate,
despite its simplicity, FISH is competitive with the currently
best-performing techniques. In addition, by clustering DWT
coefficients, we show how FISH can be easily modified to
yield a map indicating the relative sharpness of each image
region. Thus, unlike most existing methods (with the exception
of [1]), FISH can generate sharpness maps.

This paper is organized as follows: In Section II, we provide
details of the FISH algorithm. Section III presents results of
FISH on within-image and across-image sharpness estimation,
and on no-reference quality assessment of blurred images; this
section also includes a discussion of runtime requirements.
General conclusions are presented in Section IV.

II. ALGORITHM

A. Global Image-Based FISH

Given a grayscale input image I , the FISH algorithm
consists of the following three steps:
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1) Step 1: Compute the DWT: The grayscale input image
is decomposed into wavelet subbands by using the Cohen-
Daubechies-Fauraue 9/7 filters [15] with three levels of de-
composition. Let SLHn , SHLn , SHHn denote the LH, HL,
and HH subbands at DWT level n ∈ [1, 3]. (The LL3 subband
is not used.)

2) Step 2: Compute the Log-Energy at each DWT Level:
Images which appear sharp generally contain more high-
frequency content than images which appear smooth/blurred.
To quantify this effect, we first measure the log-energy of each
subband at each decomposition level as follows:

EXYn = log10(1 +
1

Nn

∑
i,j

S2
XYn

(i, j)), (1)

where XY is either LH , HL or HH . The quantity Nn is the
number of DWT coefficients in the subband at level n. The
addition of one is used to prevent negative values of EXYn .

Next, we measure the total log-energy at each decomposi-
tion level via

En = (1− α)
ELHn + EHLn

2
+ αEHHn , (2)

where the parameter α = 0.8 was chosen empirically to give
greater weight to the energy in the HH subband; this band
can be regarded to span a higher radial spatial frequency (by
a factor of

√
2) than the LH and HL bands.

3) Step 3: Compute the Sharpness Index: Finally, the three
per-level log-energy values E1, E2, and E3 are combined as
follows to determine a scalar sharpness index representing the
image’s overall sharpness:

FISH =

3∑
n=1

23−nEn. (3)

Here, FISH ≥ 0, is the overall sharpness index; the larger the
index, the greater the perceived sharpness. The factor 23−n =
{4, 2, 1} when n = {1, 2, 3} is used to provide greater weight
to the finer scales (higher-frequency bands).

B. Local Block-Based FISH

The previous section described the FISH algorithm applied
to the entire image. It is also possible to apply the algorithm
in a block-based fashion to determine a map denoting local
perceived sharpness.

To generate the sharpness map, we compute a collection of
local FISH values using the DWT coefficients corresponding
to each 16× 16 block of the image. Following the procedure
described in [16], each subband is divided into small blocks of
size 8×8, 4×4, and 2×2 for levels 1, 2, and 3, respectively. As
shown in Figure 1, the 16×16 DWT coefficients corresponding
to the top-left 16 × 16 block of the image are assembled by
taking three 8× 8 blocks from the level-1 bands, three 4× 4
blocks from the level-2 bands, and three 2×2 blocks from the
level-3 bands. Equation (3) is then applied to these 16 × 16
coefficients to compute a FISH index for this top-left block.

This process is repeated for each 16 × 16 block with 50%
overlap between two consecutive blocks of DWT coefficients
to generate a sharpness map. Because we use 50% of overlap
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Fig. 1. Illustration of DWT coefficients clustering into a 16x16
wavelet block with 50% overlap to generate the sharpness map. The
orange pixel and its two adjacent pixels in the sharpness map are
shown according to the orange striped set of DWT coefficients and
two adjacent sets of DWT coefficients with 50% overlap. Note that,
to promote visibility, the size of the blocks and sharpness map are
not drawn to scale; the map is 64× 64 pixels for a 512× 512 input
image.

between neighboring blocks, each pixel in the sharpness map
corresponds to a block size of 8×8 in the input image. Figure
1 (right), illustrates the sharpness map of the image lena.

It is also possible to collapse the sharpness map into a scalar
sharpness index representing the image’s overall sharpness.
This index, FISHbb, is computed by taking the root mean
square of the 1% largest values of the local sharpness (FISH)
indices (following from [1]):

FISHbb =

√√√√ 1

T

T∑
i=1

FISH2
i , (4)

where T denotes the number of blocks which received the 1%
largest FISH indices of the sharpness map; and where FISHi,
i = 1, 2, .., T denotes the FISH indices of these blocks. The
value of 1% is used because, as argued in [1], the overall
perceived sharpness of an image is largely determined by the
image’s sharpest regions.

III. RESULTS AND DISCUSSION

A. Representative Results

Figure 2 shows representative results that demonstrate the
ability of FISH/FISHbb to accurately estimate across-image
and within-image sharpness (FISHbb only) for a variety of
images containing different sharpness levels. The images are
ordered based on subjective ratings of sharpness [1].

In terms of across-image sharpness, the FISH/FISHbb in-
dices generally match the relative perceived sharpness across
these images. For example, two of the images, petal and zebra,
are not as sharp as images pelicans and branches, but are
clearly much sharper than image ball. Both FISH and FISHbb

fail to predict the sharpness of image petal in comparison to
either image airplane (for FISH) or image zebra (for FISHbb).
We believe that these failure cases are attributable to the fact
that neither FISH nor FISHbb take into account local contrast.
Such a measurement could be implemented, though at the
expense of added complexity.

In terms of within-image sharpness, FISHbb correctly es-
timates the perceived sharpness of each image region. For
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Fig. 2. Representative maps generated by using FISHbb along with
sharpness indices computed via FISH/FISHbb. The images were
selected and organized in the order of overall sharpness judged by
human subjects [1].

example, in image petal, the flower’s stamens and the edges of
the petals are the sharpest regions in this image; these regions
are accurately highlighted in the corresponding FISHbb map.
Similarly, in image branches, the branches are much sharper
than the sky; this fact is reflected in the FISHbb map.

B. No-Reference Quality Assessment of Blurred Images

To evaluate the performance of FISH on no-reference
quality assessment of blurred images, we used the blurred
image subsets from four image-quality databases: (1) The
LIVE database [17] (containing 145 blurred images); (2) the
IVC database [18] (20 blurred images); (3) the TID database
[19] (96 blurred images); and (4) the CSIQ database [20]
(150 blurred images). We compared our method against five
sharpness estimators (ST [7], JNBM [3], CPBD [4], LPCM
[13], and S3 [1]), two blurriness estimators (MMZ [21] and
MDWE [2]), and one no-reference image quality estimator
(BLIINDS-II [22]), for which code is publicly available. The
performance of predicting subjective ratings of quality was
measured in terms of the Spearman rank-order correlation
coefficient (SROCC) for gauging prediction monotonicity; the
Pearson linear correlation coefficient (CC) (following non-
linear regression; see [1]) for gauging prediction consistency;
and the outlier ratio (OR) and outlier distance (OD) [20] for
outlier analysis.

Table I shows the results of this evaluation. Both FISH and
FISHbb perform quite well on all four databases. In terms of
CC and SROCC, FISHbb outperforms other methods on the
two largest databases (CSIQ and LIVE2) and is competitive
on the other two databases; FISH and MMZ are the two best
methods on IVC. In terms of outliers, FISHbb also shows
the best performance. Note that BLIINDS-II is a general
quality estimator, and not a sharpness/blurriness estimator; its
performance here is thus noteworthy.

TABLE I
PERFORMANCES OF VARIOUS ALGORITHMS ON NO-REFERENCE
QUALITY ASSESSMENT OF BLURRED IMAGES; THE TWO BEST
RESULTS ARE HIGHLIGHTED; THE LAST COLUMN SHOWS THE

AVERAGE WEIGHTED BY NUMBER OF IMAGES IN EACH DATABASE.

LIVE2 IVC TID CSIQ Avg.
SROCC

JNBM 0.787 0.666 0.714 0.762 0.755
CPBD 0.919 0.769 0.854 0.885 0.884

ST 0.702 0.406 0.516 0.705 0.645
MMZ 0.860 0.971 0.732 0.860 0.835

MDWE 0.804 0.685 0.717 0.770 0.765
BLIINDS-II 0.911 0.593 0.872 0.883 0.876

LPCM 0.928 0.835 0.803 0.905 0.886
S3 0.944 0.869 0.850 0.906 0.904

FISH 0.881 0.932 0.786 0.894 0.866
FISHbb 0.938 0.919 0.841 0.917 0.907

CC
JNBM 0.816 0.698 0.727 0.806 0.786
CPBD 0.895 0.801 0.848 0.882 0.875

ST 0.704 0.603 0.621 0.690 0.674
MMZ 0.885 0.956 0.753 0.889 0.859

MDWE 0.806 0.711 0.709 0.797 0.775
BLIINDS-II 0.912 0.800 0.859 0.908 0.893

LPCM 0.917 0.949 0.811 0.911 0.892
S3 0.943 0.928 0.877 0.911 0.914

FISH 0.904 0.957 0.816 0.923 0.893
FISHbb 0.944 0.941 0.858 0.943 0.923

LIVE2 CSIQ LIVE2 CSIQ
OR OD

JNBM 68.97% 36.67% JNBM 710.328 6.282
CPBD 62.76% 37.33% CPBD 441.704 4.269

ST 76.55% 42.67% ST 956.765 10.368
MMZ 66.90% 31.33% MMZ 529.762 3.674

MDWE 64.83% 34.00% MDWE 703.935 6.380
BLIINDS-II 64.83% 26.00% BLIINDS-II 418.430 3.111

LPCM 58.62% 31.33% LPCM 411.010 3.093
S3 53.10% 32.67% S3 285.968 3.031

FISH 64.83% 26.00% FISH 470.833 2.417
FISHbb 54.48% 24.00% FISHbb 289.850 1.648

TABLE II
LOCAL SHARPNESS PREDICTION ACCURACY

S3 FISHbb S3 FISHbb S3 FISHbb

Image SROCC CC RMSE
dragon 0.931 0.923 0.947 0.950 26.414 26.016
flower 0.712 0.749 0.936 0.927 28.805 31.191
monkey 0.916 0.897 0.944 0.959 29.801 25.906
orchid 0.920 0.910 0.914 0.929 39.671 36.221
peak 0.901 0.912 0.928 0.927 29.461 29.662

squirrel 0.794 0.854 0.958 0.954 29.683 31.256
Average 0.862 0.874 0.938 0.941 30.639 30.042

C. Local Sharpness Estimation

We compared the sharpness maps from FISHbb with ground-
truth sharpness maps obtained from human subjects [1]. Figure
3 shows three original images and the corresponding sharpness
maps obtained from human subjects and estimated by S3

and FISHbb. The S3 algorithm was specifically designed to
generate sharpness maps and was shown in [1] to generally
yield the best map predictions. As shown in Figure 3, FISHbb

can yield maps which are quite competitive with S3’s maps.
This latter assertion is quantified in Table II, which shows the
SROCC, CC (after non-linear regression), and RMSE between
the ground-truth sharpness maps and the maps predicted via
S3 and FISHbb.
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Original Ground-truth S3 FISHbb

Fig. 3. Local sharpness maps of three images dragon, monkey, orchid
generated by human subjects, S3 [1], and FISHbb.

TABLE III
RUNTIME REQUIREMENTS (SECONDS/IMAGE); THE TWO FASTEST

METHODS ARE HIGHLIGHTED.

512× 512 1024 × 768 1280 × 960 1600 × 1200
JNBM 1.854 5.563 8.779 14.812
CPBD 2.162 7.364 12.306 22.927

ST 0.210 1.041 1.991 4.086
MMZ 0.608 1.859 2.985 5.024

MDWE 0.914 3.712 7.225 14.273
BLIINDS-II 145.189 443.860 696.720 1176.00

LPCM 0.909 2.852 4.151 6.688
S3 29.154 64.522 122.640 142.841

FISH 0.079 0.259 0.469 0.611
FISHbb 1.309 4.018 6.291 10.126

D. Runtime vs. Image Size

To evaluate runtime, we applied FISH, FISHbb, and the other
estimators to images of size 512×512, 1024×768, 1280×960,
and 1600×1200 pixels. Table III shows the average runtime of
each algorithm in seconds, where the average was taken over
100 trials. This test was performed using a modern desktop
computer (Intel Quad Core at 2.66 GHz, 12 GB RAM DDR2
at 6400 MHz, Windows 7 Pro 64-bit, Matlab 7.8). All of the
methods were implemented in Matlab.

As shown in Table III, FISH is the fastest algorithm for
all image sizes, and FISHbb is still significantly faster than
the methods which yield competitive predictive performance
(S3, JNBM, CPBD, and BLIINDS-II; see Table I). In terms
of memory requirements, both FISH and FISHbb have the
same memory requirements as a standard DWT with only a
negligible amount of additional memory needed for the output
map (for FISHbb) and other scalar variables.

IV. CONCLUSIONS

This paper presented a simple, yet effective algorithm
(FISH) for estimating both global and local image sharpness.
FISH operates by first decomposing the input image via a
three-level separable DWT, and then estimating sharpness
based on a weighted geometric mean of the DWT subband
energies. To generate a local sharpness map, FISH can be op-
erated in a block-based fashion (FISHbb) by applying the same
computation to groups of DWT coefficients. We demonstrated
the efficacy of FISH/FISHbb on several image databases.
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