
Enhancing e-Commerce with Intelligent Agents in Collaborative e-
Communities

Xiaojun Shen1, Shervin Shirmohammadi1, Chris Desmarais1, Nicolas D. Georganas1
and Ian Kerr2

1 Distributed and Collaborative Virtual Environments Research Laboratory (DISCOVER)
School of Information Technology and Engineering (SITE)

2 Faculty of Law
University of Ottawa, Canada

E-mail { shen | chrisd | shervin | georganas}@discover.uottawa.ca

Abstract

In this paper, we present the design and implementation
of and interdisciplinary research project involving an
intelligent agent-based framework for collaborative e-
commerce applications. A Multi-Agent System (MAS)
architecture for large collaborative e-commerce
environments is designed and developed, where a number
of geographically dispersed users (customers/merchants)
can participate. This architecture not only applies agent
technologies in eCommerce system in novel manners, but
also incorporates privacy law and legislation into its
technical design, and in that respect it is different from
other existing e-Commerce systems.

1. Introduction

Many existing e-commerce applications only provide
users with a relatively simple, browser-based interface to
access available products and services, which often lack
in the emulation of the social factor. The customers are
mainly kept separated and everyone is shopping, as if s/he
was in an empty shop. Thus, customers are not provided
with the same shopping experience, as they would be in
an actual store or mall. Shopping is a social activity
people enjoy doing along with friends and relatives. In
particular, it is likely that shopping is an activity that is
socially facilitated, meaning that when shopping in the
company of others, people engage in it more often and
enjoy it more. Marathe [1] states “people don’t like to
shop in an empty store.” To substantiate this opinion, he
cites a survey, which shows that 90% of shoppers prefer
to communicate with others while shopping. Warms et al
[2] argue for shopping communities because they
“increase stickiness (customer loyalty) [and] viral
marketing (word of mouth), reduce the cost of customer

acquisition, and drive higher transaction levels.”
Considering the current growth of e-commerce on the
Web and the desire to make shopping as easy, natural and
enjoyable as possible, it would be interesting to enhance
the way people currently shop on the web by adding
support for more collaboration between customers and
salespersons or among customers. Therefore, providing an
e-community web shopping experience makes on-line
shopping closer to the actual experience people have in
real shopping environments.

Traditionally, the term community refers to a location
where people with common interests gather to ask
questions, collaborate, or share social norms and
experiences. Because they are present in the same locale,
members can meet often to learn from each other by
sharing their explicit knowledge and revealing
information about their successes and failures. These
communities use web technologies as a vehicle for
disseminating knowledge and information quickly and
inexpensively as well as for global communication and
collaboration. Like traditional communities, e-
communities act as repositories of information for their
members. But what is better with e-communities is that
they can store a larger amount of important data. One of
the advantages of applying e-communities in e-commerce
applications is the enhanced interactivity between
merchants and buyers, and between customers and
visitors. It enables online merchants to offer features that
are lacking in most of today's e-commerce stores. For
example, the community online shopping mall makes it
easy for storeowners to provide real-time customer
support, sales assistance, cross-selling, promotion and
individualized care that have traditionally been proven to
improve sales[5][7].

The purpose of this interdisciplinary research is to
design an intelligent agent-based framework for
collaborative e-commerce applications. We aim to

develop Multi-Agent System (MAS) architecture for large
collaborative e-commerce environments where a number
of geographically dispersed users (customers/merchants)
can participate. Collaborative commerce is realized by the
interactions among agents in the e-commerce community.
Given the importance of collaboration and community,
the architecture that we aim to develop will be founded
not only on sound technologies but also on a carefully
considered legal infrastructure. Our goal is to blend
technology and law; to fuse software code with legal
codes. In addition to creating an agent system that better
reflects the world of commerce, we aim to create an e-
commerce environment that respects ethical and legal
notions such as informed consent and the protection of
personal privacy. In other words, the agents adhere to
basic consumer protection and privacy principles and
follow very carefully existing ethical and legal norms.

The rest of this paper is organized as follows. In
section 2, a multi-agent system for collaborative
commerce implemented over Microsoft .NET framework
is proposed. Section 3 discusses the privacy management
in the e-community, while section 4 depicts the design
and implementation of eCommerce communities over the
proposed MAS system. The collaborative commerce
aspect is focused on in Section 5. Finally, the summary of
the presented research is described in the conclusion.

2. Multi-Agent System for Collaborative
Commerce

In order to maximize adaptability and flexibility in an e-
commerce environment, this paper proposes the
architecture for creating e-communities as a collection of
related agents - each agent responsible for a specific task.
By working together, the group of agents is able to solve
more complex system demands. By breaking a large e-
commerce system into sub-tasks, the entire system
becomes more encapsulated and adaptable. The ability to
solve complex requirements emerges from the
interoperation of different agents and potentially the
interoperation of different agent communities.

A. Generic Architecture for Agent-Based Collaborative

Commerce
In our previous work the AGILE architecture was

proposed in [3][6], which is an architecture for agent-
based collaborative and interactive environments. This
research expands on the previous work. The proposed
system architecture is shown in Figure 1. It is divided into
two closely coupled logical modules: the information
exchange and the coordination between the system
components and the agents, and the design and
cooperation of the agents themselves. These agents are
used to interact with the user, offer a homogeneous
interface, and support collaborative work between

different users. The Agent Cluster, a surrogate of a user in
the distributed system, consists of a number of agents
(user agent, shopping agent, sales agent, etc.) which
provide the user with a homogeneous interface for various
activities. They also trace the user behaviors to learn
about the user’s preferences, to communicate with other
users, and to perform tasks for the user even after s/he has
logged out. The Directory provides distributed white and
yellow page services to deliver static information about
the locations and addresses of agents and information
databases, which are distributed on the network. The
Software Bus, which is designed based on Microsoft .NET
framework, is responsible for inter-agent
communications.

S o ftw a re B u s

In fo rm at ion D a taba se

P ub lic In te rfac e

D ire c to ry

In fo rm a tion D a tab ase

D irec to ry

A ge n t
C lus te r

P u b lic In te rfa c e

A ge nt
C lus te r

U ser 1 U se r 2

Figure 1 Generic Architecture of Agent-Based Collaborative Commerce

B. An Agent
In our context an agent is a software component running

in distributed environments and capable of performing
independent actions to process requests from other agents,
or from external applications. The handling of these
requests will often require making new requests of other
agents in the system. An agent in the system has three
required elements (Figure 2): an address, a logic
component, and a published interface. Almost all agents
will also have a name property.

Figure 2 Agent Overview

Address
The address property is used to locate the agent in the

distributed environment. The proposed system is
implemented over Microsoft .Net framework, and in that
environment the address was an http address (ie.
http://demomachine:5050/demoAgent).

Logic Component

The logic component is fairly open. Behind the agent
interface there needs to be an application that will handle
the request. Whether an old legacy system, or entirely
new code there is something behind the interface that
handles the request and creates reasonably intelligent
responses to requests. There is no hard requirement as to
how this is done; it may be as a simple database lookup or
calculation, or it may require the use of complex machine
learning algorithms. The logic required for a specific
agent is dictated by the needs of that agent, and the types
of requests it is expected to handle.

Interface

The interface property is what allows other agents or
external applications to communication and access the
agent. The approach is to use standardized generic
interfaces. Typically, this involves writing an interface
structure that will be used by several different types of
agents. Communication among agents is achieved through
an agent communication language: the Knowledge Query
Manipulation Language (KQML) [11]. KQML provides
performatives to define the kind of interactions a KQML-
speaking agent can have. A KQML message consists of
three layers: the content layer, the message layer and the
communication layer. The content layer bears the actual
content of the message in the agent’s own representation
language. The communication layer encodes a set of
message features, which describe the lower-level
communication parameters, such as the identity of the
sender and recipient, and a unique identifier associated
with the communication. The message layer is used to
encode a message that one application would like to
transmit to another. The message layer forms the core of
the KQML language, and determines the kinds of
interactions one can have with a KQML-speaking agent.
The performatives of a KQML message include those to
request that an agent perform a task (ask-one), to provide
other agents with certain information (tell), to watch
another agent for a particular condition (monitor), and to
register capabilities with another agent (advertise).

C. Agent-Based Community

A community, in the proposed architecture, is a group
of related agents (Figure 3). Agents in a community are
realized using the interfaces required by that specific
community, and expect other agents in that community to
understand the known interfaces. The agents in a
community are also expected to share Naming Service
Agents, so that agents (and applications) can find other
agents in the community. By grouping agents inside
communities, other agents and applications are able to
find and make use of the agents in that community. There
are a few other types of agents in a typical community.

Naming Service Agent
The Naming Service Agent is a special purpose agent

that exists to maintain system knowledge of the existence
of agents in a community. The naming service is
responsible for maintaining its own knowledge about the
agents in a community (typically by simply servicing
add/remove agent requests that are sent from other agents
when they enter or leave the system). It then shares this
knowledge when an authorized agent or application needs
to find an agent.

The reason the Naming Service Agent is an integral part
of a community is that it is the only agent that will always
be known by address. Agents are typically transient, able
to move, enter or leave a community based on the specific
tasks of the agent. Because the Naming Service Agent
provides access to other agents in a community, Naming
Service Agents actually define what agents exist in a
specific community and the boundaries of what exists
within its community.

In many cases, a simple address lookup will be
insufficient for community needs. When security or
privacy control is required by a community a ticket
generating server will act as a naming service.
Commonly, naming services and ticket generators allow
agents find and contact resources in a community. The
exact mechanics differ according to community needs.

Broker: A broker is simple name lookup service: an
agent will send a name for an application and receive
exact connection information (http address, machine
address, port number etc.) so that the agent can connect to
that service. The details are often passed as clean text.

Kerberos Server: Kerberos is a strong authentication
protocol designed for client/server architectures [13]. The
premise being that instead of returning simple connection
details, a Kerberos server returns a ticket that is encrypted
with details authenticating the exact user who can use the
ticket and some simple restrictions on the agent’s use of
that ticket. A ticket has two parts: a client part and a
server part. Both parts contain restriction information on
the connection, and both parts are encrypted using private
keys known only to the server or agent. Kerberos tickets
allow an agent to authenticate itself to an application and
create a private key that both parties can use to exchange
secure information.

Pluto Server: As part of the architecture, a new protocol
called Pluto was developed which integrates Kerberos and
extends the ticket to include purpose information. Purpose
information, discussed in more detail below, is a key
requirement to ensuring privacy control in information
flow. Pluto has been designed specifically to allow the
exchange of private information in an e-community.

Figure 3 Agent-Based Community

Directory Agent

Directory Agents provide known lists of agents that
have registered to perform a specific task. All agents
capable of taking orders might register with a single
agent that keeps a list of “order taking” agents. This is
similar to the job done by the Naming Service Agent,
but all agents in a community should register with the
Naming Service Agent and only agents that want
specific requests should register with a Directory
Agent. Directory agents usually have interface methods
for adding and removing agents. Ultimately, the
difference between a directory and a naming service is
that a naming service is a complete naming system for
an entire universe, where a directory is a much
narrower view of related services. A naming service is
a global resource; a directory service is a much more
local grouping of related agents that are grouped for a
specific purpose.

Simple Agent

Simple Agents are agents that perform a very specific
task of processing requests without maintaining data
about the other agents in the system. They are aware of
the Naming Service agent because they will usually
register when they enter or leave a system. They may
also be aware of Directory Agents for similar reasons.
A simple agent is simple because it can process some
requests without relying on other agents. Simple agents
require methods directly related to their purpose.

Application Agent

Application Agents are agents that process requests
by coordinating sub-requests sent to other agents.
Typically this means parsing a single request (sent to
the Application Agent) into several sub-requests which
are passed to other agents, the application agent then

does some of its own calculation, and passes the result
back to the original requester. If the community is
privacy controlled, then part of this calculation will be
filtering responses according to the purposes in the
Pluto session. Application agents require interface
methods for their purpose, and they also typically need
access to a directory service in order to find agents to
handle sub-requests. These types of agents are not
mutually exclusive, hybrid agents that are
combinations of these types of agents are expected. An
application agent might maintain its own list of simple
agents, and act as a hybrid Directory/Application agent
for example. These agent types are helpful in
classifying agents, and understanding the interface
requirements of an agent.

D. Inner-Community Co-operation

By itself, the basic architecture has several benefits,
but this architecture is also designed to take advantage
of the possibility that agents could exist in multiple
communities at the same time. In order for an agent to
belong to a community, it has to register with that
community’s Naming Service Agent and it has to adapt
an interface that the community understands.

Registering with a new naming service is fairly
simple. In order to register the agent must have a
unique name for that community and an address.
Assuming these two criteria can be met, the Naming
Service can add it to its list of agents in that
community. In secure or privacy controlled
communities, this will be complicated by the need to
exchange private keys and permissions.

The interface requirement is usually more difficult to
satisfy. There is no reason to assume that all
communities will have similar requirements, so there
may be some non-trivial work. Typically, there are two
solutions: The first is using generic interfaces. The

possibility of sharing interfaces across multiple
communities is, after all, the reason why generic
interfaces exist. If two communities expect the same
generic interfaces from their agents, then adding an
existing agent to a new community is simply a matter
of notifying the Naming Service Agent in the new
community. The other option is that new interfaces be
added to existing agents. The agent interface is kept
separate from the agent logic, so new interfaces should
have minimal impact on the actual agent logic. There
may be some new logic required, but agents are
designed for a particular purpose and moving into a
new community shouldn’t change the agent’s purpose.
Because the purpose is unlikely to change, the majority
of the logic should remain intact. Adding an agent to a
new community should require, at worst, creating a
new interface, that the new environment understands,
and reusing existing logic.

3. Privacy Management in Communities

In order to achieve an agent’s purpose, it is expected
that some agents will require some personal
information about the customers (or other objects).
Because the collection, use and disclosure of personal
information can have legal consequences, a community
of agents will be required to manage personal
information in an appropriate way. Agents are capable
of taking independent action, and if part of that action
is, for example, the sharing of personal information,
then agents must be designed to share personal
information in a way that complies with legal privacy
obligations.

The Code [12] is incorporated into Canada’s
comprehensive private-sector privacy legislation titled:
the Personal Information Protection and Electronic
Documents Act (PIPEDA). The Code and PIPEDA
outline requirements for maintaining private data for
organizations in Canada, and are being used to provide
guidance in the design of privacy aware agents. Similar
legislations exist, or are underway, in other countries.
While the principles outlined in the Code and PIPEDA
are important considerations for an e-commerce
community, not all of them are particularly interesting
from an agent architecture point of view. This paper
will therefore look only at the principles of Safeguards;
Accountability; Identifying Purpose; and Limiting Use,
Disclosure, and Retention because those principles do
impact the design of agent communities.

A. Safeguards

“Personal information shall be protected by security
safeguards appropriate to the sensitivity of the
information.” [12, Principle 7]

In order to handle private data, an agent or
community of agents is required to ensure that the
system protects its information. The use of digital
signature and encryption technologies can help ensure
that agents in a system are actually what they claim to
be, and to help ensure that personal information in a
system can not be captured while in transit. The
Kerberos protocol can ensure that all messages passed
across a community network are encrypted
appropriately, but it is not sufficient. Even assuming
that reasonable security is achieved for passing
personal information, there are still interesting
questions in regards to controlling what information
can be shared, and who it can be shared with. In order
to control information for privacy, purpose information
needs to be used for filtering.

B. Accountability

It is incumbent on organizations to specify which
individual (or group) is responsible for managing
personal information within an organization. The need
to have identifiable responsibility is one of the forces
behind the grouping of agents within a community.
Because the responsibility for the flow of personal
information between agents must be assigned to an
individual (or small group), agent based systems
should be designed to minimize the complexity of
information flow. A privacy officer can then be
assigned responsibility to manage both how private
information is passed within a community, and restrict
passing of information outside the community.

C. Identifying Purpose

In order to assure that an organization does not use
personal information it is not entitled to, there are
several principles that detail how information is to be
gathered and maintained. When personal information is
gathered it must be gathered for a specific purpose, and
generally a person must give consent for that
information to be used by an organization. Obviously
this impacts how information is entered into a
community of agents, but for the most part that is
outside the scope of this discussion. The important
part, from an architectural point of view, is that
personal information in a community must have an
identifiable purpose linked to it.

In non-agent based applications this is usually a
trivial requirement because most applications have
fairly simple purposes. The fact that information exists
in an application can normally safely infer that the
information was collected to be used by that
application. In an agent-based architecture, however,
agents are expected to have their own individual
purposes. There is no requirement for an entire
community to have a single purpose. Instead, agents

using personal information must maintain two sets of
information: the personal information, and the purpose
information (information about the scope and purpose
for having the information in the system). An excellent
example of how this information might be kept is
contained in the P3P standard [14]. P3P is a
client/server privacy solution that uses XML to store
and pass privacy filtered information. Part of the P3P
protocol is a data schema for describing data and the
policies for which that data may be released.

D. Limiting Use, Disclosure, and Retention

The reason purpose information is maintained by an
organization, is that private information “shall not be
used or disclosed for purposes other than those for
which it was collected” [12, Principle 5]. This principle
becomes important because it allows agents to make
reasonable decisions about what information can be
passed between agents. If an agent (the requester)
requests data from another agent (the provider) in a
system, then the provider must ensure that the privacy
of its information is maintained. The provider can
compare the requester’s purpose to the data’s purpose.
If consent has been given for the requester’s purpose,
then the data can be passed to the requester. The
requester’s purpose and consent do not have to be a
perfect match, it is possible that a requester’s purpose
might be “reasonably related” to the consented purpose
(as covered in the 12, Principle 4.3.5). Agents can then
be designed to make good comparisons between the
purpose of other agents and the purpose of information.

E. Privacy Aware Community

In order to have agents that maintain personal
information (data agents), they need to keep both the
personal information and scope/purpose information
about what consent has been granted for the use of that
information. Any agent that wishes to use personal
information (functional agents) will be required to
maintain information describing the purpose of the
agent. A final agent, privacy policy agent, will
maintain a semantic web that relates purposes, as
shown in Figure 4. When a functional agent requests
personal information from a data agent, it includes its
purpose as part of the request. The data agent can then
make a request of the privacy policy agent to determine
what data it can legally/ethically transfer to the request
agent. The privacy policy agent will make this
determination by searching for a path between the
scope/purpose information about the data, and the
purpose for the proposed disclosure of the personal
information.

Figure 4 Privacy Management

4. e-Commerce Communities

A. User Agent Cluster

Once registered with the system, users log on to the
e-commerce e-community using a web browser. The
system hosts a user profile agent for each user that
stores user interest information in a hierarchy. This
profile is transparent to the user and is created
automatically, but the user does also have complete
control of what it contains and can set each interest to
be private, restricted, or public. In the case of private
interests, no other community member (buyer,
salesperson) knows that the user has such interest. On
the other hand, users can share public or restricted
interests with other e-community members. Customers
with common interests may open communication
channels to share the shopping experience. Adaptive
personal agent is an ideal solution for finding a user’s
personalized information. Because these agents can
initiate tasks without explicit user prompting, they can
undertake tasks in the background, such as searching
for information. Since agents learn from experience,
their knowledge of an individual increases over time,
leading to improved accuracy of community data,
including information about goods, customers, and
contacts. In addition, by sharing their domain’s public
knowledge with other agents, they contribute further to
the overall community knowledge. Another type of
agent, the Contact-finding agent, can locate members
with distinct interests or competencies so that users can
find experts in a given sub-domain or other members
with interests similar to their own. Lastly,
Collaborative-filtering agents specialize in promoting
interaction among community members, allowing
sharing of information among those who share the
same interests.

B. Voice-enabled Assistant Agent

A voice-enabled assistant interacts with the customer
using voice synthesis and helps him/her navigate
efficiently in the e-Community.

Figure 5 Implementation of Voice-enable Assistant

Figure 5 depicts the implementation of voice-enabled

assistant with Microsoft Agent [10] and Speech API
technology. VoiceXML[9] is used to define dynamic
ontology. Voice-enabled agents provide users with a
user-friendly speech-command interface, acting as a
general “help” facility for the user by accepting simple
voice commands and giving voice responses. This
provides a more natural interface for users.

5. Collaborative e-Commerce

The design and implementation of current online
shopping places have primarily focused on the process
of exchanging goods. Online catalogues of mail-order
companies are created and metaphors of shopping
baskets and virtual cash desks are introduced. While
these metaphors aim at easing the process of shopping
by emulating real world experiences, current virtual
market places often lack in the emulation of the social
interaction factors.

We believe there is need to combine the virtual
market with the social place again. Customers who
participate in the virtual market should change their
role from consumers to people who want to satisfy
their wide range of needs through shopping. The
purchase of goods is only one of them; social
interaction, learning, or excitements are others, which
can be satisfied in a community. The role of markets
that bring together people, who did not know each
other, could create new social communities.

To validate the proposed architecture, an e-commerce
community, involved with sale of bedding, is designed.
In this community, businesses might be related to the
sale of mattresses, pillows and sheets, and customers
who wish to purchase those products. There would be
special purpose application and directory agents to co-
ordinate the tasks of purchasing. Each individual
business would create it own sale agent inside the
community responsible for the sale of its products.

Those sales agents might make use of business’
proprietary community, or might contain all the logic
to handle sales for that business. Customers could also
have agents that would handle purchasing for that
customer. It would keep track of desires and
preferences of a specific customer, and be given the
authority to act as that customer’s proxy inside the
system.

Customer-Business Interaction (C-B)

The obvious interaction between agents in this
system is for a customer agent to buy a product from a
Business Sales Agent. A directory agent can be used to
maintain a list of all sales agents that sell products. A
customer interested in buying that product can then get
a list of all sales agents for a product from that
directory agent, and place an order with an appropriate
sales agent (Figure 6). The next section will discuss the
negotiation process between customer and sale agent in
details.

Figure 6 Customer - Business Interaction

Customer-Customer Interaction (C-C)
A more interesting scenario would be to group
customers, so that they could to take advantage of
group rates offered by some businesses. A separate
application agent could keep track of customer agents
requesting a product, and when there are enough
customers interested in a product it could make a joint
sale (Figure 7).
A more interesting scenario would be to group
customers, so that they could to take advantage of
group rates offered by some businesses. A separate
application agent could keep track of customer agents
requesting a product, and when there are enough
customers interested in a product it could make a joint
sale (Figure 7).

Figure 7 Customer - Customer Interaction

Business-Business (B-B)

Another interesting interaction might be to allow
businesses to group their products into a bundle deal. A
single sales agent could sub-contract parts of a sale to
other businesses in the community (Figure 8).

Figure 8 Business - Business Interaction

6. Conclusion

Electronic commerce is becoming a major
component of business transactions. With the creation
and use of a collaborative commerce environment, the
users can experience more and more functionalities
that they encounter in a real-world shopping. The work
presented here has significant impact on the practical
applications of intelligent-agent-based e-communities
of buyers and vendors in the industry. Many current e-
commerce applications exploit agent technologies to
misrepresent online products and services or to
surreptitiously gather and mine personal data [8]. By
focusing on consumer protection and privacy
principles as a significant design feature, a value-
centered design process was created so that important
policy and legal values are preserved; recognizing that
respecting end-user privacy in fact makes good
business sense. Moreover, ontology-based approaches
for the abstraction of generic interface will be
investigated in the future, which are well-known to
promote interoperability among heterogeneous parties.

7. Acknowledgements

The authors acknowledge the financial support of IBM
Canada, and the Ontario Research Network for
Electronic Commerce, as well as the technical
development efforts of Xingyuan Wang, and the legal
studies and legislation research of Alex Cameron.

8. References

[1] J. Marathe, "Creating Community Online", Durlacher
Research Ltd, 1999,
[2] A. Warms, J. Cothrel, T. Underberg, "Return on
Community: Proving the Value of Online Communities in
Business", Participate.com, April 12, 2000.
[3] Y. Zhang, L. Guo and N.D. Georganas, “AGILE: An
Architecture for Agent-Based Collaborative and
InteractiveVirtual Learning Environments”, Proc. IEEE
Globecom 2000 Conference, San Francisco, 2000.
[4] G. E. Kersten, G. Lo. “Negotiation Support Systems and
Software Agents in Business Negoitaions,” The First
International Conference on Electronic Business, Hong
Kong, 2001.
[5] X. Shen, T. Radakrishnan and N.D. Georganas, “vCOM:
Electronic Commerce in a Collaborative Virtual World”, J. of
Electronic Commerce Research and Applications, Vo.1,
No.3-4, Aut.-Winter2002, pp. 281-300.
[6] L. Guo and N.D. Georganas, “Towards Agent-based
Collaborative and Interactive Virtual Environments”, Chapter
6 in “Virtual Reality Technologies for Future
Telecommunications Systems", Willey, 2002.
[7] J.C. Oliveira, X. Shen and N.D. Georganas,
“Collaborative Virtual Environments for Industrial Training
and e-Commerce”, Chapter 7 in "Virtual Reality
Technologies for Future Telecommunications Systems",
Willey, 2002.
[8] I.R. Kerr, “Bots, Babes and the Californication of
Commerce”, U. of Ottawa Law and Technology Journal,
2004.
[9] Voice Extensible Markup Language (VoiceXML)
Version 2.0 http://www.w3.org/TR/2001/WD-voicexml20-
20011023/
[10 Microsoft Agent, http://www.microsoft.com/msagent
[11] T. Finin Et al, KQML as an Agent Communication
Language. In The Proceedings of the Third International
Conference on Information and Knowledge Management
(CIKM), ACM Press, November 1994.
[12] Department of Justice Canada, The National Standard
of Canada Entitled Model for the Protection of Personal
Information, CAN/CSA-Q830-96
http://laws.justice.gc.ca/en/P-8.6/92379.html
[13] Keberos , http://web.mit.edu/kerberos/www/
[14] P3P, http://www.w3.org/P3P/

