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A I  i n  S p a c e

People base their view of nature on a new device that is
both revolutionary and pervasive. Because we humans
built the device, we can comprehend it. Consequently, the
new technology often further serves humans as a well-
understood analog of nature. In the present context, some
scientists claim that the basic particle of the universe is
information; that information is not an abstraction of
reality—it is, in fact, reality.1 While some of these views
are indeed extreme, they form the basis for current dis-
cussions within the scientific community.

If new technologies can inspire a new understanding of
our universe, we might ask how far and in what direction

can computer science research itself be pushed? NASA is
poised to play a significant role in answering this ques-
tion. Traditionally, NASA has pointed the way for many
new technologies. NASA has identified the directions that
have led to the breakthroughs in flight and space flight
that we now often take for granted, playing a key leader-
ship role that has galvanized large research, development,
and industrial communities. 

NASA will need to play a similar role in tomorrow’s
computer science research, developing critical enabling
technologies to support future missions.2 To play that
role, NASA Ames Research Center has recently changed
its research focus to computer science (see Figure 1). 

Motivations
At NASA, we are undergoing a fundamental shift in

the way we design exploration missions. Driving the shift
is a change in the character of the science goals for these
missions. 

Science exploration missions can be characterized in
terms of the distance from the instrument making the
observation to the observation’s target. Science observa-
tions accomplished at relatively great distances from the
target are called remote science; observations done in
close proximity are contact science. The former observa-
tions typically occur either during fly-bys or from orbit,
with the latter typically performed in situ, with the instru-
ment in physical contact with the target (see Table 1). 

Until recently, most science exploration missions
beyond lunar orbit were remote science, given mainly to
the global mapping nature of the science goals. As the
science goals begin to require higher-resolution measure-
ments and close proximity to the target, the missions
increasingly involve more contact science.

Even in the presence of large communication time delays
caused by the finite speed of light, remote science can often
be accomplished by preprogrammed action. That’s because
the environment in which the spacecraft operates rarely
requires decision-making more rapid than the round trip
communications time. In this environment, the only re-
quirement for rapid onboard decisions is during unusual or
critical maneuvers (such as Saturn ring-crossing) or off-
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nominal conditions such as internal system
failures. Because the spacecraft environment
is predictable and well-modeled, a control
strategy involving at most conditional
branching can serve to manage critical deci-
sion-making. As a last-resort means of han-
dling unexpected conditions, the spacecraft
can go into a “safe-mode” from which it can
systematically recover under guidance from
the ground.

Unlike remote science missions, we
cannot accomplish contact science mis-
sions with preprogrammed actions. When
a spacecraft or instrument is in situ, it is
physically interacting with its environ-
ment, a situation that requires a very
short decision timescale with respect to

the round trip communications time.
Also, the environment becomes difficult
to predict or simulate prior to the mission,
unlike a vacuum environment in which
the spacecraft is subject only to relatively
predictable forces and effects, such as a
well-modeled gravitational field. 

Under the dynamic conditions of in-situ
environments, a traditional control strategy
is difficult (and expensive) to use. The
number of conditional decision points
becomes exponentially high even for rela-
tively simple missions. We will need a new
way of designing exploration missions,
incorporating higher levels of onboard
autonomous decision-making to accom-
plish future science exploration goals.

Currently, robotic contact
science missions are remotely
controlled—teleoperated. Liter-
ally hundreds of Earth-bound
engineering and science special-
ists provide the intellectual
safety nets required for space
exploration. This approach has
succeeded due to trade-offs in
the complexity and distance
involved. During long-distance
missions when the finite speed
of light becomes a factor in com-
munications, the subject mis-
sions have been compelled to

remain comparatively simple. In these mis-
sions, the state of the art in embedded sys-
tems has sufficed for the autonomy required. 

Based upon their relative orbits, round
trip communications at the speed of light
between Mars and Earth vary from six to
40 minutes. For a complex human or
robotic mission to Mars, capabilities in
teleoperation must increase significantly.
Even if we placed astronauts at a space
station at the Mars-Sun libration point,
there is a 7.2-second round trip delay. (A
libration point is any of five positions in
the plane of a celestial system consisting
of one massive body orbiting another at
which the gravitational influences of the
two bodies are approximately equal.) Cur-
rently, fine-grained predictive control can
deal with time-delays of five seconds or
so.3,4 So, given a five-second delay, a
human-machine predictive control system
can effectively provide fine-grained con-
trol of a remote device. Operating beyond
five seconds delay will require robust
reflexive controls on the remote device
itself. The device will need to manage its
own movements reflexively.

Therefore, mission complexity and com-
munication delays are the roots of NASA’s
motivations for advancing computer sci-
ence research. NASA will need an under-
standing of causal relationships in the data
acquired in real-time, a need for greater
autonomy in our deployed systems, and
revolutionary advances in the way humans
and machines work as a system. NASA’s
Intelligent Systems Program is a national
initiative, organized to respond to these
needs. This article will attempt to provide a
vision within which these elements con-
verge and a better definition of the elements
and the goal of each research category are
realized.
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Figure 1. In the shadows of the world’s largest wind tunnel, the number one priority
at NASA Ames is computer science research. 

Table 1. Autonomy required for different mission classes. Blue indicates we can do this class of 
mission adequately with current technology, black means we can do this class of mission, but not
very efficiently, while gray means we cannot yet do this class of mission with current technology. 

Decision 
Mission class Example Distance timescale Level of autonomy

Fly-by Voyager Remote Slow Pre-event programmed
Survey Galileo Remote Slow Pre-event programmed
Local sampling Viking Static contact Slow Remotely operated
Local exploration Pathfinder/MER Dynamic contact Medium Remotely operated w/reflexes
Intensive exploration MSL Dynamic contact Fast Short-term goal-directed
Global exploration Europa Ocean Dynamic contact Fast Long-term goal-directed



The vision
In the next 50 years, space missions

might deploy astronauts or mission con-
trollers with “intelligent” machines to
points near or on the surfaces of distant
planets. The people involved will need to
operate in a seamless relationship with
also-deployed intelligent machines. 

In deploying humans to the surfaces of
distant planets, intelligent machines will
assist the humans with exploration and mis-
sion operations. Machines will need to extend
and magnify human physical and mental
abilities. Among other duties, the machines
accompanying the astronauts might need to
serve the purpose currently served by earth-
bound mission operators—the people who
remotely control missions. 

In having humans occupy a space station
near the distant planet targeted for explo-
ration, humans would deploy and control
intelligent machines on the planet’s sur-
face. The machines will need to give the
humans a true sensory experience of actu-
ally being on the planet. These machines
will extend and magnify human abilities by
seemingly placing humans in remote envi-
ronments. The experiences of the space
station’s human operators could be pack-
aged and sent to Earth, giving earthbound
scientists the same experience. These
remotely deployed systems might provide
sensory inputs directly to the nervous sys-
tem of humans and intercept signals from
humans as feedback controls. 

Currently, the computing requirements
to carry the data and intelligence on future
missions combine with radiation effects
and extremely low wattage environments to
make safe, cost-effective long-distance
missions unattainable. Revolutionary
advances must occur in almost every area
of fundamental computer science. 

Levels of reasoning
We can determine the extent to which a

system performs cognitive functions based
on a framework of reasoning levels. In The
Math Gene, Keith Devlin describes three
types of reasoning found in living organ-
isms. In stimulus-response, the most primi-
tive form, an organism can process an exter-
nal stimulus and determine an appropriate
response. Some S-R activities are so primi-
tive that they are viewed as reflex rather than
reasoning. When you touch a hot stove, you
instinctively pull away, with little or no con-
sideration of the situation. 

Other forms of S-R reasoning are not so
reflexive. Consider the situation of facing
an impending head-on collision in traffic (a
stimulus). Given some ample period of
available time prior to impact, in this situa-
tion you will most likely spend a few sec-
onds considering the options for taking
evasive action (the response) to determine
the best possible response. 

Stimulus-stimulus, a more sophisticated
form of reasoning, occurs when an organ-
ism receives a stimulus and, in turn, pro-
duces a stimulus for another organism or
some tool or machine. In the head-on colli-
sion situation, once you’ve determined the
best option for evasive action, you will
produce the stimuli to cause your vehicle to

avoid the oncoming vehicle. Therefore, the
response in the S-S reasoning is a stimulus
to control the vehicle to avoid the collision.
From an historical perspective, note the S-S
reasoning required by humans when using
tools in the agrarian and industrial ages.
Inventing the tools and determining, for
example, the role of the seasons in plant
growth, requires a more sophisticated form
of reasoning.

One simple view of offline reasoning,
the most sophisticated form of reasoning, is
to envision humans as having a primitive
brain that performs the S-R and S-S rea-
soning. This primitive brain deals with
external stimuli and cannot originate
thoughts that are not triggered by outside
occurrences. Now envision a more sophis-
ticated brain that spends its time monitor-
ing the behavior of the primitive brain—
reflecting on and analyzing situations. 

In the head-on collision example, O-L
reasoning might result in trying to deter-
mine how to avoid future head-on colli-

sions. Using O-L reasoning, you might
invent mechanisms on the road or in the
vehicles that would reduce the possibility
for head-on collisions. Perhaps these inven-
tions come to mind as a delayed S-R func-
tion. Nonetheless, we can characterize the
separate analysis and reflection leading to
invention as O-L reasoning. Observation
and sophisticated analysis leading to dis-
covery and invention is O-L reasoning and
represents man’s creative ability.

The major successes in machine-based
reasoning have occurred in S-R and S-S
reasoning functions. Even systems capable
of deciding effective workarounds in the
face of system and subsystem failures are
basically performing S-S reasoning. Fur-
thermore, these successes typically arise in
narrow and well-defined problem domains.
O-L reasoning remains the exclusive
province of humans.

To advance the state of the art in human-
machine systems, we need advances in
automated reasoning, human-centered com-
puting, and intelligent data understanding.
When we perform reasoning at any level, it
is based on filtering data—observing a very
small segment of the electromagnetic spec-
trum—and determining causal links in the
data. Even when we recoil from the hot
stove, we have quickly determined the rela-
tionship between our pain and the fact that
it is being caused by our proximity to the
stove. 

Intelligent data understanding is key to
our ability to construct future intelligent
human-machine systems. Advances in
automated reasoning that push the current
boundaries of system autonomy are re-
quired so that machines can perform reflex-
ive (S-R) activities robustly. The degree to
which we can advance automated reason-
ing to fulfill other levels of reasoning (such
as S-S and O-L) are key to the future suc-
cess of space explorations. 

Finally, the extent to which we can view
the human and machine as a seamless sys-
tem—where humans are free to do what
they do best, such as O-L reasoning, and
machines do what they do best—will also
help determine how well we effectively
explore distant places in space.

Automated reasoning
In the past, the success of semiauton-

omous system behavior, more often than
not, has corresponded to how well system
designers could predict situations the system
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might encounter. If the situation occurs, the
software provides a predetermined course of
action. At a superficial level, we might view
this approach as similar to raising a child. A
parent might instruct the child in how to
respond appropriately in some given situa-
tion. For instance, the child might learn that
he or she should not strike a friend, even if
the friend strikes first. The parent might
attempt to predict a large number of varying
situations and “program” the child with
appropriate responses. 

Raising a child this way is similar to the
way semiautonomous systems have been
programmed to operate on past missions.
But with this approach, the resulting sys-
tems have significant difficulty contending
with unforeseen events. Typically, the sys-
tems fail in these situations: They are unable
to contend with this degree of uncertainty.
This is a significant difficulty because
exploration is fraught with uncertainties.
How can anyone accurately predict all situa-
tions that might arise when engaged in
exploration, particularly in-situ exploration?
Furthermore, how can future missions vastly
decrease their reliance on the earthbound
safety nets represented by mission
controllers?

Recent advances in model-based reason-
ing show great promise for dealing with the

forms of uncertainty facing space explo-
ration. The approach involves building sys-
tems that have a model of their environ-
ment. It resembles differing approaches to
child-rearing that focus on raising children
in a manner where they can operate using
simpler guiding principles, such as, “treat
others as you would like to be treated.”
These guiding principles provide for a
more robust approach that can effectively
contend with uncertainties. The system
designer need not predict every circum-
stance that might arise. Instead, a modeling
approach improves the system’s ability to
respond and adapt to uncertain situations.
Through recent program development,
NASA is addressing this important area of
computer science research.

Intelligent data understanding
Currently, NASA receives two terabytes

of data per day from Earth-observing satel-
lites alone. NASA can acquire and store
vast amounts of data, but the sheer amount
is stressing our ability to analyze this data.
We can view these vast data sets as empiri-
cal data. Scientists typically endeavor to
reduce empirical observations to concise
theories, which explain the observations.
NASA’s goals include revolutionary
approaches that provide theory-based
access to these data sets. 

NASA’s data are not always contained in
a database. In fact, most data NASA
acquires is contained in flat files that pos-
sess format information in their headers.
Traditional approaches to data mining and
knowledge discovery are, therefore, not
always relevant to NASA’s needs. A major
result in this program element would be if
we could reduce these datasets to much
smaller representations of content of a
more algorithmic nature. [We could view
these algorithms as concise statements of
the data—providing more manageable rep-
resentations of the data that should lead to
better understanding—and perhaps might
be capable of reproducing the datasets.]
Thus these algorithmic units might result in
significant data compression.

The Santa Fe Institute is investigating
the relationship between theories and the
amount of data the theories explain. They
are analyzing these relationships through
an application of Kolmogorov’s Complex-
ity measure, called algorithmic information
content. Given a particular message string,
the programs that will print the string and

then halt are identified. The length of the
shortest program is called the string’s AIC. 

We can envision a ratio where the short-
est program’s size—the number of charac-
ters—serves as the numerator and the
message’s size—the number of characters
in the program’s output—serves as the
denominator. For example, a program that
computes millions of the digits of pi will
result in a fraction close to zero. A mes-
sage that is not the product of a formula or
algorithm will simply be a print statement
in which the entire message is a literal. In
such cases, the ratio approaches one. One
approach to data understanding might
attempt to discover ways for analyzing
data to identify the shortest program that
can produce the data. These algorithmic
units could then serve as the “theories”
explaining the data and could result in
data compression.

Fundamental results here should have
wide application, providing new analyti-
cal tools to assist scientists in understand-
ing space and Earth science data, and
engineers in understanding vehicle and
instrument maintenance data. Clearly,
application to other types of data, such as
Internet databases, is a potential side
effect of research in this area. In terms of
the vision we’ve discussed, intelligent
data understanding is a crucial require-
ment that needs to be addressed for future
space exploration. The ability to establish
causal links in data is crucial—even at the
S-R reasoning level.

On future missions, vehicle and person-
nel health and safety requirements will
require the distillation and automatic
analysis of large amounts of sensor data.
Tomorrow’s missions cannot rely on Earth-
based controllers to perform data reduction
and analysis. Furthermore, the astronauts
will need to analyze and understand large
amounts of scientific data as it is acquired
during the mission. Quick analysis will let
them perform just-in-time exploration,
experimentation, and other scientific activi-
ties, based upon newly acquired scientific
understanding. 

Clearly, there is both a bandwidth and a
time-delay problem. Given unlimited band-
width in data transmission, we must still
contend with the round trip time delays to
Earth. Revolutionary advances to perform
quick analysis and distillation to identify
causal relationships in the data at its source
are crucial to achieving the degree of
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Figure 2. In 1999, the NASA Deep Space
1 Mission flew the Remote Agent
Experiment, demonstrating the first
use of Autonomy to control a spacecraft.



autonomy needed on future missions that
are both distant and complex.

Human-centered computing
Advances in automated reasoning will

certainly affect NASA’s ability to deploy
robotic platforms into deeper space. These
advances will also improve NASA’s ability
to deploy humans into long-distance explo-
ration missions. As an example mission,
consider the human exploration of Mars
(see Figure 3). Because of the communica-
tion delays inherent in such a mission,
astronauts and their mechanized physical
and mental extensions will need to exercise
greater autonomy. 

The goals of human-centered computing
research include system design approaches
that take into account the level of intelli-
gence and capability of the systems deployed,
together with the cognitive and perceptual
abilities of the astronauts. The result is
optimal systems of humans and machines
where the machines do what they do best,
freeing humans to do the more creative
activities that they do best.6

To further explore this revolutionary
approach to systems design, consider past
epochs of human experience.7 In agrarian
society, humans equaled physical labor.
Because humans spent most of their time
performing labor, they had very little time
left to perform advanced problem solving,
theory formulation, and the other more
creative activities required for invention
and discovery. 

In industrial society, machines began per-
forming physical labor and humans served as
their brains. Machines extended and magni-
fied the physical abilities of people. Humans
were freer to perform advanced cognitive
activities during this epoch, and science
made great strides. In the information age,
the human brain is extended and enhanced
by a machine—the computer. Even trivial
applications significantly extend human
capabilities. Knowledge and the application
of knowledge are embodied in software. For
example, many people now prepare their
taxes aided by software tools having much of
a tax expert’s skill and knowledge. 

As system intelligence increases, comput-
ers can perform the more mundane and
lower-level reasoning, freeing humans to
perform more advanced and creative cogni-
tive functions. In future exploration
missions, humans cannot be mired in the
details of mission operations or even vehicle

health and maintenance. Humans must be
free to perform a mission’s discovery objec-
tives. Humans excel at putting seemingly
disjointed concepts together—the types of
cognitive activities that are at the heart of
invention and discovery. Computers do not
excel at these kinds of activities, but do excel
and outperform humans on more routine and
sometimes tedious mental activities.

Results in this area will affect not only
human exploration of distant planets, but
also the abilities of humans on Earth, per-
forming such activities as mission opera-
tions and air traffic control. All NASA-
relevant computer science research
contributes to and converges under the
human-centered computing research focus.

Nontraditional computing
Size, weight, energy consumption prob-

lems, and space hazards interfere with the
ability to perform space-based computa-
tions. The possibilities of quantum and
molecular computing provide answers to
some of NASA’s concerns about comput-
ing in space. 

Offsetting the radiation and solar effects
on computing is the massive parallelisms
these approaches might offer. The size,
weight, and power consumption concerns
are also improved by these newer

approaches to computing architectures. Per-
haps the most important benefit is the new
computational models and computer lan-
guages that these approaches might imply. 

Revolutionary computing approaches
differ radically from the traditional von Neu-
mann and even the more conventional non-
von Neumann approaches to architecture. As
such, the computational models implied
might provide radically new insights into
problem solving—even possibly helping
scientists find tractable solutions to problems
for which only intractable algorithms are
currently known. These algorithms might
allow for feasible implementation within the
constraints of current technologies. 

More straightforward solutions to prob-
lems might result. (Currently solutions to
these problems are approximate solutions—
due to the intractability of the problems—
making them much more complex to
develop.) The revolutionary computing
program element focuses not on building
quantum or molecular computers, but on
the computational models and languages
implied by these approaches, as well as in
the development of specific NASA-relevant
algorithms that would allow for the imme-
diate exploitation of these device technolo-
gies if and when they become available.
(See the “An example” sidebar.) 

MARCH/APRIL 2002 computer.org/intelligent 67

Figure 3. The Mars Smart Lander Mission will include an autonomous rover capable of
traversing long distances with relatively infrequent command cycles from Earth.



Organizing the community
The computer science community must

face market forces, which could ultimately
impede its ability to perform state-of-the-art
research. To combat the potential for stagna-
tion, the research community continues to
need a major force to provide direction and
leadership in key areas. In particular, due to
the aforementioned market forces and in
spite of excellent efforts to advance com-
puter science research through programs
funded by NASA and other agencies, the
theoretical computer science community
has, for the most part, lacked a significant
and organized experimental community. 

Without an experimental community, it
is difficult to chart progress and provide

convincing evidence of a theoretical
result’s significance. NASA seeks to
advance the notion that hard application
areas could be an excellent substitute for
experiment. NASA has an excellent range
of hard applications, and these applica-
tions converge with the applications
needed in other agencies.

Just as experiments provide for the test-
ing of theories in the physical sciences,
hard applications can provide the experi-
mental testbeds for the theories arising out
of computer science. Therefore, in addition
to providing funding for some of the most
promising computer science research,
NASA can help advance computer science
research through its service as a pervasive

and organized experimental community to
test computer science results.

Software engineering research
and practice

Basic research is most likely to result in
prototypes and proofs of concepts. Proto-
types can serve to perform preliminary tests
against hard applications. However, the
most promising results must be matured
further so that the theoretical results embod-
ied in software can be tested against more
substantial applications and problems. The
winning approaches must be matured—to a
level of flight readiness or a similar level of
production quality software. 

Researchers are unlikely to produce near-
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NASA Ames Research Center has led in the development of a
neural network-based Intelligent Flight Control system. News
reports concerning the IFC software have shown a test pilot
flying a plane with a simulated loss of a wing surface. 

To simulate the loss of an entire wing, the test flight airplane
can position an airfoil in front of the main wing surface. The
airfoil carefully positioned creates turbulence that renders the
main wing ineffective—as if it were completely removed from
the fuselage. The plane goes out of control. When the IFC soft-
ware is enabled, the pilot can regain control of the aircraft,
even though it is “severely damaged.” Clearly, the test pilot’s
skills are magnified and extended. 

The IFC system is a good example of model-based reasoning—
automated reasoning—insofar as the system is based on a model
of flight. The system can integrate into a fly-by-wire aircraft and
learn its flight characteristics through observation of pilot inputs
and aircraft response. In doing so, the system exemplifies intelli-
gent data understanding through its ability to establish and learn
the causal links between inputs and aircraft response. 

The system is also an example of human-centered comput-
ing because it magnifies and extends a human’s ability to fly a
seriously damaged aircraft. Extending the skills of a test pilot is
one thing, but extending the skills and the pertinent mental
acuity of a novice or nonpilot is a different matter altogether.

Several people—pilots and nonpilots alike—have flown a
“full-up” simulation of an F-15 at NASA Ames Research Center
(see Figure A). A full-up simulation is the type of simulator in
which pilots are trained to fly new aircraft. The simulators are
large, fitting only in a multistory bay, and provide realistic
visual and motion effects. Furthermore, they are able to simu-
late varying effects on the plane’s surfaces and indicate realis-
tic aircraft responses to these effects. Of course one of the
effects on the plane’s surfaces are the pilot’s inputs to the air-
craft’s control surfaces.

The subjects of the Ames simulation study were quickly
taught and checked out on landing the aircraft under calm
conditions from a good approach to San Francisco Airport
(SFO). Most subjects could land the plane very well. Once
checked out under normal flight conditions, the simulation is
reset. The subjects are placed back on approach into SFO. Next,
they experience a simulated failure of all control surfaces. The
only operable control elements to the plane were the spoilers
and the engines. 

The plane is clearly out of control and efforts to regain con-
trol have no effect whatsoever. Finally, the IFC software is
engaged. The controls are not as crisp as before. However, the
subjects are typically able to regain control of the aircraft and
perform hard landings at SFO. There would have been no
injuries in these landings. The subjects’ abilities were clearly
extended and magnified by the IFC software: a good example
of human-centered computing.

An Example

Figure A. Dryden Space Flight Center: F-15 modifications to test
fly IFC software.



MARCH/APRIL 2002 computer.org/intelligent 69

production-quality software. Therefore,
NASA is also determining better ways to
transition the fundamental results produced
by the research to products. In terms of soft-
ware engineering practice, we believe that a
different model of software engineering
would help a great deal. A proof-of-concept
arising from the theoretical community,
tested against a hard application, will not
necessarily be transitioned into practice. 

To take an idea from proof-of-concept and
actually use it on board an aircraft or a space-
craft is a major undertaking. To address this
issue, some elements of software engineer-
ing need redefinition or refinement. Theo-
rists are not likely to take their idea all the
way to product. Software engineers will do
that. The notion of joint application develop-
ment should expand to include more than
problem domain experts. This process
should also include the theorists who devel-
oped the idea that is being taken to product. 

This is not a new idea. Years ago,
Richard Feynman, while working at Los
Alamos, was dispatched to Oakridge,
where engineers were building the plants to
produce the materials for the atom bomb.
The engineers needed to be briefed on the
theoretical aspects and context within
which they were working. After the brief-
ing, the engineers could correct serious
problems in their initial designs and ulti-
mately construct the plants that served a
major role in winning World War II.

Furthermore, efforts to identify formal
classes of software based on their associ-
ated validation and verification require-
ments are needed. These classes should
then serve as the basis for specialized
process models and tools. The classes and
their associated models will also be a
research focus of the center.

Examples of classes:

• Ground-based information systems have
more traditional verification and valida-
tion requirements and recommend well-
known, existing software process models.

• Parallel systems require modeling beyond
traditional verification and validation to
discover anomalies due to concurrency,
such as deadlock or race.

• Onboard flight systems require poten-
tially all of the above plus extensive
flight simulation and flight test.

Without process models and tools that
are more sensitive to classes of software,

the repeatable development of reliable
software will continue to be difficult to
achieve.

NASA is entering a new age of explo-
ration. We are transitioning from science
dominated by fly-by and orbital (remote
science) measurements to in-situ or contact
science measurements. We are transition-
ing from analyzing data primarily from
single instruments to merging and extract-
ing information from loosely coordinated
fleets of spacecraft with multiple instru-
ments. We are transitioning from central-
ized hierarchical control of spacecraft to
mixed-initiative teams of humans and
automation. 

These transitions are driven as much by
economics and policy as they are by sci-
ence objectives. To accomplish these tran-
sitions and achieve the agency’s mission
goals, we need to deploy a new generation
of technologies drawn from the computa-
tional sciences. With few exceptions,
deploying these technologies will result in
a revolutionary change in the way NASA
designs and executes future missions,
rather than an evolutionary change.
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