
Linear-Time Algorithms in Memory HierarchiesKenneth W. Regan�State University of New York at Bu�aloMay 1994AbstractThis paper studies linear-time algorithms on a hierarchical memory modelcalled Block Move (BM), which extends the Block Transfer (BT) model ofAggarwal, Chandra, and Snir, and which is more stringent than a pipeliningmodel studied recently by Luccio and Pagli. Upper and lower bounds are shownfor various data-processing primitives, and some interesting open problems aregiven.1 IntroductionRecent years have seen marked dissatisfaction with the computational realism ofthe classic machine models, such as Turing machines or the standard integer RAM(see [13, 12]). Many algorithms that theoretically run in linear time on the RAMscale non-linearly when it comes time to implement them. Cook [5, 6] proposedreplacing the usual unit-cost RAM measure by the log-cost criterion, by which anoperation that reads an integer i stored at address a is charged log i+log a time units.Aggarwal, Alpern, Chandra, and Snir [1] went further by introducing a parameter� : N ! N called a memory access cost function, such that the above operationcosts 1 +�(a) time units. Note that this still treats register contents i as having unitsize. Besides �(a) = log a, they studied the parameters �d(a) = a1=d, which modelthe asymptotic latency of memory laid out on a d-dimensional grid.1 To allow forpipelining, Aggarwal, Chandra, and Snir [2] de�ned the Block Transfer (BT) modelwith a special instruction copy [a�m: : : a] into [b�m: : : b];which is charged m + maxf�(a); �(b) g time units. In the BT, every function thatdepends on all bits of the input has time lower bounds of 
(n log� n) under �log,�Author's address: Department of Computer Science, University at Bu�alo, 226 Bell Hall, Bu�aloNY 14260-2000, USA. E-mail: regan@cs.bu�alo.edu; tel. (716) 645-3189. Part of this work wassupported by NSF Grant CCR-90112481The cited authors write f in place of � and � in place of 1=d.1




(n loglog n) under �d (for all d > 1), and 
(n log n) under �1 [2]. Hence virtually noalgorithms can be called linear-time on the BT. Luccio and Pagli [8] argued that thebene�ts of pipelining need not be limited to individual block-transfers. Their LPMmodel is a RAM with m = nO(1) registers available on inputs of size n, and O(logm)delay for accessing any register, irrespective of its address.None of these models, however, takes the complexity of dealing with real dataat the bit-level into account. We give such a model, and investigate fundamentallist-processing operations at the bit level, under the memory access cost functions �d.Then we give a Kolmogorov-complexity technique that may impact on what Aggarwaland Vitter [3] call the \challenging open problem" of extending the lower-boundresults of theirs and other papers to models that \allow arbitrary bit-manipulationsand dissections of records."2 The Block Move (BM) ModelThe BM makes three important changes to the BT. First, units of data are charactersrather than integers, and are held in numbered cells on a single tape. Second, any�nite transduction S, not just copy, can be applied to the data stream in a blockmove S [a1 : : : b1] into [a2 : : : b2]:Formally S is a deterministic generalized sequential machine (DGSM), as de�ned in[7]. If z is the string formed by the characters in cells a1 : : : b1, then S(z) is writteninto the block a2 : : : b2 beginning at a2. The validity condition for the move is thatthe intervals [a1 : : : b1] and [a2 : : : b2] be disjoint, and the strict boundary condition isthat the output neither overows nor underows [a2 : : : b2], i.e., jS(z)j = jb2� a2j+1.Third, the BM provides shu�e and reversal operations, the latter by allowing b1 < a1and/or b2 < a2 in block moves. Perfect bit-shu�e is implemented by allowing theblank B to be a writable character in block moves, with the proviso that every Bappearing in the output stream S(z) leaves the previous content of its target cellunchanged. Under a given cost function �, the charge for a block move is m+ �(c),where m = jzj = jb1 � a1j+ 1, and c = maxf a1; b1; a2; b2 g.Several particular machine forms of the BM are given in [10, 11]. As shownin [11], the BM is very robust : Under any �d function (d � 1 and rational), theseforms all simulate each other up to linear time, not just polynomial time. Evenmachines allowed to violate the validity and strict-boundary conditions are simulatedwith constant-factor overhead by machines that observe them. Thus the complexityclasses D�dTIME[t(n)] of functions computed in time O(t(n)) under �d are the samefor all these forms. Hence we may describe BM algorithms without reference tomachine-speci�c details. Other main points of distinction for the BM are that incontrast to the BT, many interesting functions are computable in linear time, evenunder the highest cost function �1(a) = a. The BM under �d is more realisticallyconstrained than the LPM under log-cost; it compromises between �xing the size oflinear blocks as in [3] and having unrestricted pipelining as in [8].2



3 Fundamental List OperationsNon-negative integers are encoded over � = f 0; 1 g in standard dyadic notation, withthe least signi�cant bit �rst (\leftmost"). Lists whose elements are nonempty 0-1strings are encoded using boundary markers #. In order not to obscure the mainideas, we abstract away the issue of space taken by these markers by extending �to an alphabet � that includes the characters 0# and 1#. � also includes a special\padding character" @ and its compound with #, plus a primed \alias" c0 for eachof the foregoing characters c. True, this often wastes a byte when a bit will do, butthe constant-factor is not at issue below.De�nition 3.1. A list is normal if its elements all have the same length m. A listis balanced there exists j � 0 such that for all i, 1 � i � n, 2j�1 < jxij � 2j . Tonormalize a list means to pad each of its elements out to the same length m, whileto rectify the list means to pad each element out to length the next power of 2.To illustrate timing considerations on the BM, consider the operation mem-ber(w;~x ). Comparing w separately with each member of ~x would incur access chargesfor each element addressed, and the sum total of these under �d could approach n1+1=d.Copying chunks of ~x into low-numbered cells (\cache memory") is better, but wouldstill not run in linear �d-time if ~x has many small elements. If, however, the list ~xis normal and jwj = m, a standard \recursive doubling" idea can be applied: Firstgenerate w#w#, w#w#w#w#, etc. in successive passes until the w-list is at leastas long as ~x. Then shu�e the two lists character-wise, and do all the comparisons in asingle sweep by a DGSM. This runs in linear time even under �1 (with the drawbackis using linear auxiliary memory). But what to do is ~x is not normal? Normalizingan unbalanced list can nearly square the total bit-length n, but rectifying a list, ornormalizing a balanced list, at most doubles the length, and we have:Proposition 3.1 A list can be recti�ed, and a balanced list normalized, in linear�1-time and O(logn) block moves.Proof. Suppose �rst that ~x is balanced. Let m0 := 2j from the de�nition of \bal-anced," and let n0 := rm0, which will be the length of the output list. In a single passover ~x, a BM M can produce the list ~xe whose ith element is xei if jxij is even, andxei@ if jxij is odd. M places ~xe into cells n0=2:::n0�1 of a special \holding track," withunderows permitted. A second pass computes the list ~xo of odd bits of elements.M writes ~xo onto the main track and recurses on it, writing the \even pieces" to theholding track. The invariants on the downward recursion are that at each level ~xo isbalanced, and for each i, 1 � i � r, the ith element of the even piece has the samelength as the ith element of the odd piece. The downward recursion stops when eachelement of ~xo has length 1.The upward recursion maintains the invariant that the number k of marked char-acters in each element yi makes jyij+k a power of 2. At each upward step, M shu�es3



the leftmost unused piece ~xe with ~y. Corresponding elements have the same numberof bits owing to the downward invariant. A single right-to-left pass by a DGSM withtwo states s; t then makes the following transformations on pairs of bits (�rst bit from~xe): s(c; d) 7! (c; d)s s(@; d) 7! (d0)s s(c; d0) 7! (c0; d0)s s(@; d0) 7! (d0)tt(c; d) 7! (c0; d0)s t(c; d0) 7! (c0; d0)t:The DGSM is always in state s when it reaches the end of one pair of list elements andencounters a pair (c#; d#) or (@; d#) or (c#; d0#) or (@; d0#) that marks the boundaryof the next element. These are translated analogously as above. At the end of theupward recursion the original list is reconstituted with the correct number of trailingsymbols in each element primed.Finally, one more pass inserts the padding by translating primed characters c0 toc@. The recursion for an unbalanced list is similar, except that extra markers areused to indicate when a short element's length has been cut to 1.The padding characters are inserted into the middle, so that e.g. 10100 becomes101@0@0@. Since all elements of equal length are padded the same way, and since allxi with blog2 jxijc 6= blog2 jwjc can be marked for erasure during the recursion, this isgood enough forCorollary 3.2 All occurrences of a given string w in a given list ~x can be found andmarked in linear �1-time and O(log n) passes.However, to pad elements in front or in back, a further trick seems needed. Theshu�e of two r-element lists ~x and ~y equals x1#y1#x2#y2# : : :#xr#yr#.Proposition 3.3 Within the same asymptotic time bounds, the padding in Proposi-tion 3.1 can be made leading or trailing in each list element.Proof. Lemma 6.1(b) of [11] shows how two normal lists can be shu�ed in constant-many passes. (The idea is to make spare copies of both lists, overwrite the evenelements of one copy and odd elements of the other by @ symbols, triple each @symbol in one pass, and then overlay the four lists.) Then shu�e the output ofProposition 3.1 with a copy of itself, and in each successive pair of items, mark thepadding in one and the original of the other for erasure. This marking can be donein one pass by a DGSM that keeps track of parity, and the added work is linear.Binary addition and comparison can be done on the y by DGSMs after shu�ingarguments bitwise. The methods in all these results combine to implement the stan-dard algorithm for parallel pre�x sums, even making room for element growth due tocarries. 4



Theorem 3.4 Pre�x-sum, pre�x-maximum, and other \census" ([8]) operations onlists, can be computed in linear �1-time and O(log n) passes.Moreover, there is a straightforward extension to segmented pre�x-sum and other\scan" operations. By results of Blelloch [4] on expressing many other operations interms of pre�x-sum and pre�x-max, this is enough to prove that the BM e�cientlysimulates his integer-based scan model, except that each scan operation takesO(log n)block moves.4 MergingConsider normal lists ~x and ~y of size n = rm whose elements are sorted. De�ne thelists to have small elements if m = O(log n), and large elements if for some � > 0,m = 
(n�).Theorem 4.1 Under any cost function �d with d > 1, the problem of merging twolists with large elements can be solved in linear �d-time.Proof. Consider �rst the case m = r = n1=2. Then the obvious merge by piecemealcomparisons runs in linear time under �2, basically because Pn1=2i=1 (in1=2)1=2 = O(n).If now m = n1=4 and r = n3=4, the simple method takes �2-time n5=4. However,\two levels" of this method makes the time once-again linear: Mark the lists at everyinterval of n0 = n1=2 bits. Then each chunk has n1=20 elements, each of size n1=20 . Thesimple merge of the �rst chunks takes O(n0) time under �2. The �rst half of themerge of these two chunks is a correct initial segment of the �nal merged list, andis copied to a separate portion of memory, thus making room in the \cache" for anew chunk. The next chunk of n0 bits (from whichever list was exhausted �rst in theprevious step) is copied into the cache in one block move, and the process repeated.The previous analysis now applies to the time under �2 to bring down the chunks,and the overall time is linear.With m = n1=8, extending the above recursion to three levels gives linear timeunder �2. Working under higher cost functions �d with 1 < d < 2 has a similar e�ectto scaling down the element size. That is enough for the proof.Corollary 4.2 Sorting lists with large elements on the BM takes the same time under�d with d > 1 as the best sequential algorithms do under unit cost.This leaves two interesting problems: (1) Can lists with large elements be mergedin linear �1-time? (2) Can lists with small elements be merged in linear �d-time, forany d � 1? The results on sorting in [2] suggest a negative answer to (2) for all d, butdisallow bit operations on data in block transfers. The next section tries to extendtheir work. 5



5 Nonlinear Lower BoundsWe consider the problem of changing a given binary string x into a string y of thesame length n. Given a cost function � and a �xed set S of DGSMs available toa BM program, de�ne E�(x; y) to be the least t such that some sequence of blockmoves (with DGSMs in S) changes x to y in total �-time t. We always suppose Scontains copy and the single-cell operations S0; S1 which write 0 or 1. Also de�nee�(n) := maxfE�(x; y) : jxj = jyj = n g, and write ed(n) as short for e�d(n) (d � 1).In particular with x = 0n, E�(0n; y) is a notion of description complexity for y, andwe can �x x = 0n in de�ning e�(n).Theorem 5.1 For any �xed set S of block-move operations, e1(n) = �(n log n), andfor all d > 1, ed(n) = �(n loglog n).Proof Sketch. The upper bounds follow as in [2], and need only S0, S1, and copy.The lower bounds intuitively hold because an operation with max address a canbe speci�ed in O(log a) bits, but is charged �(a) � log a time. (Since there is nodisparity for � = �log, no matching lower bound of 
(n log� n), analogous to that in[2], is given for �log.)Details of the lower bound for d = 1: Given y, let P be a straight-line programsuch that P (0n) outputs y, and let ng(n) be the �1-time for this. Note that P itselfis a description of y. We will modify P into a short(er) description P 00. For eachi, 1 � i � k, call the tape interval [2i�1 : : :2i � 1] \region i." Cell 0 is also part ofregion 1, while cells 2k onward also count as being in region k. Say that a block moveis \charged in region i" if its max address a is in region i. At only a constant-factorcost, we may round charges in region i up to 2i, and add \dummy moves" to createP 0 such that every move by P 0 charged in some region i is followed by a move chargedin region i� 1, i, or i+1. Now for each i, 1 � i � k, de�ne N(i) to be the number ofsteps in P 0 charged in region i. There must exist some i such that 2iN(i) � ng(n)=k.Choose the greatest such i.Then N(i) � ng(n)=2i log n, and also for each j > i, N(j) > 2k�jg(n)=k. Themoves charged in regions j > i consume �1-time at least (k � i)2kg(n)=k. Sincen = 2k, the total �1-time available for all other moves is at most ng(n)(1�(k�i)=k) =ng(n)i= log n. By the \adjacency" condition imposed on P 0, all the moves charged inregions i and above fall into at most N(i) high segments of the program P 0. For eachhigh segment, let P 00 give: (1) the contents of cells [0 : : : 2i�1] prior to the �rst moveof the segment, and (2) the instructions executed by P in that segment. Finally, afterthe last high segment, append the �rst 2i�1 bits of y. This �nishes P 00.Elementary calculation then bounds the length of a straightforward encoding ofP 00 by g(n)log n [n+ C1i2k�i + C2i22k�i] = g(n)log n�(n);where C1 and C2 depend on kSk. Since there exist (many) strings y 2 �n such thatthe conditional Kolmogorov complexity K(yj0n) is � n, it follows that g(n) must be
(log n). 6



Corollary 5.2 (compare [2, 3]) There exist permutations of small-element liststhat cannot be realized in linear �d-time, for any d.Proof. Let N = n log n be the bit-length of the list. Since there are n! = 2�(n logn)permutations, some have Kolmogorov complexity �(N). The above proof, with input0n replaced by the list 1#2# : : :#n, shows that every straight-line BM programcomputing such a permutation requires time �(N logN) under �1, and �(N loglogN)under �d.We suspect, eyeing the time-space tradeo� arguments of Mansour, Nisan, andTiwari [9], that this should lead to non-linear lower bounds on �d-time for naturalfunctions such as sorting, string convolutions, FFTs, and universal hashing. This mayimpact on their conjecture that these functions require non-linear time on a Turingmachine. We also ask for lower bounds on testing element distinctness or on takingthe intersection of two lists.References[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model for hierarchicalmemory. In Proc. 19th Annual ACM Symposium on the Theory of Computing,pages 305{314, 1987.[2] A. Aggarwal, A. Chandra, and M. Snir. Hierarchical memory with block transfer.In Proc. 28th Annual IEEE Symposium on Foundations of Computer Science,pages 204{216, 1987.[3] A. Aggarwal and J. Vitter. The input-output complexity of sorting and relatedproblems. Comm. ACM, 31:1116{1127, 1988.[4] G. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.[5] S. Cook. Linear time simulation of deterministic two-way pushdown automata.In Proceedings, IFIP '71, pages 75{80. North{Holland, 1971.[6] S. Cook and R. Reckhow. Time bounded random access machines. J. Comp.Sys. Sci., 7:354{375, 1973.[7] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, andComputation. Addison{Wesley, Reading, MA, 1979.[8] F. Luccio and L. Pagli. A model of sequential computation with pipelined accessto memory. Math. Sys. Thy., 26:343{356, 1993.[9] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universalhashing. Theor. Comp. Sci., 107:121{133, 1993.7



[10] K. Regan. Machine models and linear time complexity. SIGACT News, 24:5{15, October 1993. Guest column, L. Hemachandra ed., \Compelxity TheoryColumn".[11] K. Regan. Linear time and memory e�cient computation, 1994. Revision ofUB-CS-TR 92-28, accepted to SIAM J. Comput.[12] P. van Emde Boas. Machine models and simulations. In J. Van Leeuwen, editor,Handbook of Theoretical Computer Science, pages 1{66. Elsevier and MIT Press,1990.[13] K. Wagner and G. Wechsung. Computational Complexity. D. Reidel, 1986.

8


