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Abstract. Particle Swarm Optimization (PSO) has attracted many researchers attention to solve 

variant benchmark and real-world optimization problems because of its simplicity, effective 

performance and fast convergence. However, it suffers from premature convergence because of 

quickly losing diversity. To enhance its performance,  this paper proposes a novel “disruption” 

strategy, originating from astrophysics, to shift the abilities between exploration and exploitation. 

The proposed Disruption PSO (DPSO) has been evaluated on a set of nonlinear benchmark 

functions and compared with other improved PSO. Comparison results confirm high performance 

of DPSO in solving various nonlinear functions. 

Introduction 

Numerical and combinational optimization problems arise in almost every field of science, 
engineering and business. Lots of  these problems are NP-hard. PSO [1] is widely used to solve these 
problems because of its simplicity, fast convergence and high performance. 

Researchers have proposed various modified versions of PSO to improve its performance, 
however, there still are premature or lower convergence rate problems. How to accelerate the 
convergence speed and how to avoid the local optimal solution are two important issues in the PSO 
research. Generally speaking, those issues could be classified the following three approaches [2]: 

(1) Control of algorithm parameters: the inertia weight and the acceleration coefficients[3,4]. 
(2) Hybrid PSO, which combine PSO with other auxiliary search operators[5,6]. 
(3)  Improvement of the topological structure[7,8]. 
Gravitational Search Algorithm (GSA) is a novel population algorithm based on the law of 

gravity firstly proposed by E. Rashedi, H. Nezamabadi-pour and S. Saryazdi [9]. To improve the 
exploration and exploitation ability, in [10], a disruption operator is introduced in GSA. The authors 
of this paper propoded an improved version in [11] to enhance its performance. 

In this paper, we introduce an improved disruption operator into PSO with time-varying 
max1

V , and 

applied it on 10 nonlinear benchmark functions to confirm its high performance by comparing with 
other modified PSO. 

Standard PSO (SPSO) 

The PSO is inspired by the behavior of bird flying or fish schooling, it is firstly introduced by 
Kennedy and Eberhart in 1995 [1] as a new heuristic algorithm. In the PSO, a swam consists of a set 
of particles; and each particle represents a potential solution of an optimization problem. Considering 
the ith particle in the swarm with N particles in an n-dim space, its position and velocity at 

iteration t are denoted by ( ) ( ) ( )( )1 , ,i nX t x t x t= � and ( ) ( ) ( )( )1 , ,i nV t v t v t= � . Then, the new velocity and 

position on the d-dimension of this particle at iteration 1t + will be calculated by using the following 

equations: 
( ) ( ) ( ) ( )( )

( ) ( )( )
1 1

2 2

1

                

d d d d

i i i i

d d

i

v t w v t r c Pbest t x t

r c Gbest t x t

+ = ⋅ + ⋅ ⋅ −

+ ⋅ ⋅ −
           (1)      

( ) ( ) ( )1 1
d d d

i i i
x t x t v t+ = + +                                           (2) 

Where w is the inertial weight to balance the global and local search abilities of particles in the search 
space; 

1
r and

2
r are two uniformly distributed random numbers in the interval [0,1]; 

( ) ( ) ( )( ),1 ,
, ,

i i i n
Pbest t Pbest t Pbest t= � , called the personal best solution (position), represents the best 
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solution found by the ith particle itself until iteration t;       ( ) ( ) ( )( )1 , , nGbest t Gbest t Gbest t= � , called 

the global best solution, represents the global best solution found by all particles until iteration t; 
acceleration coefficients

1
c and

2
c  are nonnegative constants which control the influence of the 

cognitive and social components on the search process. 

Disruption PSO (DPSO) 

To improve the exploration and exploitation abilities of SPSO, a novel operator called 
“Disruption”, originating from astrophysics, will be introduced in SPSO. This paper, we will 
proposed an improved disruption operator. 

To simulate the disruption phenomenon: “ When a swarm of gravitational bound particles having 
a total mass, m , approaches too close to a massive object, M , the swarm tends to be torn apart. The 
same thing can happen to a solid body held together by gravitational forces when it approaches a 
much more massive object” [12]. it is assumed that ( )Gbest t is the star of all particles, and the other 

solutions can potentially disrupt and scatter in the search space. 

A. Disruption Condition 

Whether all particles except ( )Gbest t satisfy the disruption condition Eq. (3) or not. ij

ibest

R
C

R
<  (3) 

where 
ij

R and 
ibest

R are Euclidean distances between particles i and j and between particle i and the 

star, respectively. It is noted that particle j is the neighbor of particle i , whose fitness is the just 

better than partcle i in the search space, i.e. after sorting the fitness values, 1j i= − .  

B. Disruption Operator 

To make full use of
ij

R , we let disruption operator as follows:

 

( )
,  1

2 2

1 1, .
2 2

ij ij
ij ibest

ij

R R
R U if R

D

R U otherwise

  × − ≥   = 
 + −

 (4) 

In this equation, ,
2 2

ij ij
R R

U
 − 
 

return a uniformly distributed random number in the interval 

,
2 2

ij ij
R R −  

. The disruption operator explores initially and as time passes, it switches to the 

exploiting condition. We denote the PSO equipped with disruption operator by DPSO. 

C. Disruption Strategy 

To enhance  performance, we move those particles, which satisfy the disrupton condition, by using 
the following disruption strategy : 

( ) ( )( ) 1
i i i

t t
X t X t X t D

T T

 = ⋅ + − ⋅ ⋅ 
 

 (5) 

Table 1.   The Pseudo-code of the DPSO 

DPSO Algorithm 
Initialize an n-dimensional swarm, N 
repeat 

for each particle 1,2, ,i N= �  

if
i

X exceeds the allowable range 

then limits 
i

X to the boundary value; 

Evaluate fitness value; 
Update 

i
Pbest ; 

Update Gbest ; 
Update the velocity using Eq. (1); 

Time-varying 
1max

V  : 
1

−
= ⋅

max max
e

t

TV V ; 

if
i

V exceeds the allowable 

range [ ]1 1
−

max max
,V V   

then limits 
i

V to the boundary value; 

Update the position using Eq. (2); 
Disrupt particles using Eq. (3), (4), (5); 

   End 
Until stopping condition is met; 
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Table 2.   The 6 unimodal functions used in 
experimental studies, where n is the dimension 
of the functions, f is the minimum values of the 
functions, and nX R⊆ is the search space. 
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Table 3   The 4 multimodal functions used in 
experimental studies, where n is the dimension 
of the functions, f is the minimum values of the 
functions, and nX R⊆ is the search space. 

Test Function n X f 
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Table 4   The specific parameter settings 

Test  
Func-
tion 

Number 
of  

Genera-
tions 

Popula-
tion size 

N 
1 2

c c=  w  

1 4
F F−  1000 10 1.49618 0.72984 

5
F  10000 50 1.49618 0.72984 

6
F  3000 50 1.49618 0.72984 

7 8
F F−  5000 50 1.49618 0.72984 

9 10
F F−

 
1000 50 1.49618 0.72984 

Benchmark Functions and Parameter Settings 

To evaluate the performance of DPSO, it is applied to 10 well-known benchmark functions used 
in [6]. Table 2  and 3 list the 10 test functions. They are high-dimensional problems and divided into 
two classes: unimodal and multimodal problems. In which functions, 

1
F   to 

6
F   in table 1 are 

unimodal functions, and functions 
7

F   to 
10

F   in Table 2 are multimodal functions. All the functions 

used in this paper are minimization problems. 

The selection of the parameters w ,
1

c ,
2

c of Eq.(1) is very important. It can greatly influence the 

performance of PSO algorithms and its variations, We set w ,
1

c and
2

c  in Table 4 like [6]. However, 

there are a few differences for different problems. In this paper, 
max

V is all related PSO algorithms is 

set to 2.0 and the stopping criteria is set to the maximal generations T .  

In order to compare the different algorithms, the same settings have been used in HPSO [6], the 
same maximal generations and the same population size were used. In HPSO, 

max
W and N are set to 1 

and 20 respectively. In DPSO, the threshold
0

1
t

C C
T

 = − 
 

with 
0

100C = . 
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Experimental results and Discussion 

To verify the high performance of DPSO, we Compare it with SPSO and the best HPSO in [6].  

Table 5 shows the results. All results are averaged over 50 runs, where  “Ave” indicates the 
average of  best fitness values found in the last generation, and “Std Dev” stands for the standard 
deviation.  All data in terms of HPSO directly come from [6]. 

As Table 5 illustrates, statistically speaking, for the average of best fitness values of 50 runs on 10 
test functions, DPSO enhanced the performance obviously than SPSO and HPSO on all test 
functions. Especially, you can see clearly that DPSO obtains the global optimum on 

4 7 8
, ,F F F and

9
F  . 

In terms of “Std Dev”, we also can see clearly that, DPSO shows high stability than SPSO and HPSO. 
DPSO can obtain 0 “Std Dev” on 

1
F  to 

4
F , 

8
F  and 

9
F . Therefore, DPSO is of the best performance 

and convergence. Both for the unimodal  functions (
1

F to
6

F ) and multimodal functions (
7

F to
10

F ), 

DPSO obtains a promising performance. 

In terms of convergence charcteristics, Fig. 1 concretely shows the comparison on selected 
functions between DPSO and SPSO. Roughly speaking, DPSO has extremely enhanced the 
convergence speed. For the simple unimodal functions, DPSO and SPSO performed equally well at 
the beginning (about 100 generations) , because the particles at that time are of satisfactory diversity 
so that both methods could improve well. Once the particles in the population are close to the best 
particle, the convergence of SPSO becomes slower because the diversity of the population will 
decrease.  With the help of Disruption Operator on those partcles, which satisfy the disruption 
condition, DPSO could move these particles away from the best particle, so the diversity will be 
enhanced, therefore, the fast speed could remain through the whole evolution process. For the 
difficult multimodal functions, Disruption Operator also could move those particles, which satisfy 
the disruption condition, away from the local minimum. At the same time, the decreasing 
exponentially maximal velocity, reduces the speed rate to local minimum, and enhances the 
probability of disruption. To sum up, DPSO could successfully find better solutions while enhancing 
convergence speed.  

TABLE 5.   MINIMIZATION RESULTS OF BENCHMARK FUNCTIONS 

F 
SPSO HPSO[6] DPSO 

Ave Std Dev Ave Std Dev Ave Std Dev 

F1 3.61e-8 9.87e-8 1.79e-7 3.51e-7 2.3e-217 0 

F2 8.49e-4 0.0027 6.38e-7 1.98e-6 4.7e-215 0 

F3 2.6521 4.6355 0.398 0.3082 5.8e-190 0 

F4 1.59e-28 4.98e-28 2.53e-19 9.38e-19 0 0 

F5 2.2156 2.6799 1.419 1.4256 4.86e-5 4.25e-5 

F6 0.0060 0.0023 4.37e-3 1.51e-3 7.3566e-6 5.38e-6 

F7 -5.72e+3 1.62e+3 -12558.9 6.2373 -1.2569e+4 8.05e-5 

F8 52.8322 8.2374 31.8005 9.1618 0 0 

F9 0.3288 0.3599 3.66e-2 3.19e-2 0 0 

F10 0.1155 0.3653 8.86e-6 8.58e-2 1.59e-15 1.49e-15 

Conclusion 

In this paper, we introduce a disruption operator in standard PSO, which is called DPSO, to help 
SPSO to shift the exploration and exploitation abilities and avoid local optima. We also proposed 
time-varying 

max1
V  , which decreasing exponentially with time t , to control the flying velocity. By 

applying a disruption operator on those particles, which satisfy the disruption condition in each 
generation, DPSO could find better solutions than SPSO and HPSO. 

DPSO is evaluated on 10 well-known nonlinear functions.  The results have proved that DPSO 
could have faster convergence and better global search ability both on unimodal functions and 
multimodal functions compared to SPSO and HPSO. DPSO also performs better stability than SPSO 
and HPSO. 
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Figure 1.  Comparison between SPSO and DPSO on 
1

F  to 
9

F . 
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