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Abstract. In this article, local optimality in multiobjective combinatorial optimization is
used as a baseline for the design and analysis of two iterative improvement algorithms. Both
algorithms search in a neighborhood that is defined on a collection of sets of feasible solutions
and their acceptance criterion is based on outperformance relations. Proofs of the soundness
and completeness of these algorithms are given.

1. Introduction

Stochastic local search (SLS) algorithms have been shown to provide high
quality solutions for many hard combinatorial problems (Aarts and Lenstra,
1997; Hoos and Stiitzle, 2004). A central aspect in the development of these
methods is the notion of local optimum, that is, a solution that cannot be
improved with respect to its neighborhood. In fact, many general-purpose SLS
methods (also called metaheuristics) have been designed with the explicit goal
to overcome the problems associated with local optimality.

SLS algorithms have also been applied with considerable success to multiob-
jective combinatorial optimization (MOCO) problems (Ehrgott and Gandibleux,
2004). However, different from the single objective counterpart, there is not a
widely accepted notion of local optimality in MOCO. This may be a reason why
the existing SLS approaches to MOCO problems appear to have been developed
often in a more ad-hoc and less directed manner.

The notion of local optimum for the single objective case can be extended to
MOCO problems by considering sets of solutions. We call the resulting set of
local optima a Pareto local optimum set. We first relate the concept Pareto local
optimum set to aspects of global and local optima for the single objective case.
A negative result is that SLS algorithms for single objective problems are not
appropriate for obtaining a Pareto local optimum set. In a next step, we propose
two iterative improvement algorithms that search according to a neighborhood
that is defined on a collection of sets of solutions, and whose acceptance criterion
is based on the better relation defined in (Hansen and Jaszkiewicz, 1998; Zitzler
et al., 2003).

The first iterative improvement algorithm has, however, the disadvantage
of visiting an exponential number of sets of solutions at each iteration of
the iterative improvement algorithm. A more restricted version, called Pareto
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local search (PLS), initially proposed and experimentally tested in (Paquete
et al., 2002; Paquete et al., 2004), is shown to search for a more interesting
and restricted set of solutions. We prove that this algorithm terminates in a
specific type of a Pareto local optimum set. In addition, since there can be
an exponential number of solutions to be visited, alternatives that restrict the
acceptance criterion by using measures for the spread of solutions are discussed.
However, we show that some caution must be taken on the type of restrictions
to be used since for some choices iterative improvement algorithms can cycle.
The article is organized as follows. In Section 2, we introduce notation
and discuss the definitions of local optimality we use in this article. Section
3 discusses the relation of these notions to the solutions returned by solving
each objective separately. In Section 4, the iterative improvement algorithms
are proposed, and Section 5 analyzes PLS with respect to its soundness and
completeness. Further extensions and future work are discussed in Section 6.

2. Notation and Definitions

2.1. MULTIOBJECTIVE OPTIMIZATION

The following orders in the Euclidean space IR® are considered. Let u and
v be vectors in IR¥. The strict component-wise order is denoted by u < v,

where u; < v;, i = 1,...,n; component-wise order by u < v, where u # v
and u; < v;, @ = 1,...,n; and weak component-wise order by u < v, where
u; < v, ©=1,...,n. Note that if we have that v < v and v < u, then u = v.
We consider here the general multiobjective program
q1 = Fi(s)
min : (1)
qx = Fk(s),

where s belongs to the set S of feasible solutions and min is understood in
terms of Pareto optimality. F'(s) = (Fi(s),..., Fk(s)) is the objective function
vector of s and K is the number of objectives. Without loss of generality,
only minimization is considered. The objective function of a single objective
optimization problem is denoted by f(s). We restrict ourselves to combinatorial
optimization problems.

In the context of optimization, the relation between objective function vec-
tors of two feasible solutions s and s is denoted as follows: if F(s) < F(s'),
then F(s) strictly dominates F(s'); if F(s) < F(s'), then F(s) dominates F(s');
if F(s) < F(s'), then F(s) weakly dominates F(s'). Finally, F(s) and F(s') are
(pairwise) nondominated if F(s) £ F(s') and F(s') £ F(s), and are (pairwise)
non weakly dominated if F(s) £ F(s') and F(s") £ F(s). Note that the latter
is more restrictive since it implies that F(s) # F(s’). The same notation is
applied when referring to solutions, if the relation holds between their objective
function vectors.

A solution to Program (1) is one that is globally nondominated, that is, it
is not dominated by any other feasible solution. Such a solution is known in
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the literature as Pareto global optimum. However, there is usually not only one
Pareto global optimum but many, and the solution to Program (1) becomes a
set, of Pareto global optima. A set is a Pareto global optimum set if, and only if,
it contains only and all Pareto global optima. Its image in the objective space
is called efficient set.

Note that several Pareto global optima may have the same objective function
vector. Hence, rather than finding the Pareto global optimum set, one may be
only interested in one solution for each element of the efficient set. In that case,
the strict version of Pareto global optimum set is more appropriate. A set is
a strict Pareto global optimum set, if, and only if, it contains only non weakly
dominated Pareto global optima and its image in the objective space coincides
with the efficient set. A strict Pareto global optimum set is called minimal
complete set by Hansen (1979), complete set of alternatives by Emelichev and
Perepelista (1992) and strictly Pareto optimal set by Ehrgott (2000).

2.2. LocAL OPTIMALITY

An dterative improvement algorithm starts from an arbitrary feasible solution
and searches neighbors for better solutions to replace the current one. This
neighborhood search is repeated until no improvement is found anymore and
the algorithm stops in a local optimum. More formally, let N : S — 2% be a
neighborhood function that associates a set of feasible solutions N(s) to every
feasible solution s. A feasible solution s’ € N(s) is also called a neighbor of s.
The solution s is a local optimum with respect to N if, and only if, there is
no s’ € N(s) such that f(s') < f(s). Note that different iterative improvement
algorithms can be defined in dependence of the criterion used for searching an
improving neighbor.

The notion of local optimum can be easily extended to MOCO in terms
of Pareto optimality by adapting the notion of Pareto global optimum. In
(Paquete et al., 2004), a feasible solution s is called a Pareto local optimum
with respect to a neighborhood N, if, and only if, there is no s’ € N(s) such
that F'(s") < F(s). For the same reasons presented above for defining a Pareto
global optimum set, Paquete et al. (2004) defined a set S’ C S to be a Pareto
local optimum set with respect to a neighborhood N if, and only if, all solutions
in S” are Pareto local optima with respect to N. (An analogous definition of
Pareto local optimum set is given in (Deb, 1999).) Note, however, that such a
set may contain dominated solutions and therefore, if nothing else is said, we
require the Pareto local optimum set to have only solutions that are pairwise
nondominated. Finally, an extension of this definition to non weakly dominated
solutions was introduced in (Paquete and Stiitzle, 2006). Fig. 1 illustrates the
image of a Pareto local optimum set with non weakly dominated solutions in the
objective space (two minimizing objectives) by black points, where neighbors
are connected by edges. It can be seen that no neighbor (represented by gray
points) dominates any of the black points and that the black points are pairwise
non weakly dominated.

Note that a Pareto global optimum is also a Pareto local optimum, inde-
pendent of the neighborhood N. A Pareto global optimum set is a Pareto local



Figure 1. The set of black points forms a non weakly dominated Pareto local optimum set.
The gray points are neighbors to each element of that set.

optimum set with nondominated solutions and a strict Pareto global optimum
set is a Pareto local optimum set with non weakly dominated solutions. In
this sense, these notions are analogous to the relationship of the notions of
local optimum and global optimum in the single objective case. Putting this
analogy further to the level of algorithms, it is natural to require an iterative
improvement algorithm for MOCO problems to terminate once a Pareto local
optimum set with only non weakly dominated solutions is found.

Remark: In the remainder of this paper, we will, for conciseness, refer to a
Pareto local optimum set with only non weakly dominated solutions simply as
a Pareto local optimum set.

3. Local Optima and Pareto Local Optima

Given the analogies between local optima for the single- and multiobjective
case, a first question is whether applying iterative improvement algorithms to
each objective of a MOCO problem separately can be used for obtaining a
Pareto local optimum set. In general, the answer is no and we will illustrate
these results using the MULTIOBJECTIVE TRAVELING SALESMAN PROBLEM
(MOTSP). In the MOTSP are given n cities and distance vectors in IN¥ for
each pair of cities. The goal is to find a set of Hamiltonian tours that is minimal
with respect to the notion of Pareto optimality. This problem is known to be
NP-hard since its single objective version is NP-hard (Serafini, 1986).

The first negative result states that there may be cases in which a Pareto
global optimum is not a local optimum for any single objective of a MOCO prob-
lem. This is shown by the following example.

EXAMPLE 3.1. Consider the MOTSP instance with 5 cities that is taken from
(Emelichev and Perepelitsa, 1991).7 In Figure 2 is given a biobjective MO TSP

! Emelichev and Perepelitsa (1991) proposed a generalization of this instance as an example
of an MOTSP instance that has unsupported Pareto global optima.



Figure 2. Graph of the MOTSP instance for Example 3.1. All the edge weight vectors are
(5,5) except for the ones labeled explicitly.

instance (the edges without label have weight vectors (5,5)). The Pareto global
optimum set (Sy) and the corresponding image in the objective space (Og4) are
presented in the following table:

solution Sy Oy
51 (a,b,d,e,c) (18,22)
S2 (a,b,e,d,c) (18,22)
s3 (a,b,c,e,d) (21,21)
4 (a,b,e,dye)  (21,21)
s5 (a,c,b,dye)  (22,18)
s6 (a,c,bye,d)  (22,18)

Consider the 2-exchange neighborhood, where for a given solution s, all neigh-
bors can be obtained by replacing two edges from s with two different edges not
present in s. For this neighborhood, any solution with objective function vector
(21,21) is not a local optimum for any component of the objective function vec-
tor since there is a better neighbor for each objective. For example, the solution
s4 has two better neighbors: solution se with respect to the first objective (by
removing the edges (b,c) and (e,a) and adding the edges (b,e) and (c,a) in s4)
and s5 with respect to the second objective (by removing the edges (a,b) and
(¢,d) and adding the edges (a,c) and (b,d) in s4).

The following example shows that a locally optimal solution with respect
to at least one objective of the MOCO problem may not be a Pareto local
optimum.

EXAMPLE 3.2. Figure 3a gives a biobjective MOTSP instance (the edges that
are not present have each distance vector component larger than 2). The Pareto
global optimum set is {(a, g,e,b,d,c, f)}, the tour indicated by bold edges, and
the efficient set is {(7,8)}. Under the same 2-exchange neighborhood from the
previous example, the sequence s = (a,b,c,d, e, f,g), which is indicated in Fig-
ure 3b with straight lines, has an objective value vector (8,12) and it is a locally



Figure 8. An MOTSP instance (a) and a local optimum (b) for Example 3.2.

optimal tour for the first component. However, this sequence is mot a Pareto
local optimum since it is weakly dominated by the sequence (a,b,e,d,c, f,q)
obtained by removing the edges (b,c) and (e, f) from s, and adding the edges
(b,e) and (c, f) (the latter two edges are dashed in Figure 3b) with an objective
value vector (8,10).

These two examples give a negative answer to the initial question posed in
this section, that is, solutions returned by applying an iterative improvement
algorithm to each objective may not result in a Pareto local optimum set.
However, an acceptance criterion that accepts sets of solutions can, in fact,
identify Pareto local optima. Two variants are discussed in the next two sections.

4. A basic iterative improvement algorithm for MOCO

One common approach to solve MOCO problems is to use the (weak) component
wise ordering when comparing neighboring solutions (Knowles and Corne, 2000;
Angel et al., 2004b; Paquete et al., 2004). In that case, the acceptance criterion
is to accept a neighbor if it is non (weakly) dominated; since in the local search
process we can expect to have more than one solution for which this holds, an
additional data structure, which is usually called archive, is used to maintain
the current set of solutions.

How do these two features, component-wise acceptance criterion and the
usage of an archive, relate to our notions of Pareto local optimum set? To
answer this question we have to define an analogy to iterative improvement
algorithms for the single objective case. In fact, in the literature there are almost
no iterative improvement algorithms for MOCO problems that stop in a set of
solutions that cannot be improved locally, an exception being the Pareto local
search (PLS) algorithm proposed in (Paquete et al., 2004). In this section, we
define a basic iterative improvement algorithm for MOCO problems that is
based on a general neighborhood between sets of solutions and a dominance
relation between sets of points. In the next section, we discuss the relationship
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of the outcomes of PLS to the outcomes of this basic iterative improvement
algorithm.

Certainly, a suitable stopping criterion for a basic iterative improvement
algorithm for MOCO problems is to terminate once a Pareto local optimum
set is found. Hence, such an algorithm should, at each iteration, select a set
of non weakly dominated solutions and work on a set of solutions. We define
Usr = Ugeg N(s) for a given arbitrary neighborhood function N and a set S’
of feasible solutions. Then, a natural neighborhood of S’, identified by T (S5’),
is the power set of S’ U Ug/, that is,

T(S/) —_ ZSIUUS"

The next step is to define an acceptance criterion for sets of solutions that
are neighbors with respect to Y. For this task, the outperformance relations
proposed in (Hansen and Jaszkiewicz, 1998) and later extended in (Zitzler et al.,
2003) are useful. Given two arbitrary point sets A and B in a K-dimensional
objective space, the following relations are introduced:

1. A< Bif every b in B is strictly dominated by at least one a in A, i.e., A
strictly dominates B;

o
2. A < Bifevery bin B is dominated by at least one a in A, i.e., A dominates
B;

3. AJBif every b in B is weakly dominated by at least one a in A and
A # B, i.e., A is better than B;

4. A < B if every b in B is weakly dominated by at least one a in A, i.e., A
weakly dominates B;

5. A || B if neither A < B nor B < A, i.e., A and B are incomparable.

o

Moreover, A SB= A % B=AJB=A < B (Zitzler et al., 2003).
Figure 4 illustrates these relations between sets of points in the objective space
with two minimizing objectives in some particular cases. In Plot 1, any black
point is strictly dominated by a white one. Plot 2 shows that there is a black
point (the minimum with respect to F}) that is dominated (but not strictly) by
another two white points. The remaining black points are strictly dominated by
some white point. Plot 3 shows that all black points are weakly dominated by
white points, although not all black points (the gray points belong to both sets)
are dominated, and hence, the two sets are different. In Plot 4, both sets are
equal and the white points weakly dominate the black points and vice-versa.
Finally, the plot on the bottom shows two sets that are incomparable, i.e., one
can neither say that all black points dominate the white ones nor vice-versa.

Based on the neighborhood Y and on any of the outperformance relations
above, local search algorithms can now be defined. In fact, depending on the
particular relation chosen, different outcomes can be expected. Consider first
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Algorithm 1 Basic Iterative Improvement (BII) for MOCOs
: Input: (F, T, S)
while 3 5 € Y(S) A F(S') <1 F(S) do

S=9

return S

Ll A o

[}
the case of the relations < and <, it is easy to see that once a single Pareto global
optimum is found, no additional Pareto globally optimal solution is attainable,
since the sets that contain any such additional Pareto global optima are not
o

dominated. Also the relation < appears not to be appropriate. Consider, for
example, two neighbor sets of solutions having the same objective function
vectors; since both weakly dominate each other, a cycle occurs and such an
iterative improvement algorithm would never terminate. Therefore, the relation

& is the most appealing to be exploited by an iterative improvement algorithm.
In its simplest form, the algorithm starts from an arbitrary, initial solution
set, and it iteratively searches neighbors to find better solution sets until a
Pareto local optimum set is found. An outline of such a basic iterative improve-
ment algorithm (BII) is given by Algorithm 1. Interestingly, the final set cannot
be extended by any solution that is a neighbor to any of its elements, because
any such set would contain a (weakly) dominated solution. Such a set is called
here a mazimal Pareto local optimum set. In other words, S’ C S is a mazimal
Pareto local optimum set with respect to a neighborhood N if, and only if,

(Vs' € Ug)) (3s € S') F(s) S F(s).

An equivalent definition is to say that S’ is a maximal Pareto local optimum
set if there is no other S* in Y(S’) such that S* is better than S’. Finally, note
that a strict Pareto global optimum set is also a maximal Pareto local optimum
set.

A main drawback of BII is the exponential size of the neighborhood Y (S’)
with respect to the number of elements in S’ (295D with N(s) having polyno-
mial size) and, hence, it may be time consuming to search the full neighborhood
already for a small sized set. To reduce the time required for finding an improv-
ing neighbor, we need to find an iterative improvement algorithm that searches
an interesting subset of the neighborhood in polynomial time with respect to
the number of elements in S’.2

2 Note that S’ may, in the worst case, be of exponential size with respect to the instance
size for many MOCO problems, such as the multiobjective versions of the SHORTEST PATH
PROBLEM (Hansen, 1979), MINIMUM SPANNING TREE PROBLEM (Hamacher and Ruhe, 1994)
and the TRAVELING SALESMAN PROBLEM (Emelichev and Perepelitsa, 1992). However, often
the neighborhood of a solution is of polynomial size.
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5. Soundness and Completeness of Pareto Local Search

Pareto Local Search (PLS) is a simple iterative improvement algorithm for
MOCO problems that was first proposed and experimentally tested in (Paquete
et al., 2004) for the MOTSP and later in (Paquete and Stiitzle, 2006) for the
MULTIOBJECTIVE QUADRATIC ASSIGNMENT PROBLEM. PLS resembles some
other approaches to MOCO such as BLS (Angel et al., 2004b), SEMO and
FEMO (Laumanns et al., 2002), PAES (Knowles and Corne, 1999), the local
search algorithm mentioned in (Ehrgott and Gandibleux, 2004), as well as the
post-processing steps applied in (Hamacher and Ruhe, 1994; Jornsten et al.,
1996; Talbi, 2003). This section shows that PLS examines a polynomial size
subset of neighbors at each iteration and that it outputs a maximal Pareto
local optimum set.

The essential idea of PLS is to extend the current set of solutions S” (main-
tained in an archive) by searching subsets of Y(S’) considering one solution
in S’ after another. Dominated solutions are eliminated as soon as possible.
Note that if a set S* is obtained by eliminating dominated solutions from S’,

then S* < S'. The outline of PLS is given in Algorithm 2. Its pseudo-code is
presented in a slightly different way as in (Paquete et al., 2004) to ease the
proofs of completeness and soundness.

PLS splits the set of solutions S’ in the archive into V7 and Vg, where Vr is
the subset of solutions in S’ for which the complete neighborhood was already
evaluated (solutions marked as visited) and Vr contains the remaining solutions
in S’ (solutions marked as not wvisited). PLS starts from some initial solution
and flags it as not visited (that is, includes it in Vr); Vp is initially empty. Then,
at each iteration through the repeat—until loop, PLS evaluates all neighbors of
one solution s in Vp. For each s’ € N(s), it checks whether there is another
solution in N(s)U Vg U Vr that weakly dominates it (line 10). If this is not the
case, s is added to W (line 11) and it will be chosen in a following iteration if
it is still nondominated with respect to N(s) U Vg U Vp or with respect to Vp
(line 12). For convenience, W' denotes the set W and V' the set VU Vg at the
end of iteration i (line 14).

Note that PLS removes dominated solutions of Vpr and Vr at each iteration
and Vr and VF contain only solutions that are nondominated by any solution
in Vg U Vp. The following proposition shows that PLS is indeed an iterative
improvement algorithm.

PROPOSITION 5.1. PLS is an iterative improvement algorithm according to
the neighborhood Y and the relation =5

Proof. For proving Proposition 5.1, it is sufficient to show the two following
assertions:

1. At any iteration i, no neighbor is accepted at all or a neighbor in Y (V1)
is accepted;

2. If a neighbor is accepted, it improves the current set of solutions according
o
to <.
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Algorithm 2 Pareto Local Search (PLS)

1: Input: (F, N, s)

2:

3: Vp — {s}

4: Vr is empty

5: repeat

6: choose s in Vg

7. Vp—VpU{s}

8 W is empty

9: for all ¢ in N(s) do

10: if (As" e WUV UVE)F(s") £ F(s') then
11: W —Wu{s'}

122 Vp—{s'|sdeVr:(As" e W)F(s") < F(s')}
13: Ve «— (VF\{S}) uw

4. Vp—{d|sdeVr:(As" e W)F(s") < F(s')}
15: until Vg is empty
16: return Vp

For the first assertion, a subset of T(V~!) is examined until an improving set
of solutions is found. At the end of each iteration, the two following cases can
occur:

— if W' is not empty, then W* C N(s).
— if W' is empty, then no neighbor solution is accepted (thus, Vi = Vi~1);

Since in the first case it holds that V¢ C V=l U W?® C V=1 U N(s), then,
given the definition of the neighborhood Y, V* € Y(V¢~1). In the second case,
the next iteration of the repeat—until loop is invoked. If Vg is empty, then the
algorithm stops.

For the second assertion, we have that W' is not empty. Then,

Vi=(WTtuwH\ z
where

Z={s|scVtuw': (3 e Vil UW') F(s') < F(s)}.

Given the definition of the relation % and that Vi~ Uy W~ % Z, it follows that
Vi 4 Vi-lU Wi, Note that if Z is empty, then V7 is set to V=t U W?. Given
the relation < and that TV contains at least one solution not dominated by any
solution in V=1 it follows that V* 4 vi-t, [

Both termination and soundness (the solution returned is a local optimum)
of PLS can be proved. Before proceeding, it is convenient to introduce the
following property, which says that if a solution is not dominated by any solution
in V?, then no solution in V7 can have dominated that solution in any previous
iteration j < 1.
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LEMMA 5.2. Given a solution s, for any iteration i it holds that

(3s' e VY F(s') S F(s) = (Vj<i)(Ps’ e VI)F(s') < F(s).

Proof. This Lemma is proved by induction: For ¢ = 0 this is trivially true.
Suppose that this property holds for V=1, then it also holds for V:

(As' € Vi) F(s') £ F(s) =
[ Since V= (VI=YUW?)\ Z, (Z defined as in proof to Proposition 5.1) }
= (s’ e VITLU W) F(s') £ F(s) =
= (s’ € VITY) F(s') £ F(s) =
[ Inductive hypothesis }
= (Vi < i) (As’ € VIYF(s') £ F(s)

The two following results can now be proved.
THEOREM 5.3. The algorithm PLS always terminates

Proof. Given that the set of feasible solutions is finite, it suffices to show that
a solution s is at most chosen once in line 6 of Algorithm 2. This means that s
will not be inserted in Vp after having been inserted in Vr (line 7). Considering
any iteration, a solution is inserted in Vg only if it is included previously in
W. The goal is to show that, once a solution s is inserted in Vp, it will never
be included again to W: Suppose that the same solution s is inserted in W*
(in the i-th iteration). This means that there does not exist any other solution
s in V=1 such that F(s’) £ F(s). But since s has been inserted in Vp and,
hence, in V?~! in a previous step (and because F(s) < F(s)) this would be a
contradiction to Lemma 5.2. ]

THEOREM 5.4. The algorithm PLS returns a mazimal Pareto local optimum
set.

Proof. The soundness of PLS is shown by contradiction and by using Lemma
5.2. Suppose that the archive at the end of Algorithm 2 (V") is not a maximal
Pareto local optimum set. This can only be the case if there exists a solution
s & VP such that #s” € V. F(s") £ F(s) and there is a solution s’ in V" such
that s belongs to N(s'). Hence, s’ must have been inserted into Vp at some
step i. At that step also N(s') is evaluated, and the following two scenarios can
occur: (i) s is inserted in W* or (ii) a solution s* in N(s') is inserted in W* for
which it holds that F(s*) < F(s). In either of the two cases, s or s* would be
accepted to V. If s is accepted to V? and it is not in V", then this can only
happen because in some iteration i < j < h a solution was added to V7 that
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dominated s. Because of Lemma 5.2, this would be a contradiction. If, however,
s* is accepted to V?, this would again contradict Lemma 5.2, since at iteration
i a solution that dominates s is added (and hence, from iteration ¢ on there
must be a solution in V' that dominates s). |

PLS takes O(| N (s)UVrUVi|?) steps at each iteration.® Consequently, it visits
a polynomial-size subset of neighbors of Y. Furthermore, if N(s) and VU Vp
are of polynomial size, PLS runs in polynomial time with respect to the number
of solutions in the archive per iteration. However, the size of the archive may
not be bounded by a polynomial in the instance size. In that case, the archive
of PLS (and, hence, the complexity of PLS) would grow exponentially.

Thus, a desired feature of PLS may be to have a polynomially bounded archive
where only the most interesting solutions are kept. Bounded archives are used
frequently in multiobjective evolutionary algorithms (Fonseca et al., 2003; Zitzler
et al., 2001), where often only nondominated solutions that contribute towards
having a spread set of solutions are accepted (see (Knowles and Corne, 2004)
for a study on the desired properties of an archive). However, a maximal Pareto
local optimum set may not be obtained, since the size of the archive is bounded.
Moreover, certain notions of spread between solutions can lead to an undesired
cycling behavior as shown in the following example.

EXAMPLE 5.5. Assume that we have an algorithm with an archive restricted
to m solutions, the acceptance criterion follows the rules given in PLS, and the
spacing measure M (Schott, 1995) is used to evaluate the spread of solutions.
The spacing measure is defined as

M({Sl,...,sm})zdﬁi(cz—d(si)f (2)

=1
where
K
o) = min 3 ([fuls) — fuls)]). (3)
Given a set of solutions {s1,...,sm} in the archive, d is the average value of
d(s1),...,d(sm). The lower the value of the spacing measure, the more spread

are the solutions in the objective space (Schott, 1995). Moreover, solutions that
are minimum to each of the objectives are maintained (note that this is a desired
feature of an archive (Knowles and Corne, 2004)). Once the archive is full, the
modified PLS would replace a solution by another one if either it leads to a
better set, or, if the two sets are incomparable, the spacing measure is decreased.
Figure 5 gives a sequence of iterations in which this algorithm cycles with m = 3.
Let {s1, s2, 3} be the set of solutions in the archive at a certain iteration with
M ({s1,82,83}) = 0. Since sy is neighbor of s3 and dominates it, s4 replaces s3
and M({s1,s2,84}) = 12. Then, {s1, 2,55} replaces {s1, 2,54}, since s5 is a
neighbor of s4 and, despite being nondominated, the spacing measure becomes

3 This time complexity can be reduced if the algorithm of Kung et al. (1975) is used for
removing dominated solutions for K < 5.
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Figure 5. Illustration of a cycle of PLS with an archive of three solutions

lower if solution s5 replaces sq (M{s1,s2,55}) = 5.33). Finally, given that s is
a neighbor of s3, M ({s1, s2,53}) < M{s1,s2,55}); then s3 replaces s, resulting
in a cycle of length three.

Certainly, also other algorithms that use a similar acceptance criterion may
potentially be affected by such a cycling behavior. Thus, this example shows
that some caution should be taken when using measures on the spread of
solutions and bounded archives.

6. Discussion and Further Work

Recent experimental results show that PLS is a practically viable algorithm and
that it can reach, from a solution quality point of view, competitive performance
to more complex SLS methods (Paquete et al., 2004; Paquete and Stiitzle, 2006).
Still, a disadvantage of PLS is that the archive may grow very strongly, leading
to high computation times. While the usage of bounded archives may be a
practical way to go, as shown in the previous section, some care has to be taken
with this option.

If we reconsider the fact that PLS stops in a local optimum for MOCO
problems, it is clear that it can serve as the basis for general-purpose SLS
methods (Hoos and Stiitzle, 2004), just as it is the case in single-objective
optimization problems. An adaptation to several well-known SLS methods could
be as follows:

— to Simulated Annealing by accepting a worse neighbor set of solutions with
a certain probability;

— to Tabu Search by using a tabu mechanism based on sets of solutions that
cannot be visited again for some number of iterations;

— to [Iterated Local Search by perturbing solutions and possibly by removing
some others, once a maximal Pareto local optimum set is found, and to
restart PLS from the perturbed solution;
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— to Variable Neighborhood Search (Hansen and Mladenovié, 2002) by chang-
ing the definition of neighborhood once a maximal Pareto local optimum
set is found;

— to Memetic Algorithms (Moscato, 1999) by maintaining a population of
maximal Pareto local optimum sets and generating offsprings by set union
or set intersection of such local optima.

Considering the possibly high computation times of PLS, for these extensions
the usage of bounded archives should possibly be considered. Another possible
issue for PLS is the initial solution set. In fact, simplified versions of PLS have
already been used successfully by seeding them with solutions returned from
scalarizations of MOCO problems. Examples of such successful combinations
are (Hamacher and Ruhe, 1994; Jornsten et al., 1996; Paquete and Stiitzle,
2003), although further work in this direction is certainly required.

There are various other directions for further research. Although one can
find in the literature already many well performing approaches based on local
search algorithms for MOCO, there is still a need to explain their success from
a more theoretical side. Interesting directions for future research include the
following.

— Approzimate Local Search. Given that there could be an exponential sized
Pareto local optimum set in PLS, an interesting idea would be to build local
search algorithms that obtain a (1 + €)-approzimation to the Pareto global
optimum set in polynomial time as in (Erlebach et al., 2002; Papadimitriou
and Yannakakis, 2000; Ruhe and Fruhwirth, 1990; Warburton, 1987). Al-
ready some results are known for the MOTSP with two objectives where
the edges have distances 1 or 2 (Angel et al., 2004a). Further work for other
problems is clearly required.

—  Convergence Properties. A well known result is that Simulated Annealing
and some other SLS methods converge to the global optimum in the single
objective case. Despite the little relevance for practice, one may ask whether
similar results can be obtained for the multiobjective versions.

— Bounded archiving. Many approaches in the literature present different
ways of bounding the archive. It would be interesting to know if such
algorithms may cycle as shown in our example.
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