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employing uni- and multi-variate methods for data analysis†‡
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Raman mapping in combination with uni- and multi-variate methods of data analysis is applied to

articular cartilage samples. Main differences in biochemical composition and collagen fibers

orientation between superficial, middle and deep zone of the tissue are readily observed in the samples.

Collagen, non-collagenous proteins, proteoglycans and nucleic acids can be distinguished on the basis

of their different spectral characteristics, and their relative abundance can be mapped in the label-free

tissue samples, at so high a resolution as to permit the analysis at the level of single cells. Differences

between territorial and inter-territorial matrix, as well as inhomogeneities in the inter-territorial matrix,

are properly identified. Multivariate methods of data analysis prove to be complementary to the

univariate approach. In particular, our partial least squares regression model gives a semiquantitative

mapping of the biochemical constituents in agreement with average composition found in the literature.

The combination of hierarchical and fuzzy cluster analysis succeeds in detecting variations between

different regions of the extra-cellular matrix. Because of its characteristics as an imaging technique,

Raman mapping could be a promising tool for studying biochemical changes in cartilage occurring

during aging or osteoarthritis.
Introduction

Hyaline cartilage is a highly specialized connective tissue with

remarkable biomechanical properties, which occurs at the

articulating surfaces of bones (articular cartilage) and within the

major airways.1,2 The function of articular cartilage is to reduce

friction between bones in joint articulation, and to distribute

loads across the joint surface. Cartilage tissue is avascular and

aneural, and consists of a relatively small portion of a single type

of cells (i.e., chondrocytes) embedded in a large amount of

extracellular matrix (ECM). The main constituents of the ECM

are collagen (50–60% of dry weight) and proteoglycans (15–30%

of dry weight).3 Most of the collagen (90–95%) in the ECM is of

type II, which forms a network of fibres binding the proteogly-

cans and providing the tissue with important mechanical prop-

erties such as toughness and viscoelasticity. Most of the

proteoglycans in cartilage are complex molecular aggregates

consisting of a core protein to which one or more glycosamino-

glycan chains (such as chondroitin sulfate and keratan sulfate)

are covalently attached. The glycosaminoglycans (GAGs) form

hydrophilic gels which bind large amounts of water, bestowing

compressive strength properties to the tissue. However,
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chondrocytes and main ECM constituents are not evenly

distributed within the tissue: in fact articular cartilage is distin-

guished into superficial, middle and deep zones1–3 (Fig. 1, left),

according to the different shape of cells, biochemical composi-

tion of the ECM and orientation of collagen fibres.

Destruction of the ECM has been shown to be the initial event

during cartilage degradation in osteoarthritis, rheumatoid arthritis

as well as in other diseases.4 Therefore, considerable effort has

been invested in studying cartilage. Imaging techniques are

valuable tools for investigating tissues, and in particular

magnetic resonance imaging (MRI) is widely used for functional

imaging of cartilage.5 Besides the efforts to improve the MRI

performance, there is an increasing interest in developing

different imaging techniques that can detect the biochemical

changes in cartilage matrix to diagnose, grade or investigate the

molecular processes of degenerative joint diseases.

Vibrational spectroscopy has been successfully applied to

characterize tissues, and in particular Fourier-transform infrared

(FT-IR) imaging has been employed to study cartilage speci-

mens.6,7 This technique proved to be efficient in imaging the

distribution of collagen and proteoglycans in healthy and

diseased cartilage. In spite of the considerable work done by

several groups on FT-IR imaging of cartilage, the vibrational

spectroscopy complementary to FT-IR, i.e., Raman spectros-

copy, has been only recently employed, in the variant of

Coherent Anti-Stokes Raman (CARS) for articular cartilage

imaging applications.8 Raman spectroscopy is based on the

inelastic scattering of photons from a laser source by the mole-

cules constituting the sample.9 It usually requires no or little

sample manipulation and below 2000 cm�1 water yields a weak

Raman signal: for these reasons Raman spectroscopy is partic-

ularly apt for studying native tissues. Moreover, Raman spectra
Analyst, 2010, 135, 3193–3204 | 3193
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Fig. 1 (left) Bright field micrograph of a section of articular cartilage,

in which the deep, middle and superficial zones are schematically

shown; (right) bright field micrographs of the areas of the deep, middle

and superficial zones which have been mapped with Raman micro-

spectroscopy.
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can be recorded through fiber optic probes,10 suitable for in vivo

diagnostics. The coupling of a Raman spectrometer with an

optical microscope (usually termed Raman microspectroscope)

allows the analysis of samples with a spatial resolution better

than infrared spectroscopy.11 By using a motorized microscope

stage, a Raman spectrum can be collected from each point of an

arbitrary grid, obtaining a so-called Raman map of the sample;

the hyperspectral data set obtained can be processed to yield

images which show the distribution of the chemical species

present in the tissue. Raman micro-spectroscopic studies have

been reported for rabbit nasal12 and auricolar cartilage,13 for

human bronchial tissue14 and for murine knee joints.15 To the

best of our knowledge Raman mapping has not yet been applied

to articular cartilage and, hence, the aim of this paper is to

evaluate how Raman mapping can be applied to characterize

articular cartilage, and what kind of information can be retrieved

from Raman maps of this tissue by uni- and multivariate

methods of data analysis. Univariate data analysis is widely

employed to process Raman maps, producing images based on

the absolute or integrated intensity at a certain Raman shift. In

this study, maps of areas from deep, middle and superficial zones

of articular cartilage (Fig. 1, right) have been collected, to eval-

uate the capability of the univariate approach to distinguish the

characteristic features of each zone. However, univariate analysis

considers only one variable at a time. Conversely, multivariate

methods, which are being increasingly applied to the analysis of

Raman maps, make use of larger parts of the spectra (or even the

complete spectrum) to produce an image, simultaneously taking
3194 | Analyst, 2010, 135, 3193–3204
into account more variables. In this study, four different multi-

variate techniques are used for the analysis of hyperspectral data:

principal component analysis (PCA),16 partial least squares

regression (PLSR),17 and two types of cluster analysis,18 hierar-

chical cluster analysis (HCA) and fuzzy c-means cluster analysis

(FCA).

Experimental

Chemicals and materials

CCl4, formalin, DNA, collagen (type II), concanavalin and

albumin were purchased from Sigma-Aldrich Italy (Milan, Italy).

Chondroitin sulfate sodium salt was purchased from Wako

Chemicals (Osaka, Japan). All chemicals employed were used as

provided by the suppliers, without further purification. CaF2

microscope slides were purchased from Crystal GmbH (Berlin,

Germany).

Sample preparation

The humeral-scapular joint of a mature pig was collected at

a slaughterhouse and transferred in ice to the laboratory.

Articular cartilage was aseptically excised from the humeral

proximal head within 2 h from the sacrifice, and fixed in 4%

buffered formalin for 30 min. Formalin fixation is recommended

by the Histology Endpoint Committee of the International

Cartilage Repair Society (ICRS),19 and it does not cause signifi-

cant alterations in the Raman spectra of tissues.11,20 Tissue slices

approximately 100 mm thick were cut perpendicularly to the

articular surface, rinsed with distilled water and immediately

mounted onto a CaF2 slide while still wet. The samples were dried

overnight in air at room temperature, and then put under the

Raman microscope (without any cover slip) for data collection.

This study does not address the issue of inter-animal variation

of tissue composition or morphology, its scope being that of

evaluating the feasibility of Raman mapping on a sample of arti-

cular cartilage. Therefore, large maps were taken from different

regions of only one sample.

Raman spectroscopy and mapping

Raman spectra and maps were collected in back scattering

geometry, with an InVia Raman microscope (Renishaw plc,

Wotton-under-Edge, UK) equipped with a 632.8 nm HeNe

laser (Melles-Griot, Voisins Le Bretonneaux, France) delivering

15 mW of laser power at the sample. The laser was polarized

along the x-axis direction. The CaF2 slide supporting the tissue

samples was mounted on a ProScan II motorized stage (Prior,

Cambridge, UK) under the microscope. A Leica 100x micro-

scope objective (N.A. 0.95) focused the laser on the sample into

a spot of �0.4 mm diameter. A 1800 l/mm grating yielded a

spectral resolution of 4 cm�1. A thermoelectrically cooled charge

coupled device (CCD) camera was used for detection. The

spectrograph was calibrated using the lines of a Ne lamp.

Instrumental polarization effects were ruled out acquiring

a spectrum of CCl4 and comparing the recorded depolarization

ratio with the values derived from literature. Single spectra were

collected with an exposure time of 90 s. Mapping was achieved

collecting spectra with steps of 1 mm, with an exposure time of
This journal is ª The Royal Society of Chemistry 2010
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10 s for each spectrum. Spectra, consisting of 1272 data points

each, were obtained in the 600–1800 cm�1 region using the synchro

mode of the instrument software WiRE� 3.0 (Renishaw). In the

synchro mode, the grating is continuously moved to obtain

Raman spectra of extended spectral regions. The dimensions

of the map depended on cartilage zone investigated: 83� 101 mm,

83 � 40 mm and 83 � 14 mm for the deep, transitional and

superficial zones, respectively.

Data preprocessing and analysis

All data preprocessing and analysis was performed within the R

software environment for statistical computing and graphics.21

In particular, data import and export, preprocessing and visu-

alization were performed with the hyperSpec package22 for R.

The preprocessing consisted of four steps: i) cosmic rays

identification and removal, ii) baseline correction, iii) intensity

vector-normalization and iv) outliers detection and removal. For

the baseline correction, a linear baseline was fit automatically to

the whole spectral range and was subtracted from each spectrum

of the dataset. Outliers detection was done by identifying suspi-

cious points on the PCA score maps (see below) and inspecting

the corresponding spectra. In the preprocessing stage, PCA is

thus used as a method to identify suspicious spectra, exploiting

its sensitivity to outliers.23 These suspects were then individually

examined before deleting them.

PCA

PCA reduces the number of variables by condensing all the

spectral information contained in a large number of spectra into

a few latent variables (the principal components or PCs).

Hyperspectral data are thus decomposed by PCA into so-called

latent spectra (or ‘‘loadings’’) and ‘‘scores’’. This approach is

closely related to describing each spectrum in a Raman map as

a product between components concentrations and pure con-

stituents spectra, where the latent spectra are used instead of

those of the pure constituents, which are unknown.23

In the present study, PCA was performed on preprocessed

data, and the first two principal components PC 1 and PC 2,

which could be easily interpreted in terms of the biochemical

components of the tissue, were considered for discussion. The

loadings and score maps for the other principal components are

of more difficult interpretation, and are available as Supple-

mentary Information‡. PCA calculations were done using the R

function prcomp.

PLSR

In PLSR, a reference data set consisting of spectra with known

analyte concentrations is used to build a calibration model for

these analytes. PLSR decomposes the calibration data into scores

and latent spectra. Instead of looking for the variance in the

spectra (as PCA), the co-variance between the constituent

concentrations and the spectra is used. However, the purpose of

the model used in this study is not quantitative ‘‘prediction’’ of

constituent concentrations as usually is the case for PLSR, but

only fitting of the spectra collected from the cartilage sample.

For PLSR analysis, Raman spectra were subjected to a loess24

smoothing interpolation. This was necessary as day-to-day drift
This journal is ª The Royal Society of Chemistry 2010
of the spectrograph requires the re-calibration of the grating

position, which in turn results in slightly different Raman shifts

for the measured data points of the model substances compared

to the tissue spectra. This procedure improves also the signal-to-

noise ratio. The spectra were interpolated onto an evenly spaced

Raman shift axis from 604 to 1800 cm�1 with data points spacing

4 cm�1.

The PLSR model was built using a calibration data set com-

prising 10 spectra of each of the following pure substances, each

spectrum measured from a different sample of the same pure

substance: chondroitin sulfate (CS), DNA, concanavalin and

albumin; 20 collagen spectra were collected from fibers oriented

parallel and perpendicular with respect to the laser polarization

direction, since collagen Raman spectra depend upon orienta-

tion.25 Concanavalin and albumin were taken as model com-

pounds for proteins rich in b-sheets and a-helices, respectively.

Altogether, this reference data set of 60 spectra model the

following groups of substances: collagen (10 spectra for each

fiber orientation), non-collagenous protein (concanavalin and

albumin), nucleic acids (DNA) and GAGs (CS). The spectra of

the reference data set are shown in the Supplementary

Information.‡

Strictly, since the reference spectra were normalized, the PLSR

models the spectral contribution of each group of substances to

the spectrum rather than the absolute concentrations. However,

the reference substances show roughly equal overall Raman

intensities and, hence, we assumed that spectral contributions

translate approximately to the relative constituent concentra-

tions. This approximation does not take into account several

factors such as different sample densities and different Raman

scatter cross-sections, and therefore the results must be taken

with care, in view of the limits of our simplified model.

A PLSR model with 6 latent spectra was used, as suggested by

a 50-times iterated 10-fold cross validation (the cross validation

plot is available in the Supplementary Information‡). PLSR

calculations were made using the R package pls.26
HCA and FCA

In cluster analysis, spectra are segmented into groups (or clus-

ters) according to their resemblance, so that all spectra belonging

to one cluster have similar characteristics. In ‘‘hard’’ clustering

methods such as HCA, a spectrum exclusively belongs to one

cluster, whereas ‘‘soft’’ methods such as FCA allow one spectrum

to belong to more than one cluster at the same time.

HCA produces a tree-like structure of clusterings, the

dendrogram. Its interpretation is somewhat similar to that of

a phylogenetic tree: the further one has to ascend the tree to find

a connection between two spectra (or species) of interest, the less

similar they are. This study uses an agglomerative clustering

approach. Initially, each spectrum is considered its own cluster.

Then, the two most similar spectra, or clusters, are merged into

one cluster, and the (dis)similarity or ‘‘distance’’ between them is

recorded. This is repeated until finally all spectra end up in one

cluster. The dendrogram depicts the level of (dis)similarity for

each such merging step. Finally, the dendrogram is cut a certain

level of (dis)similarity or distance corresponding to a particular

number of clusters. In a pseudo-colour image, each spectrum is

then coloured according to its cluster.
Analyst, 2010, 135, 3193–3204 | 3195
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In contrast to hard clustering, FCA uses continuous cluster

membership values rather than assigning one cluster for each

spectrum, so that each spectrum can partially belong to more

than one cluster. In FCA, the number of clusters is pre-specified.

The cluster means (or centroids) are initialized either by

randomly picked spectra or by spectra given by the user. For

each spetrum, the membership for each cluster is calculated.

The membership values are a measure of similarity between the

spectrum and the cluster mean (usually the inverse of the

distance) and are normalized to add up to 1 for each spectrum.

The cluster centroids are then updated to the average spectrum

weighted by the membership values for each cluster. These two

steps, updating the memberships and updating the cluster

centroids, are iterated until the algorithm converges to a stable

clustering. Prior to cluster analysis, the 5th percentile of all inten-

sities (i.e., the intensity threshold below which 5% of all spectra

may be found27) at each Raman shift was subtracted from all

spectra in the data set to emphasize differences between spectra.

For HCA, we used Pearson’s distance between all the spectra of

a map, and then Ward’s method to determine the distance

between clusters. The dendrogram is available as Supplementary

Information.‡ HCA calculations were done using the R function

hclust and the function pearson.dist from the hyperSpec package.

Centroids obtained by HCA were used as initial cluster centroids

in FCA, instead of a random selection. The ‘‘degree of fuzziness’’

parameter in FCA was set to 1.4, encouraging a relatively ‘‘hard’’

outcome of the cluster analysis. FCA calculations were done using

function cmean in R package e1071.28
Fig. 2 Average spectra of the Raman maps taken from the (a) deep, (b)

middle and (c) superficial zones. Intensities are normalized (see Experi-

mental section). Most bands in the average spectra can be assigned either

to collagen or to chondroitin sulfate, whose Raman spectra are shown for

comparison (bottom, as thin line).
Results and discussion

Characteristics of average Raman spectra

Fig. 2 shows the average spectra of the Raman maps collected

from the deep, middle and superficial zones of cartilage, corre-

sponding to the areas shown in Fig. 1. All spectra have in

common bands due to collagen and proteoglycans (in particular

CS), whose Raman spectra are reported for reference in the lower

part of Fig. 2. Several bands are also due to aromatic amino acids

(i.e., Phe, Tyr and Trp), which are efficient Raman scatterers.29 A

list of the bands observed in the average spectra, together with

their assignments to vibrational modes, is shown in Table 1. In

particular, the two amide III band at 1246 and 1271 cm�1, the

groups of bands between 800 and 1000 cm�1, and the amide I

band at 1669 cm�1 are characteristic of collagen, whereas the

bands at 1068, 1342 and 1380 cm�1 are typical of CS. This is not

unexpected, since collagen and CS are the main constituents of

articular cartilage, and their bands have already been reported in

Raman spectra collected from cartilage tissues.12–15 Besides the

common features, differences between the three zones are

observed. In agreement with previous studies on cartilage

biochemical composition,1–3 the proteoglycans/collagen ratio is

higher in the deep zone than in the superficial zone, as clearly

indicated in the average spectra by the relative intensities of CS

and collagen associated Raman bands (Fig. 2). Moreover, the

1669/1451 cm�1, 1246/1261 cm�1 and 920/940 cm�1 intensity

ratios are slightly different for the three cartilage zones. These

differences, however, likely reflect a variation in the orientation

of collagen fibrils rather than a change in chemical composition
3196 | Analyst, 2010, 135, 3193–3204
of the tissue. Orientation effects in Raman spectra of anisotropic

samples are well known, and differences in the intensity ratio

similar to those observed among the spectra in Fig. 2 have been

recently reported for collagen fibers upon changes in sample

orientation.25 Indeed, in the deep zone collagen fibrils are known

to be oriented perpendicular to the articular surface, whereas in

the middle and superficial zone they are oriented randomly and

parallel, respectively, to the surface.1–3 The effects of this

anisotropy on polarized light microscopy and FT-IR imaging are

known, and have been exploited to study collagen orientation in

cartilage tissue.30,31 Although the effects of collagen orientation

in Raman spectra of cartilage have never been reported, similar

phenomena have been reported for osteonal tissues.32

Further information about the variation of biochemical

species present in the cartilage sample is given by the standard

deviations in Raman intensity of the different maps (Fig. 3).

For instance, the variation in Raman intensity at 1578 and

1488 cm�1 indicate the discontinuous presence of nucleic acids, as

expected for a tissue such as cartilage in which groups of cells

are scattered apart from each other in the ECM. It should be

noted that bands due to nucleic acids are indistinguishable in the

average spectra of Fig. 2, buried under the bands due to the more

abundant ECM constituents, but are clearly visible in the stan-

dard deviations.
This journal is ª The Royal Society of Chemistry 2010
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Table 1 Raman shifts (cm�1) and assignments of the bands observed in
the average Raman spectra of cartilage

Raman shifts Assignment

1670 collagen, amide I
1606 n C]C aromatic ring (Phe, Tyr)
1586 n C]C aromatic ring (Phe, Trp)
1557 n C]C aromatic ring (Trp, Tyr)
1450 collagen-other proteins, d C–H (CH2/CH3)
1424 glycosaminoglycans, ns COO�

1380 glycosaminoglycans, unassigned
1342 glycosaminoglycans, d C–H (CH2)
1319 —
1269 collagen, amide III
1245 collagen, amide III
1208 Hyp, Tyr
1163 d C–H (Tyr)
1127 proteins, n C–N, n C–C
1098 —
1068 glycosaminoglycans, ns OSO3

�

1033 Phe ring deformation
103 Phe ring deformation
940 collagen, n C–C (protein backbone Pro)
920 collagen, n C–C (Pro, Hyp)
876 collagen, n C–C (Pro, Hyp)
857 collagen, n C–C (Pro)
816 collagen–other proteins, n C–C protein backbone
760 Trp ring deformation
725 —
644 Tyr ring deformation
622 Phe ring deformation

Fig. 3 Normalized intensity standard deviations of the Raman maps

taken from the (a) deep, (b) middle and (c) superficial zones, corre-

sponding to the spectra in Fig. 2. The band at 1087 cm�1 which is out of

scale in the spectrum (b) is due to calcium carbonate microcrystals (see

Results and Discussion). The Raman spectrum of DNA is reported for

comparison (bottom, thin line).
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A sharp band at 1087 cm�1 is also observed in the standard

deviations of the middle and superficial regions in Fig. 3. This

band is particularly strong for the middle zone, and it is attrib-

uted to the presence in the tissue of microscopic crystals of

calcium carbonate, CaCO3, which has indeed a characteristic

Raman band at 1087 cm�1.33 This attribution is confirmed by the

presence of a weaker band at 713 cm�1 (Fig. 3b), which is also

typical of this mineral. The occurrence of calcium carbonate

crystals in dry cartilage tissues has been also reported by other

studies.12

The intensity standard deviations in Fig. 3 also show inter-

esting features in the amide I region between 1600 and 1700 cm�1.

Variations of Raman intensity within the amide I region suggest

the occurrence of three or more bands with maximum intensi-

ties at 1636, 1656 and above 1670 cm�1, corresponding to

different secondary protein structures. In particular, the band

at 1636 cm�1 is characteristic of the collagen secondary struc-

ture, and is present as an evident shoulder of the amide I band

in the Raman spectrum of collagen (Fig. 2). The bands at

1656 cm�1 and above 1670 cm�1 are typical of a-helical and

b-sheet secondary structures, respectively.29,33

In general, intensity standard deviations of the Raman maps

convey relevant spectral information that may otherwise remain

undetected in average spectra, and should be carefully inspected.
Univariate analysis of Raman maps

The images shown in Fig. 4 depict the distribution of several

biochemical components in the three examined regions of the

articular cartilage sample. These images were built by using

a variant of the usual univariate imaging in which a sum of the

intensities at different Raman shifts, rather than to a single one,
This journal is ª The Royal Society of Chemistry 2010
is mapped. Although not strictly univariate, this approach uses

a number of variables (3 to 6) which is very low compared to their

total number (1272). This vector of Raman shifts, whose inten-

sity sum is imaged, was built by considering the characteristic

frequencies of each biochemical component (for details see the

caption of Fig. 4).

According to the images in Fig. 4, the positions of single cells

(clustered in so called ‘‘isogenous groups’’) are readily identified

by imaging the distribution of the intensity of characteristic

DNA bands and they largely agree with the morphological

features observed in the conventional bright field microscopy

(Fig. 1). However, additional information is conveyed by the

Raman images since they allow the identification of cells in areas

where no morphological features are present in bright field

images. The small areas in which DNA appears more dense are

likely due to chondrocytes’ nuclei. In the superficial zone, the

position of cells is very difficult to estimate from bright-field

images, whereas in Raman images the chondrocytes are readily

detected, having the flattened shape characteristic of this region.

Moreover, the absence of nucleic acids in cell-like structures,

such as those present in the bottom left region of the deep zone in

the bright field micrograph of Fig. 4, readily identifies lacunae

(i.e., cavities in the ECM in which chondrocytes are found),

which are devoid of cells.

The images in Fig. 4 also indicate that CS has a higher con-

centration in the matrix immediately surrounding chondrocytes
Analyst, 2010, 135, 3193–3204 | 3197
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Fig. 4 Univariate images of the deep, middle and superficial zones of the cartilage tissue, based on the corresponding normalized Raman maps. Each

image maps the sum of intensities at Raman shifts which are characteristic of each different biochemical constituents. Pixels are colored according to

a linear red-yellow-green-blue color scale in which the red and blue correspond to the maximum and minimum value of an intensity sum, respectively.

The intensity sum is calculated over the intensities at 1578, 1488 and 782 cm�1 for DNA, at 1380, 1342 and 1068 cm�1 for chondroitin sulfate, at 1271,

1246, 920, 857 and 816 cm�1 for collagen and at 1555, 1127 and 1004 cm�1 for non-collagenous proteins. The two small white areas in the middle zone

correspond to the calcium carbonate microcrystals. In all images, the distance between two adjacent tick marks on the axes corresponds to 20 mm.
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(i.e., pericellular and territorial regions), whereas collagen is most

dense within the ECM or inter-territorial matrix. This observa-

tion is in agreement with previous studies on the biochemical

studies on cartilage showing a higher content of sulfated

proteoglycans in the regions surrounding the cells.1,2 Since

proteoglycans are known to bind large amounts of water, their

density and thus their overall concentration in wet tissues will be

different than in the dry tissues. However, their spatial distri-

bution is unlikely to be affected by the presence of water, as

suggested by the correlation of proteoglycans content between

dehydrated and hydrated cartilage sections as inferred from FT-

IR and MRI microscopy.34 In the map of the deep zone, CS

appears to be denser in the pericellular and territorial regions of

the groups of cells in the upper part of the map. Since the regions

surrounding the cells are those more recently synthesized,

a possible interpretation for such diversity could be a difference

in the metabolism between the upper and the lower groups of

cells.

Non-collagenous proteins are detected upon mapping the

intensity of Raman bands associated with aromatic amino acids

such as Phe, Tyr and Trp, which are less present in collagen than

in other proteins (Fig. 4). Non-collagenous proteins are denser

within cells, pericellular and territorial regions where collagen

occurs in lower amounts. As expected, in the inter-territorial

matrix where collagen is the major component, non-collagenous

proteins are present in smaller quantities.

All the images in Fig. 4 have a lateral resolution of 1 mm,

corresponding to the step with which the Raman maps were

collected. Such a resolution is enough to yield information about

single cells with a detail much higher than that provided by FT-
3198 | Analyst, 2010, 135, 3193–3204
IR imaging of cartilage (6 mm).35 The maximum lateral resolution

attainable by Raman and FT-IR imaging is physically restricted

by the diffraction-limit of the radiation used to investigate the

sample. Therefore, Raman mapping (for which visible light is

usually employed) has a distinct advantage over FT-IR imaging

when studying tissues at the scale of single-cells. Clearly, this

improvement in lateral resolution is achieved at the expense of

the collection time, which is much longer for Raman mapping.

For these reasons, Raman mapping is complementary to FT-IR

imaging, and it is particularly suited in studies where spatial

resolution is important, and single cells are to be resolved.
Multivariate analysis of Raman maps

The relatively simple approach based on univariate analysis of

Raman intensities in normalized spectra appears to be very

effective to localize the known main biochemical constituents of

the tissue, providing a qualitative description of the tissue at

a single-cell resolution. However, univariate analysis, in case of

complex samples such as tissues, can often lead to partial or even

incorrect information. Multivariate analysis proved to be very

effective in processing data for imaging based on vibrational

spectroscopies, and it is being widely employed in Raman

imaging of tissues and cells.11,36,37

For the sake of brevity, the results of the multivariate analyses

are presented and discussed only for the deep zone map. It is the

largest map and includes the highest number of cells as well as

other morphological features (e.g., empty lacunae). Moreover, its

ECM appears to be more heterogeneous than those of the other

zones. The same analyses conducted on the middle and
This journal is ª The Royal Society of Chemistry 2010
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superficial zones were consistent with the results obtained from

the deep zone, and their multivariate images are available as

Supplementary Information.‡

PCA. PCA is very effective in differentiating between cells and

ECM, and between CS and collagen (Fig. 5), at a low compu-

tational cost. PC 1 shows intense positive loadings for Raman

shifts which are characteristic of ECM constituents such as

collagen (at 857, 920 and 940 cm�1) and CS (at 1070, 1378 cm�1),

whereas the negative peaks of the loadings clearly correspond to

Raman shifts of DNA (at 1578, 1488 and 782 cm�1) and non-

collagenous proteins (at 1004 cm�1). Cells are readily differenti-

ated from ECM in the score map for PC 1, and are in agreement

with the univariate images showing the distribution of DNA and

non-collagenous proteins. PC 2 shows intense negative loadings

at 1071, 1335 and 1378 cm�1 which are very close to the Raman

shifts of CS, while the positive loadings are again at wave-

numbers typical for collagen (e.g 875, 920, 1243 and 1271 cm�1).

PLSR. Differently from the other methods employed in this

study, PLSR allows a quantitative analysis of the chemical

composition of the cartilage sample, in terms of its main constit-

uents. As we calibrated on spectral contribution rather than

concentration (see Experimental section), a semi-quantitative

analysis of the main constituents is presented. In Fig. 6, the

images built with the PLSR model show the relative contribution

of each component included in the model to the spectra of the
Fig. 5 Loadings (top) for the first two principal components PC 1 and PC 2 o

(bottom).

This journal is ª The Royal Society of Chemistry 2010
Raman maps. According to the PLSR model, the ECM is mainly

constituted by collagen (50–60%) and GAGs (20–30%), with

a minor contribution from non-collagenous proteins (10–20%).

These percentages are in agreement with previous studies on the

biochemical composition of the different cartilage zones.3 The

pericellular and territorial regions show an increased content of

sulfated proteoglycans (approximately 40%). As expected,

nucleic acids are virtually absent in the ECM, whereas they are

present up to 10–20%, together with 30–45% of non-collagenous

proteins, in regions corresponding to the cells.

The PLSR model can also distinguish between a-helical and

b-sheet proteins, as two distinct proteins, each having one of

these two secondary structures, were included in the model (see

Experimental section). According to the PLSR, cells are richer in

a-helical proteins, whereas b-sheet proteins are present in both

cells and ECM (Fig. 6). These results might be tentatively

interpreted considering that cells have nuclei rich in a-helical

proteins (e.g., histone proteins), whereas ECM proteins such as

fibronectin, tenascins and aggrecan proteins are rich in b-sheet

domains. However, since we fitted spectra with albumin and

concanavalin rather than with the proteins mentioned above, this

tentative interpretation must be taken with great care.

The cellular regions of the map also show a high content of

collagen and proteoglycans. The presence of proteoglycans and

collagen inside the cells could be due partly to the chondrocyte
f the deep zone Raman map, together with the PC 1 and PC 2 score maps

Analyst, 2010, 135, 3193–3204 | 3199
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Fig. 6 Maps of the deep zone showing the relative spectral contribution in percent of different constituents as fitted by the PLS model. For each pixel of

the map, the percentage of each component can be deduced by comparing the pixel color to the bar on the left. A and B indicate positions with spectra

which are representative of the inside of a chondrocyte and of the ECM, respectively.
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synthesis metabolism, and partly to the fact that the Raman

maps were collected in a non-confocal mode, so that the ECM

above or below the cells (along the z-axis) could have contributed

to the overall signal.
Fig. 7 Raman spectra corresponding to the points A and B in Fig. 6 fitted wi

(c) non-collagenous proteins and (d) collagen to (e) the experimental spec

calculated as the difference between the experimental and the reconstructed s

3200 | Analyst, 2010, 135, 3193–3204
Fig. 7 reports an example of PLSR analysis applied to two

spectra of the deep zone map: one (A) is taken from a cell and the

other (B) from the ECM. Considering the limited number

of substances in our model and given the biochemical complexity
th the PLS model, showing the spectral contributions of (a) DNA, (b) CS,

tra (B), together with the reconstructed spectrum (—). The residuals,

pectra, are shown superimposed to the y ¼ 0 line.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 9 False-color image of the deep zone map based on the hierarchical

cluster analysis (considering 7 clusters) of the Raman map after

subtraction of the 5th percentile spectrum from all spectra. Areas of

distinct colors have differences in biochemical composition as deduced by

the differences in their Raman spectra. Each cluster is also arbitrarily

identified with a number as indicated by the color code bar on the right.
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of a tissue, the residuals in Fig. 7 suggest that the PLSR model

gives a reasonable fit of the experimental data. It should be noted

that the PLSR is meant to model mixtures which consist

completely of the components given in the reference data set,

which is only approximately the case for cartilage. The residual

spectrum shows a clear structure, indicating that a model

including more substances could help to achieve a more accurate

description of the tissue. For instance, the fitting of the region

around the sulfate vibration of CS at 1068 cm�1 may be improved

by adding other sulfated GAGs to the model. On the other hand,

the residual intensity at 820 cm�1, in a spectral region which

contains characteristic collagen bands, could be explained with

the fact that we included in our model only in one type of

collagen, whereas more than one type is present in the tissue.

HCA and FCA. Since cluster analysis looks for differences

between the spectra, the data pre-processing should emphasize

these differences. This could be accomplished by subtracting

from all the data set of the spectrum corresponding to the

biochemical composition, that does not change over the whole

sample. Mathematically, this would be the ‘‘minimum intensity

spectrum’’, i.e., the minimal intensity of all spectra observed at

each Raman shift. However, this approach may cause problems:

the minimum spectrum picks up the noise, which may be not

negligible in Raman spectra. Subtracting a noisy spectrum will

cause the result to be even more noisy. Therefore, we rather

subtracted the 5th percentile of all intensities at each Raman shift

(Fig. 8). This spectrum is still very similar to the minimum

spectrum, yet subject to much less noise. Moreover, the 5th

percentile-subtracted spectra have positive intensity, whose

interpretation is more straightforward than that of the spectra

with negative peaks resulting from the subtraction of the mean

spectrum. Indeed, the application of HCA and FCA on 5th

percentile-subtracted spectra could distinguish spectral differ-

ences better than the same analyses on un-subtracted data.

The use of a ‘‘hard’’ clustering method such as HCA on a tissue

Raman map leads to the partition of the map into different areas,

each area corresponding to a cluster of spectra. Fig. 9 shows such

a partition for the deep zone Raman map, in which each cluster

has been assigned a different color. The number of clusters is
Fig. 8 (a) Average spectrum, (b) 5th percentile spectrum and (c) average

of the 5th percentile-subtracted spectra of the deep zone Raman map.

Fig. 10 Cluster centroids of the clusters (1)–(7) obtained from the

hierarchical cluster analysis of the Raman map after subtraction of the 5th

percentile spectrum from all spectra. The cluster centroids corresponds to

the clusters shown in Fig. 10, and are the average of all the spectra having

the same cluster membership (i.e., the same color).

This journal is ª The Royal Society of Chemistry 2010 Analyst, 2010, 135, 3193–3204 | 3201
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Fig. 11 Cluster membership maps for clusters (1)–(4) as obtained from fuzzy C-means cluster analysis of the deep zone Raman map. The membership

to a certain cluster (i.e., the degree of belonging to a cluster, expressed as a coefficient from 0 to 1) for each spectrum is indicated by the color of the

corresponding pixel in the map, according to the color code bar on the right.

Fig. 12 Cluster centroids of the clusters (1)–(4) obtained from the fuzzy

C-means cluster analysis of the Raman map, after subtraction of the 5th

percentile spectrum from all spectra. The cluster centroids correspond to

the clusters shown in Fig. 12, and are the average of all the spectra

belonging to the same cluster, weighted by the cluster membership.
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chosen by the user according to several issues, such as the

dendrogram structure, the false-color maps and the cluster

centroids. Upon considering all these aspects, we chose to divide

the deep zone Raman map into 7 clusters.

Once clusters are formed, average spectra (centroids) can be

calculated for each cluster. Fig. 10 reports the centroids corre-

sponding to the clusters depicted in Fig. 9. As seen in these two

figures, HCA succeeds in differentiating between cells, ECM

immediately surrounding cells which include pericellular and

territorial matrix, and inter-territorial ECM. Cluster 1 (yellow

areas in Fig. 9, corresponding to cells) has a centroid with intense

bands at 1578, 1488 and 782 cm�1 which are characteristic of

nucleic acids (Fig. 10). Moreover, bands at 1656 and 1004 cm�1

suggests a high ratio of non-collagenous proteins as well. On the

other hand, the centroid in Fig. 10 corresponding to cluster 5

(brown areas surrounding cells in the upper half of Fig. 9) shows

bands at 1070 and 1378 cm�1, resembling the Raman spectrum of

CS in Fig. 2 and indicating a high fraction of sulfated proteo-

glycans. The centroid of cluster 6 (Fig. 10) presents features

which are distinctive of collagen, such as the quartet of bands at

857, 875, 920 and 940 cm�1, the amide III doublet at 1244 and

1270 cm�1, and the bands in the amide I region at 1636 and

1685 cm�1. This cluster corresponds to a part of the inter-

territorial matrix colored in purple in Fig. 9.

While the clusters 1, 5 and 6 show a predominance of one

component over the other, all other clusters contain a mixture of

these components in different proportions. An exception is

cluster 7, which shows some distinctive features: it has bands due

to all the biochemical components observed so far, and an amide

I band structure which differs from the ones present in the other

centroids.

Altogether, HCA yields a description which is consistent with

the ones derived from the previous data analysis methods:

nucleic acids and non-collagenous proteins are mostly found in

the chondrocyte regions whereas collagen and proteoglycans are

present throughout the ECM, the former being more abundant

in the matrix surrounding the isogenous groups in the upper half

of the map. However, HCA also indicates features which

remained undetected by other methods. According to the false-

color map of Fig. 9, the ECM appears to be inhomogeneous,
3202 | Analyst, 2010, 135, 3193–3204
with different parts having different characteristics. In Fig. 9, the

inter-territorial matrix is divided by HCA into three different

regions, corresponding to clusters 2, 3 and 6. In all these clusters

there are bands typical of collagen and proteoglycans, but clus-

ters 2 and 3 have a proteoglycans/collagen ratio which is higher

than cluster 6. Moreover, the immediate surroundings of chon-

drocytes in the upper half of the map (clusters 4, 5) appear to

differ from those in the lower half (cluster 7), with the former

having a higher proportion of proteoglycans.

However, the results of HCA must be taken with care. Despite

the usefulness of HCA in finding additional differences between

tissue regions, this method might be inadequate for describing
This journal is ª The Royal Society of Chemistry 2010
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a sample such as cartilage, in which the biochemical components

of the ECM vary continuously along the tissue. A ‘‘hard’’ clus-

tering method such as HCA, when forced to partition the map

into distinct clusters, might fail to describe a ‘‘soft’’ transition

between two areas of the sample, such as a smooth gradient of

one biochemical component. Clusters such as 2, 3 and 4 in Fig. 9

appear to be ‘‘transitional’’ clusters, as they could be described as

a blend of the other clusters. The occurrence of these transitional

clusters restricts the analysis to the upper part of the dendro-

gram. Increasing the number of clusters beyond 7 generates

a number of transitional clusters which hinder the detection of

other features such as cell nuclei, which are identified only upon

increasing the number of clusters above 20. To achieve a better

description of continous variations, a ‘‘soft’’ clustering method

such as FCA can be employed in combination with the ‘‘hard’’

HCA. In a complementary approach, we used the centroids of

the four ‘‘non-transitional’’ HCA clusters as starting centroids

for FCA, setting the number of clusters to four.

In Fig. 11 the membership maps for each of the 4 clusters

obtained from FCA are shown, in which HCA centroids 1, 5, 6

and 7 (Fig. 10) are used as starting centroids. The final centroids

are shown in Fig. 12, and correspond to the clusters depicted

in Fig. 11. Similarly to the other methods, FCA succeeds to

identify i) cells (cluster 1), rich in nucleic acids and non-collag-

enous proteins; ii) pericellular and territorial regions (cluster 4),

which are characterized by a mixture of non-collagenous

proteins, collagen and proteoglycans; iii) a part of the ECM with

a higher collagen/proteoglycans ratio (cluster 3) and iv) a part of

the ECM with a higher proteoglycan proportion. Like HCA,

FCA detects a difference between the immediate surroundings

of the cells in the upper and lower halves of the map, but

the advantage of a ‘‘soft’’ approach is evident when considering

the membership maps of Fig. 11, which clearly show how the

collagen/proteoglycan ratio varies smoothly throughout the

ECM.
Conclusions

Raman mapping, in combination with multivariate data anal-

ysis, is a valuable label-free imaging method for the analysis for

cartilage sections. This combined approach yields images

depicting a semi-quantitative distribution of the biochemical

species in the tissue with a resolution down to single cells. In

particular, the combination of various chemometric methods is

essential in providing different images conveying complementary

information about the tissue. Each of the applied techniques has

its particular strengths. PCA describes the large overall changes

in the composition without any prior knowledge. On the other

hand, information about minor constituents that are concen-

trated in a few spots (such as the DNA) are best obtained

employing methods that can make use of ‘‘a priori’’ biochemical

and spectroscopic knowledge, such as the PLSR model or the

‘‘univariate’’ imaging of characteristic bands. HCA easily iden-

tifies small clusters among a majority of different spectra.

However, it cannot deal well with continuous concentration

gradients of biochemical constituents. These continuous changes

are well described by FCA – which in turn has considerable

difficulties in finding small clusters with the usual random

initialization. The combination of the two cluster analysis
This journal is ª The Royal Society of Chemistry 2010
methods proved to be far more efficient than the two methods

used separately: transitions between the clusters are resolved

by partial membership, while the small clusters are correctly

retained.

Because of its capabilities, this combination of Raman

mapping and multivariate data analysis has an excellent poten-

tial as a tool, complementary to other imaging techniques, for

studying biochemical and morphological changes during carti-

lage degradation in processes such as aging or osteoarthritis.
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