Linear-Time Algorithms in Memory Hierarchies

Kenneth W. Regan*
State University of New York at Buffalo

May 1994

Abstract

This paper studies linear-time algorithms on a hierarchical memory model
called Block Move (BM), which extends the Block Transfer (BT) model of
Aggarwal, Chandra, and Snir, and which is more stringent than a pipelining
model studied recently by Luccio and Pagli. Upper and lower bounds are shown
for various data-processing primitives, and some interesting open problems are
given.

1 Introduction

Recent years have seen marked dissatisfaction with the computational realism of
the classic machine models, such as Turing machines or the standard integer RAM
(see [13, 12]). Many algorithms that theoretically run in linear time on the RAM
scale non-linearly when it comes time to implement them. Cook [5, 6] proposed
replacing the usual unit-cost RAM measure by the log-cost criterion, by which an
operation that reads an integer ¢ stored at address a is charged log ¢ +log a time units.
Aggarwal, Alpern, Chandra, and Snir [1] went further by introducing a parameter
p: N — N called a memory access cost function, such that the above operation
costs 1 4 p(a) time units. Note that this still treats register contents ¢ as having unit
size. Besides u(a) = log a, they studied the parameters uy(a) = a'/?, which model
the asymptotic latency of memory laid out on a d-dimensional grid.! To allow for
pipelining, Aggarwal, Chandra, and Snir [2] defined the Block Transfer (BT) model

with a special instruction
copy [a—m...a] into [b—m...b],

which is charged m + max{ u(a), x(b) } time units. In the BT, every function that
depends on all bits of the input has time lower bounds of Q(nlog™n) under fi,,,

* Author’s address: Department of Computer Science, University at Buffalo, 226 Bell Hall, Buffalo
NY 14260-2000, USA. E-mail: regan@cs.buffalo.edu; tel. (716) 645-3189. Part of this work was
supported by NSF Grant CCR-9011248

!The cited authors write f in place of g and « in place of 1/d.

Q(nloglogn) under pq (for all d > 1), and Q(nlogn) under pq [2]. Hence virtually no
algorithms can be called linear-time on the BT. Luccio and Pagli [8] argued that the
benefits of pipelining need not be limited to individual block-transfers. Their LPM
model is a RAM with m = n®() registers available on inputs of size n, and O(logm)
delay for accessing any register, irrespective of its address.

None of these models, however, takes the complexity of dealing with real data
at the bit-level into account. We give such a model, and investigate fundamental
list-processing operations at the bit level, under the memory access cost functions pg.
Then we give a Kolmogorov-complexity technique that may impact on what Aggarwal
and Vitter [3] call the “challenging open problem” of extending the lower-bound
results of theirs and other papers to models that “allow arbitrary bit-manipulations
and dissections of records.”

2 The Block Move (BM) Model

The BM makes three important changes to the BT. First, units of data are characters
rather than integers, and are held in numbered cells on a single tape. Second, any
finite transduction S, not just copy, can be applied to the data stream in a block
move

S [Gl...bl] into [GQ...bQ].

Formally S is a deterministic generalized sequential machine (DGSM), as defined in
[7]. If z is the string formed by the characters in cells ay ...by, then S(z) is written
into the block as ... by beginning at ay. The wvalidity condition for the move is that
the intervals [a; ...b;] and [az...by] be disjoint, and the strict boundary condition is
that the output neither overflows nor underflows [az ... bs], i.e., [S(2)| = |bs — az] + 1.
Third, the BM provides shuffle and reversal operations, the latter by allowing b; < a4
and/or by < ay in block moves. Perfect bit-shuffle is implemented by allowing the
blank B to be a writable character in block moves, with the proviso that every B
appearing in the output stream S(z) leaves the previous content of its target cell
unchanged. Under a given cost function p, the charge for a block move is m + u(c),
where m = |z| = |by — a1| + 1, and ¢ = max{ aq, by, az, by }.

Several particular machine forms of the BM are given in [10, 11]. As shown
n [11], the BM is very robust: Under any g4 function (d > 1 and rational), these
forms all simulate each other up to linear time, not just polynomial time. Even
machines allowed to violate the validity and strict-boundary conditions are simulated
with constant-factor overhead by machines that observe them. Thus the complexity
classes Dy TIME[t(n)] of functions computed in time O(#(n)) under 4 are the same
for all these forms. Hence we may describe BM algorithms without reference to
machine-specific details. Other main points of distinction for the BM are that in
contrast to the BT, many interesting functions are computable in linear time, even
under the highest cost function gi(a) = a. The BM under p, is more realistically
constrained than the LPM under log-cost; it compromises between fixing the size of
linear blocks as in [3] and having unrestricted pipelining as in [8].

3 Fundamental List Operations

Non-negative integers are encoded over ¥ = { 0,1 } in standard dyadic notation, with
the least significant bit first (“leftmost”). Lists whose elements are nonempty 0-1
strings are encoded using boundary markers #. In order not to obscure the main
ideas, we abstract away the issue of space taken by these markers by extending X
to an alphabet I' that includes the characters 0% and 1#. I' also includes a special
“padding character” @ and its compound with #. plus a primed “alias” ¢ for each
of the foregoing characters c. True, this often wastes a byte when a bit will do, but
the constant-factor is not at issue below.

Definition 3.1. A list is normal if its elements all have the same length m. A list
is balanced there exists 7 > 0 such that for all 7, 1 <1 < n, 277! < |z;] < 2/. To
normalize a list means to pad each of its elements out to the same length m, while
to rectify the list means to pad each element out to length the next power of 2.

To illustrate timing considerations on the BM, consider the operation mem-
ber(w, 2). Comparing w separately with each member of ¥ would incur access charges
for each element addressed, and the sum total of these under jig could approach n'+/¢,
Copying chunks of ¥ into low-numbered cells (“cache memory”) is better, but would
still not run in linear pg-time if ¥ has many small elements. If, however, the list Z
is normal and |w| = m, a standard “recursive doubling” idea can be applied: First
generate w#Hw#, wHwHwHwH, etc. in successive passes until the w-list is at least
as long as ¥. Then shuffle the two lists character-wise, and do all the comparisons in a
single sweep by a DGSM. This runs in linear time even under g (with the drawback
is using linear auxiliary memory). But what to do is & is not normall’ Normalizing
an unbalanced list can nearly square the total bit-length n, but rectifying a list, or
normalizing a balanced list, at most doubles the length, and we have:

Proposition 3.1 A list can be rectified, and a balanced list normalized, in linear
pa-time and O(logn) block moves.

Proof. Suppose first that Z is balanced. Let m’ := 27 from the definition of “bal-
anced,” and let n’ := rm/, which will be the length of the output list. In a single pass
over ¥, a BM M can produce the list ¢ whose ith element is «¢ if |z;| is even, and
£Qif || is odd. M places Z° into cells n’/2...n" — 1 of a special “holding track,” with
underflows permitted. A second pass computes the list Z° of odd bits of elements.
M writes ¥° onto the main track and recurses on it, writing the “even pieces” to the
holding track. The invariants on the downward recursion are that at each level ¥ is
balanced, and for each ¢, 1 <17 < r, the ith element of the even piece has the same
length as the ¢th element of the odd piece. The downward recursion stops when each
element of #° has length 1.

The upward recursion maintains the invariant that the number & of marked char-
acters in each element y; makes |y;| + k a power of 2. At each upward step, M shuffles

the leftmost unused piece ¥ with ¢. Corresponding elements have the same number
of bits owing to the downward invariant. A single right-to-left pass by a DGSM with

two states s, ¢ then makes the following transformations on pairs of bits (first bit from
T°):

s(e,d) — (e,d)s s(Q,d)— (d)s s(e,d)— (d,d)s s(Q,d)— (d)
tle,d) — (d,d)s t(e,d')— (,d)i.

The DGSM is always in state s when it reaches the end of one pair of list elements and
encounters a pair (c¢#,d#) or (@, d*) or (¢#,d'#) or (@, d'#) that marks the boundary
of the next element. These are translated analogously as above. At the end of the
upward recursion the original list is reconstituted with the correct number of trailing
symbols in each element primed.

Finally, one more pass inserts the padding by translating primed characters ¢’ to
c¢@. The recursion for an unbalanced list is similar, except that extra markers are
used to indicate when a short element’s length has been cut to 1. O

The padding characters are inserted into the middle, so that e.g. 10100 becomes
101@0@0@Q. Since all elements of equal length are padded the same way, and since all
x; with [log, ||| # |log, |w|] can be marked for erasure during the recursion, this is
good enough for

Corollary 3.2 All occurrences of a given string w in a given list T can be found and
marked in linear pi-time and O(logn) passes. O

However, to pad elements in front or in back, a further trick seems needed. The
shuffle of two r-element lists ¥ and § equals a1 #y1 FxoHy# . . . #a,#y, 7.

Proposition 3.3 Within the same asymptotic time bounds, the padding in Proposi-
tion 3.1 can be made leading or trailing in each list element.

Proof. Lemma 6.1(b) of [11] shows how two normal lists can be shuffled in constant-
many passes. (The idea is to make spare copies of both lists, overwrite the even
elements of one copy and odd elements of the other by @ symbols, triple each @
symbol in one pass, and then overlay the four lists.) Then shuffle the output of
Proposition 3.1 with a copy of itself, and in each successive pair of items, mark the
padding in one and the original of the other for erasure. This marking can be done
in one pass by a DGSM that keeps track of parity, and the added work is linear. []

Binary addition and comparison can be done on the fly by DGSMs after shuffling
arguments bitwise. The methods in all these results combine to implement the stan-
dard algorithm for parallel prefix sums, even making room for element growth due to
carries.

Theorem 3.4 Prefiz-sum, prefiz--mazimum, and other “census” ([8]) operations on
lists, can be computed in linear pq-time and O(logn) passes.

Moreover, there is a straightforward extension to segmented prefix-sum and other
“scan” operations. By results of Blelloch [4] on expressing many other operations in
terms of prefix-sum and prefix-max, this is enough to prove that the BM efficiently
simulates his integer-based scan model, except that each scan operation takes O(logn)
block moves.

4 Merging

Consider normal lists & and i of size n = rm whose elements are sorted. Define the
lists to have small elements if m = O(logn), and large elements if for some ¢ > 0,

m = Q(n).

Theorem 4.1 Under any cost function pg with d > 1, the problem of merging two
lists with large elements can be solved in linear pg-time.

Proof. Consider first the case m = r = n'/2. Then the obvious merge by piecemeal
comparisons runs in linear time under p,, basically because Z;i/f (in'/%)1/2 = O(n).

If now m = n'/* and r = n®*, the simple method takes po-time n®/*. However,
“two levels” of this method makes the time once-again linear: Mark the lists at every
interval of ng = n'/? bits. Then each chunk has né/Z elements, each of size n(l)/Z. The
simple merge of the first chunks takes O(ng) time under ps. The first half of the
merge of these two chunks is a correct initial segment of the final merged list, and
is copied to a separate portion of memory, thus making room in the “cache” for a
new chunk. The next chunk of ng bits (from whichever list was exhausted first in the
previous step) is copied into the cache in one block move, and the process repeated.
The previous analysis now applies to the time under ps to bring down the chunks,
and the overall time is linear.

With m = n'/%, extending the above recursion to three levels gives linear time
under py. Working under higher cost functions pg with 1 < d < 2 has a similar effect
to scaling down the element size. That is enough for the proof. O

Corollary 4.2 Sorting lists with large elements on the BM takes the same time under
pg with d > 1 as the best sequential algorithms do under unit cost.

This leaves two interesting problems: (1) Can lists with large elements be merged
in linear pi-timel’ (2) Can lists with small elements be merged in linear p4-time, for
any d > 11" The results on sorting in [2] suggest a negative answer to (2) for all d, but
disallow bit operations on data in block transfers. The next section tries to extend
their work.

5 Nonlinear Lower Bounds

We consider the problem of changing a given binary string = into a string y of the
same length n. Given a cost function g and a fixed set S of DGSMs available to
a BM program, define F,(x,y) to be the least ¢ such that some sequence of block
moves (with DGSMs in §) changes @ to y in total p-time t. We always suppose S
contains copy and the single-cell operations Sg, 57 which write 0 or 1. Also define
eu(n) == max{ E,(z,y) : |x| = |y| = n}, and write e4(n) as short for e, ,(n) (d > 1).
In particular with & = 0", £,(0",y) is a notion of description complexity for y, and
we can fix @ = 0" in defining e, (n).

Theorem 5.1 For any fived set S of block-move operations, e;(n) = O(nlogn), and
forall d > 1, eq(n) = O(nloglogn).

Proof Sketch. The upper bounds follow as in [2], and need only Sp, S7, and copy.
The lower bounds intuitively hold because an operation with max address a can
be specified in O(log a) bits, but is charged p(a) > loga time. (Since there is no
disparity for g = piog, no matching lower bound of Q(nlog™n), analogous to that in
2], is given for fiog.)

Details of the lower bound for d = 1: Given y, let P be a straight-line program
such that P(0") outputs y, and let ng(n) be the y;i-time for this. Note that P itself
is a description of y. We will modify P into a short(er) description P”. For each
i, 1 <14 < k, call the tape interval [2°=!...2° — 1] “region .” Cell 0 is also part of
region 1, while cells 2% onward also count as being in region k. Say that a block move
is “charged in region ¢” if its max address a is in region ¢. At only a constant-factor
cost, we may round charges in region 7 up to 2!, and add “dummy moves” to create
P’ such that every move by P’ charged in some region ¢ is followed by a move charged
in region ¢ — 1, ¢, or ¢ + 1. Now for each ¢, 1 < ¢ < k, define N(¢) to be the number of
steps in P’ charged in region 7. There must exist some 7 such that 2°N(z) < ng(n)/k.
Choose the greatest such 1.

Then N(i) < ng(n)/2'logn, and also for each j > i, N(j) > 27g(n)/k. The
moves charged in regions j > i consume j;-time at least (k — i)2%g(n)/k. Since
n = 2% the total j;-time available for all other moves is at most ng(n)(1—(k—1)/k) =
ng(n)i/logn. By the “adjacency” condition imposed on P’, all the moves charged in
regions ¢ and above fall into at most N(7) high segments of the program P’. For each
high segment, let P” give: (1) the contents of cells [0...271] prior to the first move
of the segment, and (2) the instructions executed by P in that segment. Finally, after
the last high segment, append the first 2:=! bits of y. This finishes P”.

Elementary calculation then bounds the length of a straightforward encoding of

p by

ogn logn

where Cy and Cy depend on ||S||. Since there exist (many) strings y € ¥" such that
the conditional Kolmogorov complexity K (y|0™) is > n, it follows that g(n) must be

Q(logn). O

Corollary 5.2 (compare [2, 3]) There exist permutations of small-element lists
that cannot be realized in linear pg-time, for any d.

Proof. Let N = nlogn be the bit-length of the list. Since there are n! = 2°(*logn)
permutations, some have Kolmogorov complexity ©(N). The above proof, with input
0" replaced by the list 1#24# ...#n, shows that every straight-line BM program
computing such a permutation requires time ©(N log N) under z1, and O(N loglog N)
under pg. O

We suspect, eyeing the time-space tradeoff arguments of Mansour, Nisan, and
Tiwari [9], that this should lead to non-linear lower bounds on pg4-time for natural
functions such as sorting, string convolutions, FFT's, and universal hashing. This may
impact on their conjecture that these functions require non-linear time on a Turing
machine. We also ask for lower bounds on testing element distinctness or on taking
the intersection of two lists.

References

[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model for hierarchical
memory. In Proc. 19th Annual ACM Symposium on the Theory of Computing,
pages 305-314, 1987.

[2] A. Aggarwal, A. Chandra, and M. Snir. Hierarchical memory with block transfer.
In Proc. 25th Annual IEEE Symposium on Foundations of Computer Science,
pages 204-216, 1987.

[3] A. Aggarwal and J. Vitter. The input-output complexity of sorting and related
problems. Comm. ACM, 31:1116-1127, 1988.

[4] G. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.

[5] S. Cook. Linear time simulation of deterministic two-way pushdown automata.

In Proceedings, IFIP "71, pages 75-80. North—Holland, 1971.

[6] S. Cook and R. Reckhow. Time bounded random access machines. J. Comp.
Sys. Sci., 7:354-375, 1973.

[7] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison—Wesley, Reading, MA, 1979.

[8] F. Luccio and L. Pagli. A model of sequential computation with pipelined access

to memory. Math. Sys. Thy., 26:343-356, 1993.

[9] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal

hashing. Theor. Comp. Sei., 107:121-133, 1993.

[10] K. Regan. Machine models and linear time complexity. SIGACT News, 24:5-
15, October 1993. Guest column, L. Hemachandra ed., “Compelxity Theory
Column”.

[11] K. Regan. Linear time and memory efficient computation, 1994. Revision of

UB-CS-TR 92-28, accepted to SIAM J. Comput.

[12] P. van Emde Boas. Machine models and simulations. In J. Van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 1-66. Elsevier and MIT Press,
1990.

[13] K. Wagner and G. Wechsung. Computational Complexity. D. Reidel, 1986.

