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Maps in which small areas, such as districts, are represented by colours, shades or symbols with sizes
determined by the values of estimates are regarded as an indispensable graphical output of analyses
concerned with the geographical detail of economic, social, ecological and epidemiological phenomena.
The distortion of the distribution of the district specific quantities in such maps, due to misrepresentation of
the uncertainty about the estimated values, is discussed, and an alternative based on drawing so-called
plausible maps is described. We highlight the pervasive and nonignorable nature of the selection process
that identifies the quantity (target) to be estimated. A problem specific to disease mapping is what action,
often one of a discrete set, to take in response to the results of an analysis. We argue that the costs (values)
associated with correct and incorrect decisions should be integrated in the analysis and, when an analytical
treatment is not feasible, plausible scenarios played out by simulations.

1 Introduction

Disease mapping and small area estimation are two successful applications of composite
estimators. In their general forms, they can be interpreted as (linear or convex)
combinations of estimators that would be suitable in some extreme settings. For
example, in empirical Bayes methods, the direct estimator, based on the data only for
the area concerned, is combined with the national estimator that is based on all the
data. The direct estimator is unbiased but has a large variance, whereas the national
estimator is biased for the area, but has a much smaller sampling variance.

In contrast, much of statistical practice is firmly wedded to selection (of models,
estimators, and the like), motivated by hypothesis testing and related model selection
procedures. Section 2 discusses this dichotomy in detail and reinterprets some estimators
used in disease mapping as composite estimators. The purpose of the discussion is to
show that complex modelling can be avoided if the estimators it yields are described as
compositions. We pursue a general argument that all substantial sources of uncertainty
have to be represented in modelling and accounted for in inferential statements. These
sources include uncertainty about the estimates given the selected model, as well as
about models themselves. Section 3 develops this theme further by considering the
selection of the target (the quantity to be estimated) as a distinctly nonignorable
process; that is, the way we select the target has a profound influence on the distribution
of the estimator. Section 4 applies these principles to inferences about extremes and
searches for evidence of an external agent that influences the outcomes. Section 5 deals
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with making decisions about intervention based on incomplete information (uncer-
tainty) and argues for integration of the costs in the statistical analysis.

Some of the algebra in Section 2 is presented for completeness, and can be skipped.
The principal nontechnical message of the section is that the traditional model selection
is not conducive to efficient estimation and unbiased (honest) assessment of the
precision of the estimators. The alternative proposed combines model based (or any
other) estimators of the target quantity. Sections 3–5 do not depend on Section 2
directly, as they are applicable to any setting that involves inferences about collections
of unknown quantities. However, they discuss related undesirable features of selection
of targets and emphasize the need for accounting for all sources of inferential
uncertainty. When a collection of targets is considered, selection among them is a
nontrivial source.

2 Selection and composition

Estimation of a population quantity yd in each of a set of geographical units (districts)
d¼ 1, . . . , D of a domain (country) is a problem common to applications concerned
with the spatial (geographical) distribution of a phenomenon, such as unemployment,
crime, a medical condition or natural events (earth tremors or storm damage). In these
examples, there is an obvious domain counterpart of yd; for instance, the national
prevalence of a medical condition. It is denoted by y.

Two trivial approaches to estimating district level quantities yd are direct estimation
and pooling. In direct estimation, the only information used for estimating yd is the
data from district d, whereas by pooling, yd is estimated for each district by an
estimate for its domain counterpart, ŷ. The direct estimator is (usually) unbiased but,
involving little data, it has a large sampling variance. In contrast, the pooled estimator
has much smaller sampling variance but, involving data from outside the district,
is biased. The bias is specific to the district. Attempts to decide which estimator to
apply, ŷd or ŷ, and for which districts, are not very effective because they can, at best,
match the more efficient of the two estimators. Such a selected estimator is formally
defined as

ŷyd ¼ (1� Id)ŷd þ Idŷ ,

where Id is the indicator of the selection (Id¼ 1 when ŷ is selected and Id¼ 0 otherwise);
ŷyd is a mixture of the constituent estimators ŷ and ŷd. This formulation of ŷyd makes the
(estimator or model) selection process explicit, and implies that it has an impact on the
properties of the resulting estimator. The properties are difficult to establish in general,
because Id, a random variable, is usually correlated with both ŷ and ŷd.

When Id is independent of both ŷ and ŷd, for instance, when the choice made is not
informed by the data, elementary operations yield the identity

MSE(ŷyd; yd) ¼ (1� pd)MSE(ŷd; yd)þ pdMSE(ŷ; yd) , (1)
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where pd¼P(Id¼ 1). We include the target as an argument of MSE because a statistic
can be used as an estimator of several targets; in particular, MSE(ŷ; yd) 6¼MSE(ŷ; y),
unless yd¼ y. The identity in Equation (1) implies that when selection is independent of
the constituent estimators, the selected estimator cannot be more efficient than both
constituent estimators. By ignoring the uncertainty associated with the selection of the
estimator we falsely claim to have estimated the target ŷd by the more efficient of
the candidates ŷd and ŷ. More precisely, we would claim that the MSE of ŷy is estimated
without bias by

ŝ2
y,d ¼ (1� Id)ŝ2

d þ Idŝ2,

where ŝ2 and ŝ2
d are the estimators of the MSEs (or sampling variances) of yd assuming

that the districts have identical values of yd (y1 ¼ y2 ¼ . . . ¼ yD) or not, respectively.
Note that MSE(ŷ; yd) > s2 because ŷ is biased for yd, so ŝ2 is biased for MSE(ŷ; yd).
Usually ŝ2

y,d underestimates MSE(ŷyd; yy). This should be interpreted as dishonesty,
because the inferential statement claims more than what is justified. Neither is ŷyd unbiased,
even if both constituent estimators are unbiased under the appropriate conditions.

The relative strengths of the two estimators are exploited more effectively by
combining them, as

~yd ¼ (1� bd)ŷd þ bdŷ , (2)

especially when the districts can be regarded as exchangeable. The district specific
coefficients bd are set so as to minimize MSE(~yd; yd), although a different objective
(optimization) could be pursued instead.

The composite estimator ~yd exploits the similarity of the districts. When bd is
determined with precision, MSE(~yd; yd) is smaller than both MSE(ŷd; yd) and
MSE(ŷ; yd) because the direct and pooled estimators are the extreme choices in
Equation (2), corresponding to bd¼ 0 and bd¼ 1, respectively.

In most applications, ŷ is a linear function of the data and ŷ ¼ c1ŷ1þ c2ŷ2 þ � � �þ

cDŷD. This motivates a more general form of Equation (2),

~yd ¼ (1� bd)ŷd þ
X

d0 6¼d

bd0,dŷd0 : (3)

When spatial correlation or some other form of dependence or similarity structure
among the districts is present, it can be exploited similarly. In Equation (2), each district
d0 6¼ d is treated on an equal footing, being equally relevant (similar) to estimating yd.
If the spatial neighbours of district d are more similar than the districts further afield,
they can be assigned relatively greater weights in the composition [Equation (3)].

The optimal coefficients bd and bd0,d usually depend on some parameters, and so the
coefficients are estimated. The analyst need not derive their estimators explicitly; the
composition in Equation (2) or Equation (3), and its various generalizations that adjust
for regressors, nonlinear link function, and the like, are direct byproducts of fitting
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models relevant to the problem of estimating ~yd. These (linear) hierarchical models have
separate representations for the within- and between-district variation:

f {E(yidjdd)} ¼ xidbþ ziddd; (4)

where f is the link function and x and z are the sets of variables associated with
regression and between-district variation, respectively. In the standard setting, z is a
subset of the variables in x, z contains the intercept and with each interaction (product)
variable the constituent variables (‘main effects’) are also included, in x and z, as
applicable. These rules follow from the invariance of the model with respect to linear
transformations.

The between-district variation is implied by the right hand side of Equation (4), and
the conditional distribution of yid may involve some parameters, such as the variance
s2

W in models with the usual normality assumptions; f(u)¼ u and

(yidjdd) � N (xidbþ ziddd, s2
W): (5)

A model is formulated for dd. In the simplest specification, it is a random sample from a
multivariate normal distribution with mean 0; the distribution applies to the districts.
Associating districts with randomness is a logical inconsistency. In the frequentist
viewpoint, randomness is a reference to the way hypothetical replications of the data-
generating and estimation processes would be conducted. In the data generating
process, the characteristics of any given district d, described by dd, would differ from
one replication to next. For example, the rate of use of a particular medical service in a
given district d would vary around the national rate across the replications. This is in
conflict with the viewpoint of a typical survey analyst whose interest is in the variation
over the replications of the sampling and estimation processes in a population that is
‘frozen’ or observed at a fixed time point.

A constructive way of resolving this contradiction is by agreeing that some invalid
models are very useful for inference. Indeed, random effect models have transformed the
study of spatial structures and discredited all forms of direct and pooled estimation, as
well as their mixtures. In this context, we emphasize that a valid (or correct) model is a
prerequisite for efficient estimation only asymptotically. For finite samples, it may be
advantageous to incur a bias by using a submodel of the ‘correct’ model, and enjoy the
reduced sampling variance vis-à-vis a ‘correct’ model.1 Random effect models are more
parsimonious than their fixed effect (ANCOVA) counterparts, because the D district level
deviations are represented by a single parameter, a variance. When z in Equation (4) has
r components, the district level deviations are described by D r-variate vectors in
ANCOVA (Dr parameters), and an r� r variance matrix, involving r(rþ 1) ð1=2Þ
parameters, in the corresponding random coefficient model. Usually r� D.

References to asymptotics may be appropriate for estimation of the global parameters
in Equation (4), such as b and the residual variance s2

W, but not to local ones, such as
the deviations dd. The between-area variance matrix SB ¼ var(dd), or its univariate
version, s2

B, are borderline cases, because the effective sample size for them is D or
smaller. The small sample nature of the problem of estimating yd implies that estimation
and transformation are not commutative. That is, if ~yd is an efficient estimator
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of yd, then g(~yd) is not necessarily an efficient estimator of g(yd) for a nonlinear function
g. Also, a nonlinear summary of the population quantities yd, S(yD), is not esti-
mated efficiently by the same summary of the efficient estimators of yd, S(~yD). Here,
D is used as a collective index for the districts.

We assume that an appropriate model of the form [Equation (4)] has been identified
and its parameters estimated efficiently. The coefficients bd and bd0,d in Equation (3)
are functions of the model parameters, so they are estimated as b̂d and b̂d0,d,
respectively. The coefficients are nonlinear functions of the model parameters. For
example, with the two level model

yid ¼ xidbþ dd þ eid ,

the mean deviation dd ¼ y� xb would be estimated using bd ¼ 1=(1þ ndr), where nd is
the sample size of district d, and r is the variance ratio, r ¼ var(d)=var(e). In this and
many other settings, bd and bd0,d would yield efficient estimators of the target quantities
yd if the model parameters were known. In practice, bd and bd0,d are estimated with
nontrivial sampling variation, and the impact of this uncertainty on the efficiency
of ~yd(b̂d) is difficult to evaluate. An analyst using a software package, or its computa-
tional algorithm, as a black box has no opportunity to gain any appreciation of this
problem. Two generic approaches to addressing this problem are to frame it in terms of
missing information (as in the EM algorithm2), and to err on the side that has less severe
consequences. For example, it is usually preferable to underestimate bd because we
increase the chances that the result is more efficient than the direct (unbiased) estimator
ŷd. At the same time, however, the gains in precision may be reduced for most of the
districts.

When the model parameters, a vector n, are regarded as missing data, a more efficient
way of estimating the coefficients bd and bd0,d is by their conditional expectations given
the data and the distribution of the parameter estimators. This has a straightforward
interpretation as the E-step of an EM algorithm, in which the complete-data analysis
evaluates ~yd. Evaluation of the expectation in the E-step may involve multidimensional
integrals; a complex task, despite the considerable progress made in recent years.3 A
computationally simpler approach is motivated by multiple imputation. Instead of the
estimated values of the model parameters, n̂, we generate plausible values of the
parameters, ~n, as random draws from their estimated (joint) sampling distribution. In
the equivalent Bayesian formulation, draws are made from the (joint) posterior
distribution of the model parameters. The plausible parameter values generate plausible
sets of coefficients ~bd and ~bd0,d, from which the estimator ~yd is evaluated as in Equation
(3) or similar. This process is replicated several times, yielding estimates ~y(m)

d ,
m ¼ 1 , . . . , M. The multiple imputation estimator of ~y is defined as their mean;

~yMI
d ¼

1

M

XM

m¼1

~y(m)
d :
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Suppose an estimator of the sampling variance of ~yd is available, say, ŝ2
d, that would be

unbiased if the model parameters were known. Then the sampling variance of ~yMI
d is

estimated with small or no bias by

~s2
d,MI ¼

1

M

XM

m¼1

ŝ2
d,m þ

Mþ 1

MðM� 1Þ

XM

m¼1

~yMI
d � yd

� �2

,

where ŝ2
d,m is the estimate of the sampling variance based on the mth set of

plausible values of the model parameters. A technical condition attached to this state-
ment is that the sampling variance of ŝ2

d is of smaller order of magnitude than s4
d. For

theoretical background, see Rubin.4,5 The advantage of this approach is that little
programming is required beyond implementing the algorithm that is efficient when the
sampling variation of the model parameter estimators can be ignored. However,
the standard output of some packages, quoting estimated standard errors, is not
sufficient; the entire (estimated) sampling variance matrix is required, so that the
correlation structure of the estimators is appropriately reflected.

In practice, we cannot establish that the model applied is appropriate. At best, we
can identify any conflicts with the model assumptions. The model selection process
is usually ignored, leading to gross biases.6 A proposed solution is motivated by
composite estimation.1 Note that application of model checking and diagnostic
procedures also leads to mixtures of single model based estimators if their result is a
revision of the model or of the dataset. The uncertainty entailed in these procedures is
generally ignored, assuming, in effect, that a replication of the data generating,
modelling and model checking processes would result in the same conclusion. The
consequent distortion permeates to the estimator of yd. An effective way of combatting
this problem is by watering down the influence of the model in estimating yd. By
reducing the coefficients bd and bd0,d, we increase the reliance on the direct estimator ŷd;
its properties are easier to establish, and are usually associated with more confidence.
By relying more on ŷd we lose the optimality if the model is appropriate, but protect our
inferences from a distortion when it is not. The reduction of the coefficients b has to be
set subjectively, reflecting our concerns about the inappropriateness of the model used
and the process of selecting it. At the extreme, if the coefficients are reduced radically,
the result differs only slightly from the direct estimator and the potential of exploiting
similarity across the areas, variables, time and other factors is almost completely lost.

One unresolved matter stemming from the ‘inappropriate’ use of hierarchical models
for ‘fixed’ areas is that the MSE of ~yd is estimated with bias; the quantity estimated
without bias is the average MSE over the replications with varying dd. This can be
interpreted as a form of averaging over areas with similar representation in the sample.
Ideally, the sampling distribution should be estimated for the district on its own. For
example, the deviation dd in Equation (5) is estimated by

~dd ¼ ed

ndr
1þ ndr

,
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where ed ¼ yd � xdb̂ is the average of the residuals in area d. Ignoring the error in
estimating b, the MSE of ~dd is

MSE(~yd; ydjyd) ¼
d2

d

(1þ ndr)2
þ
s2

W

nd

n2
dr

2

(1þ ndr)2

¼
d2

d þ s2
Bndr

(1þ ndr)2
;

its average, obtained by replacing d2
d with its area level expectation s2

B, is the more
familiar expression s2

B=ð1þ ndrÞ. The dependence on dd is very inconvenient because
the MSE of the estimator (of dd) depends on the target itself. A naive estimator of d2

d
is obtained by replacing d2

d by ~d2
d, although d2

d could be estimated by a composi-
tion directly.

3 Inferences with selected targets

The models considered thus far deal with a ‘frozen’ population and a priori set targets
of estimation. In the context of disease mapping for a given domain with a fixed
partition into districts, this corresponds to a particular time point. The distribution of a
studied phenomenon changes over time, so the results of the analysis for a particular
time point give us only a snapshot. Extrapolation from the time point to the future (or
past) is appropriate only to the extent of the temporal correlation (inertia, or similarity).
In brief, variation is present not only across the districts but also in time. This implies
that the choice of the time point for the observations (data collection) and analysis is
not innocuous. When the time point is selected uninformatively, such as by a date
specified in advance, we obtain an ‘unbiased’ snapshot of the domain. When the date is
selected after an event or a decision made in response to some observations about the
phenomenon relevant or related to the data, the time point is selected informatively, and
the snapshot is biased. This is not a problem when the time point is selected
deliberately, and the selection is incorporated in the interpretation of all the results.
However, secondary analysts may not be informed about the nature of the selection;
then all their inferences are distorted. Quoting the time point is not helpful; the purpose
that resulted in selecting the particular time point should be quoted. The purpose can be
interpreted as the result of a process of selection of the target.

When the districts are enumerated, as when data are obtained from administrative
registers, no selection issues arise. When the elementary data are collected by a survey,
the sampling design is important; not the design that was planned, but the one that was
realized. In particular, the realized design incorporates the process of nonresponse as
well as imperfect coverage of the domain. The principles of sampling design are
applicable not only in settings with explicitly defined populations (domains), but also
whenever inferences are intended for a collection of settings, such as time points,
outcome variables or geographical units. In settings of monitoring or auditing, the
process of observation and reporting should be regarded as a kind of highly informative
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sampling process, because a given dataset, together with its context, is submitted for
analysis only after a careful inspection and deliberation.

Many problems in disease mapping, and small area estimation in general, relate to
collections of quantities (one or a few for each district). This entails complexities of
two kinds. First, efficient estimation of a quantity does not lead to optimal estimation
of its nonlinear transformation, as pointed out earlier. More generally, the pattern
observed among the estimates ~yd may be systematically (over hypothetical replications)
different from the pattern among the population quantities yd. As a simple example of
this problem, suppose each of a large number of districts is represented in a survey by
only two observations. The within-district variance is substantial, so the direct
estimator of each yd is very inefficient. Suppose the between-district variation is
moderate. An empirical Bayes or a related method estimates each yd by a combination
of the direct estimator and a statistic based on the rest of the survey data. The latter is
assigned much greater weight because it is preferable to incur the bias induced by the
auxiliary (external) information than the substantial sampling variation of the direct
estimator. As a consequence, the estimates ~yd, d ¼ 1 , . . . , D, are dispersed much less
than the underlying quantities yd. In contrast, the direct estimates ŷd are dispersed
much more than the quantities yd, because their variation is composed of the two
(independent) components: estimation errors ŷd � yd, and differences among the
population quantities yd. A solution of this problem is often sought by smoothing.
The composition in Equation (3) can be regarded as an example of smoothing, or even
as its definition, especially if the coefficients bd0,d are a function of the distance between
districts d0 and d. The appropriate extent of smoothing is difficult to set, unless we have
a preconceived idea of how smooth the set of estimates ~yd, or the map based on them,
should be.

Suppose an appropriate extent of smoothing has been applied. How well supported is
the inference that a feature identified in the smooth map (among the smoothed
estimates) is also a feature that would be observed among the population quantities
yD? Outliers, a pattern, breaks in the pattern, smoothness or, in general, a particular
summary F (ŷD), can all be regarded as features. A single map cannot inform us
whether a particular feature is due to the sampling variation or reflects the presence of
the feature in the population. That is, whether F (ŷD)¼

:
F (yD) or, more precisely,

acknowledging that F (ŷD) is a random object, whether EfkF (ŷD)� F (yD)k2g < D,
for a suitable metric k � k and threshold D> 0.

The uncertainty about a feature of the map cannot be represented by a simple object,
such as a number (akin to the conventional standard error). A comprehensive way of
representing such uncertainty is by drawing a few maps of plausible sets of values of yd,
d¼ 1, . . . , D. The mechanics of generating plausible values has been described earlier.
Care has to be taken in their generation to reflect not only the sampling variances of the
quantities involved, but also their sampling correlations. For example, when the
estimators of yd for pairs of neighbours are highly correlated, their values will be
almost linearly related across the sets of plausible values. With plausible maps drawn in
this way, a feature can be reported as a characteristic of the population when it is
present in (almost) all plausible maps. (These are difficult to present in a publication
because they take up several pages.) The plausible maps can be instructive for learning
about the kinds of features that can occur by chance; in other words, about our
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propensity to observe patterns where there are none, and also about patterns that are
missed when only one map is inspected. Only the replicable is remarkable.7

4 Studying extremes

For many phenomena related to health care and epidemiology, the universe studied is
the residents of a domain (country) over a period of time. Often the relevant data, an
enumeration or its compact summary, are available but the need for a specific analysis
arises from an unusual or unexpected observation of the domain. In such a setting, the
selection of the time point is highly informative, and the inferences based on the
subsequent analysis cannot be interpreted as a description of the domain at a random
snapshot. Further, the analysis may be triggered by an observation related to one or a
few districts. Then the inferences about the district, based on an analysis that treats
these districts on a par with the others, are distorted. They are not inferences about
district d, but about the extreme district in the domain, or the district selected by a
particular process. The conditioning on the ‘trigger’ for the analysis is essential.Without
it, we are asking whether a horse that appears to have won the race has really won it!
With the race in progress, the betting odds rapidly lose their relevance.

This analogy carries over to many other settings. For example, a court of law may
hear evidence that, given honesty of the accused, the chances of an outcome at least as
extreme as the one documented about the accused is one in a thousand. Such a
statement and its connotation are appropriate in the alien setting when a person
randomly drawn from the relevant population is accused. Then the conditional
probability of an inappropriate conviction, P(convictionjinnocence), based solely on
this probabilistic statement, is indeed 0.001. Note that the probability of a correct
decision, P(convictionjguilt)P(guilt) þ P(acquittaljinnocence)P(innocence), is not
0.999. However, the process of selection of the accused is highly informative. If the
accused is carefully selected by a criterion or an informal process that is closely related
to the statistic or summary used in deriving the figure of 1 : 1000, then the court is
presented a near-tautology, and the jury is asked to convict the defendant, in effect,
because the defendant has been accused. In a population of thousands of honest and
law abiding people, there are a few ‘unlucky’ members who display an a priori specified
pattern that has probability 0.001 under the null hypothesis of ‘universal honesty’.
If some of these ‘unlucky’ members (and no others) are accused, based on the ‘1 : 1000’
or a related statement of fact, which is then repeated in the court, every conviction is
unjust.

An event in the population has probability 0.001 but, in a particular class of court
trials, the same event has a much higher probability, because of the careful selection of
cases presented to it. Just like probabilities (Bernoulli distributions), properties of
distributions are also highly contingent on conditioning.8 The distribution of an
estimator in one setting (selected a priori) may be very different from its distribution
in another setting (when selected as a result of a data inspection). In other words,
the process of target selection is informative and, for hypothesis testing, the null
distribution of the test statistic should be adjusted accordingly. For example, if the
selection points to the area with the lowest of the values of ŷd, d¼ 1, . . . , D, the

Small area and mapping problems 11

 at PENNSYLVANIA STATE UNIV on May 11, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


appropriate hypothesis is that the minimum of the values of yd displays a particular
feature. Testing this hypothesis might provide evidence that the minimum of yd is
exceptional. Strictly speaking, the area d that is then identified naively, as the area with
the smallest ŷd, need not be the exceptional area, because the identification is subject to
uncertainty, additional to that entailed in the hypothesis test. A recent prominent
example of an a posteriori selected target is the analysis of the Bristol inquiry into the
death rates in heart surgeries of children.9 The area with the minimum yd may still not
be an appropriate target that would incorporate the target selection process, because the
identified feature is not the minimum, but an outstanding minimum in a two way array
of estimates ŷd,t, where t denotes occasions. Simply, the more the occasions the greater
the chance that the minimum of the estimates stands out for some occasion. The
appropriate hypothesis in such circumstances is about neither the area nor the
time point, but about an area at a time point, and the hypothesis is tested only when
the alarm is raised by a scheduled audit or chance inspection of the outcomes.

We use the term personalization for (inappropriate) labelling of a specific district,
time point, or the like, as the target of inference. If we personalize a target, the process
of its selection has to be accounted for in the analysis. Without personalization,
the relevant inferences are about extremes, although these also require a careful
specification.

A typical trigger for conducting an analysis is set off by a well founded suspicion of
an active external agent that is the cause of a substantial change in the value of yd for
one or a group of districts. The remit of a subsequent analysis is to confirm this by
assessing the evidence that the district(s) stand out among the rest. Although a lot of
progress in modelling extremes has been made in the recent years,10,11 problems
involving them remain poorly understood and available methods are not applicable
universally. With abundant computing power, simulations can come to the rescue. We
specify the extent of outlying as a feature, and pose the question:

How likely is such a feature when there are no external agents?

We simulate data sets for the country and its districts from a model that assumes no
external agents, and apply the same criterion for identifying the same feature as was
applied with the ‘real’ data. Absence of the feature in most simulated data sets is
evidence that the feature is a result of an external agent (departure from the model),
because without it the feature is unlikely to occur. A closely related issue arises in the
context of outliers and model diagnostics.12,13 The feature itself should not be
personalized; all features that might trigger an investigation should be considered.

A difficulty in this simulation approach is the specification of the model from which
the artificial data sets are to be generated. Ideally, it would be the model that describes
the studied phenomenon in the domain in the recent past, so that not much extrapola-
tion takes place and sufficient hindsight is available to confirm the absence of any
external agent in that period. Of course, the model cannot be identified with all its
details, so a fitted or plausible model has to be used instead. The robustness of the
conclusions is established by a sensitivity analysis, carrying out the simulations for
several plausible models.

The population quantities yd,t differ both in time and across areas. If we focus on a
single time point t, yd,t for an area should be regarded as remarkable not when it differs
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from the national quantity y (significantly, or by a wide margin), but when it stands out
among the values of yd0,t for the other areas d0. An obvious target selection process
identifies the area dy with the highest estimate ~ydy . Acknowledging this process, the
appropriate null hypothesis relates to the maximum of population quantities yd. A
common mistake is that the area dy becomes personalized, and hypotheses are formu-
lated about the area dy as if it were identified a priori. In practice, an area is identified not
solely based on ŷd, but on several informal comparisons, and so the target selection
process defies a formal description. The inability to specify the conditioning involved
does not justify the reference to the unconditional distribution of the estimator ŷdy .

As extremes are identified by comparison with the ‘usual’, it is essential to study the
‘usual’. This entails estimating the extent of between-district variation when the absence
of an external agent is confirmed, as well as within-district variation over time. This
would enable a clearer formulation of what should be regarded as exceptional and not a
result of the myriad of background processes that generate the usual state differences
among the districts. Simulations from the usual state can inform us about the extent of
outlying and other outstanding features in the data that can reasonably be expected.

5 Intervention under uncertainty

Establishing the presence of an external agent, in a particular district or region, is a
signal for implementing special measures to locate and eradicate it, or to reduce its
influence to a minimum. Such measures are often extensive and involve substantial
expenditure of labour, time, finance and community goodwill. The associated risk
includes the loss of political and professional reputation and confidence in the authority
implementing the measures, especially when it relies on the co-operation of the public.
The application has an expected impact, say, the reduction of the value of yd back to the
‘national’ or regional background level, so that it would no longer be exceptional. The
two kinds of incorrect decisions, combatting the agent when it is not present and
assuming its absence when it is present, lead to huge costs that are usually of unequal
magnitude. The costs need not be only in terms of monetary funds, but more generally
in values agreed by the parties involved, including representatives of the public at large
and the authorities in the districts concerned. They may include harm, in the short or
long term, to the health and well being of the residents, its threat leading to
inconvenience, hindrance to economic and leisure activities and transportation, loss
of business income and the cost of preventative measures. Uncertainty about the impact
of the measures is another component of the costs that has to be considered. No
evidence of any impact is an insufficient criterion. Evidence of no greater than negligible
impact is desirable.

With incomplete information in the statistical analysis, the presence of an external
agent is not established with certainty, and so the two kinds of errors may be
committed. Limiting the conditional probability of one kind is the traditional approach
related to hypothesis testing. We regard it as outdated and irrelevant because it ignores
the relative penalties associated with the two kinds of erroneous decisions. Similar
criticism of hypothesis testing has been voiced with a different perspective and applied
to a different setting,14 but the arguments presented readily carry over to our setting.
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We illustrate the point on two scenarios. First, suppose the cost of intervention, the
result of incorrectly assuming that an external agent is present, is much smaller than the
damage caused by the agent when it is present. In this setting, we should play safe and
intervene at the slightest suggestion of its presence, because intervention costs next to
nothing. When the agent causes little damage, but the intervention is costly, we should
think twice, because we derive little benefit following a lot of expenditure. Without
being informed about the relative costs, the strength of evidence about the presence of
the agent is not an appropriate index for decision making. A hypothesis test or a similar
criterion would suggest taking a particular action without being informed about its
potential costs and benefits. A more intelligent and coherent approach incorporates the
costs in the statistical analysis.

We consider the simplified scenario in which, at any time point, there are three
courses of action: 1) to do nothing, 2) to implement an intervention or 3) to seek
additional information. These activities cost c1¼ 0, c2> 0 and c3< c2 units, respec-
tively. The penalty for doing nothing when an intervention is appropriate is C1, and for
intervention when it is not appropriate it is C2. When additional information is sought,
there is a penalty C31 when this is unnecessary and a much greater penalty C32 when
intervention should be applied. In practice, these costs are better formulated as per unit
of time (say, per day), although the costs need not be linear functions of the time
elapsed. Further, the costs and penalties may not only depend on the extent of the
presence of the agent, but also on the value of the key parameter, y. This caters for
the situation when an intervention is applied, and an investigation after the crisis
establishes whether there was any good cause for the intervention and, if there was
none, how obvious it was, should have been or may have been.

We assume that the following decision rule is adopted: if ŷ < y(12), no action is taken,
if ŷ > y(23), intervention is applied, and otherwise, if y(12) < ŷ < y(23), further infor-
mation is sought. Suppose the value of the parameter of interest y is certainly in
the range (yL, yU). A Bayesian may use a prior distribution for y instead. For a value yy
2 (yL, yU), we evaluate the distribution of ŷ assuming y¼ yy, and the expected loss
due to the activities and associated penalties, when applicable. The outcome of this
exercise is a function of y, with additional parameters y(12), y(23) and parameters
that represent the choice of the estimator ŷ. The choice of the thresholds y(12) and y(23) is
based on these penalty curves. Either each curve is summarized, for example, by its
mean value, or a more complicated functional is used that better reflects the preferences
of the parties involved.

At first sight, this appears to be a computationally extensive procedure. It is extensive
by the standards of the computing technology of a few decades ago; but nowadays, it
does not represent an undue computational burden. More importantly, it is easy to
program, because usually its most complex elements are repeated evaluations of the
estimator ŷ and of the penalty curve. In principle, the costs of computing, including the
relevant expertise and manpower, could be included in this model. However, these costs
are much less in comparison with what is at stake when the intervention considered is
extensive and expensive.

A likely reason for why statistics is not involved integrally in such decisions is that
uncertainty, that is, not being in possession of complete information, or not having the
analytical ability to process it, is looked upon as a weakness. It certainly is, but its denial
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is more harmful than its admission because it compounds the problem and does not
encourage efforts to reduce it by searching for or inviting the provision of relevant
information. The optimal strategy is not to try and eradicate the uncertainty, but to
reduce it, and carefully weigh the benefits of such a reduction – a more appropriate
decision – against the costs (including time) of collecting the relevant information.

6 Conclusion

We are accustomed to reporting estimates and the associated estimated standard errors,
and quoting their unconditional properties, such as (small or) no bias and (asymptotic)
efficiency when applying a maximum likelihood estimator. In some settings, selective
reporting is criticized as poor practice, implying that we should avoid it. Disease
mapping is an example of selective reporting in which the selection is essential and often
appropriate. Although not proposing any universal solutions, we have highlighted the
need to consider the process of target selection because it has a profound impact on the
properties of the estimators, in parallel with the impact of conditioning on the value of a
probability.

In many ongoing data collection exercises, involving surveillance or monitoring of
social, epidemiological and geophysical phenomena, statistical expertise is often
involved only after an unusual feature has been identified. Whether such a feature is
genuinely unusual can be assessed with rigour only by incorporating the information
about the process of identifying the feature in the first place, because such a process is
highly informative in that it has an impact on the distribution of the estimator
consequently applied.

Similarly, the decision about the measure taken after the analysis, no action or
intervention, should be integrated in the analysis itself, because the decision has to be
informed by the relative sizes of the penalties (harm done) when an inappropriate action
is taken. Conventional analyses (aim to) minimize the probabilities of making inap-
propriate decisions. This is an extremely ineffective strategy when the penalties are of
different orders of magnitude.

Most of the standard statistical theory deals with estimators, and with inference in
general, without any conditioning. The processes that we should condition on, such as
target selection, are often rather complex, defying any straightforward description.
There are no universally applicable theoretical methods for incorporating them in the
analysis. Simulation of scenarios offers us a low tech, even if computationally extensive,
way of studying the impact of the process of target selection, and widening our horizons
from operating with unconditional distributions of estimators to studying their condi-
tional distributions given the processes of identifying them as being relevant.
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