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Abstract. Today, service compositions often need to be assembled or
changed on-the-fly, which leaves only little time for quality assurance.
Moreover, quality assurance is complicated by service providers only giv-
ing information on their services in terms of domain specific concepts
with only limited semantic meaning.
In this paper, we propose a method to construct service compositions
based on pre-verified templates. Templates, given as workflow descrip-
tions, are typed over a (domain-independent) template ontology defining
concepts and predicates. Templates are proven correct using an abstract
semantics, leaving the specific meaning of ontology concepts open, how-
ever, only up to given ontology rules. Construction of service composi-
tions amounts to instantiation of templates with domain-specific services.
Correctness of an instantiation can then simply be checked by verifying
that the domain ontology (a) adheres to the rules of the template ontol-
ogy, and (b) fulfills the constraints of the employed template.

1 Introduction

Concepts like component-based software engineering (CBSE) or service-oriented
architectures (SOA) ease the construction of software by combining off-the-shelf
components or services to compositions. Today, such compositions often need to
be assembled or changed on-the-fly, thereby imposing strong timing constraints
on quality assurance. “Quality” of service compositions might refer to either
non-functional properties (like performance [7]), or functional requirements like
adherence to protocols (e.g., [8]), to given pre- and postconditions [21], or to
properties specified with temporal logic [25]. Quality assurance methods typi-
cally translate the composition (e.g., an architecture model, or a workflow de-
scription) into an analysis model, which captures the semantics of the composi-
tion and allows – at the best – for a fully automatic quality analysis. Both the
transformation into the analysis model and the analysis itself are time-costly
and thus difficult to apply in an on-the-fly composition scenario.

In this paper, we propose a technique for service composition and analysis
based on templates. Templates can capture known compositional patterns, and
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thus allow for the generally proven principle of pattern usage in software en-
gineering [12]. In this paper, templates are workflow descriptions with service
placeholders, which are replaced with concrete services by instantiations. Our
templates are already verified, i.e., all template instances will be correct by con-
struction. Every template specification contains pre- and postconditions (with
associated meaning “if precondition fulfilled then postcondition guaranteed”),
and a correct template provably adheres to this specification. This poses a non-
trivial task on verification: Since templates should be usable in a wide range of
contexts and the instantiations of service placeholders are unknown at template
design time, we cannot give a fixed semantics to templates. Rather, the template
semantics needs to be parameterized in usage context and service instantiation.
A template is only correct if it is correct for all (allowed) usage contexts.

Technically, we capture the usage contexts by ontologies, and the interpreta-
tion of concepts and predicates occurring therein by logical structures. A template
ontology fixes the concepts and predicates of a template. Furthermore, a template
specification contains constraints fixing additional conditions on instantiations.
These constraints allow us to verify the correctness of the template despite un-
known usage and unknown fixed semantics. A template instantiation replaces
the template ontology with a homomorphous domain ontology, and the service
placeholders with concrete services of this domain. Verification of the instantia-
tion then amounts to checking whether the (instantiated) template constraints
are valid within the domain ontology, and thus can be carried out on-the-fly.

Section 2 describes ontologies and logical structures. Section 3 continues with
the syntax of templates, and Section 4 proceeds with their semantics and cor-
rectness. Section 5 explains instantiation and presents the central result of our
approach: instantiation of correct templates yields correct service compositions,
if constraints are respected. Section 6 discusses related work, and Section 7 con-
cludes.

2 Foundations

We assume service compositions to be assembled of services which are specified
by a signature and pre- and postconditions. Languages to describe signatures
with pre- and postconditions are already in use (e.g., OWL-S [21]). Such service
descriptions rely on domain specific concepts. Ontologies formally specify a con-
ceptualization of domain knowledge [13]; the semantics can be defined, e.g., by
description logics [5]. For this paper, we retain a high-level view of ontologies,
and focus on concepts, roles (relating concepts), and rules (formalizing additional
knowledge).

Definition 1. Let C be a finite set of concept symbols, and P a finite set of
role (or predicate) symbols, where every p ∈ P denotes a unary or higher order
relation on concepts. Let R be a set of rules of the form b0∧· · ·∧bn → h0∧· · ·∧hm,
where bi, hi are negated or non-negated predicates denoting concepts of C, or roles
from P . Then K = (C,P,R) denotes a rule-enhanced ontology.



We assume every variable in the rules to be implicitly all-quantified, and rules to
be consistent, i.e., not to contain contradictions. For details about ontologies and
rules, we refer to [14,11]. In classical ontologies, predicates are always binary;
however, roles (predicates) relating to boolean types can be expressed unary,
and n-ary predicates with n > 2 can be translated to binary predicates by
introducing supplementary concepts. To avoid technicalities, we allow for a more
general notion of predicates here.

Example 1 introduces a template ontology. It will be used later in a “filter”
template, which extracts “good” elements from a set using a filter predicate.

Example 1. The template ontology KT = (CT , PT , RT ) has two concepts, two
predicates, and no rules:

CT = {Elem,Value}, PT = {fp : Value → bool, g : Elem → bool}, RT = {} .
Signatures and pre- and postconditions are specified using concepts and roles,
viz. predicates, of ontologies. To allow standard types like integers, we inductively
define the set TK of types over an ontology K = (CK , PK , RK) by these three
rules: (i) c ∈ CK → c ∈ TK , (ii) int ∈ TK , bool ∈ TK , and (iii) T ∈ TK →
set T ∈ TK . We furthermore assume that all predicate symbols of ontologies
are typed as well1, thus, e.g., a binary predicate p relating concepts T1 and T2
has type T1×T2 → bool. We therefore implicitly extend purely domain specific
ontologies by standard types.

Types are used to fix the types of inputs and outputs of services; the predi-
cates can occur in pre- and postconditions. We assume that we have – in addi-
tion to the predicates of an ontology K – standard predicate symbols, operations
and constants on integers, booleans and sets available, e.g., true,<,>,≤,=,∈,
∪,∩, ∅, . . . These make up a set PK (for predicate symbols) and a set FK (for
function symbols). We assume that PK ⊂ PK . Note that the ontology itself does
not define any function symbols. From PK and FK , we construct first-order logic
formulae in the usual way. To only get type-correct formulae, we assume a set
of typed variables Var , i.e., given an ontology K we assume a typing function
type : Var → TK .

We assume typed terms based on function symbols FK and typed variables
to be defined in the usual way. Note that the set of terms over different ontologies
might only use different variables, but always use the same (standard) function
symbols; also constants like true or 1 are nullary function symbols. Using typed
terms, we define the set of first-order logic formulae over K.

Definition 2. Let K be an ontology with types TK , predicate symbols PK , and
function symbols FK . The set of first order formulae over K, ΦK , is inductively
defined as follows:

– if p ∈ PK is a predicate symbol of arity k and type T1× . . .×Tk → bool and
e1, . . . ek are terms of type T1, . . . , Tk, respectively, then p(e1, . . . , ek) ∈ ΦK ,

1 In expressive ontology languages and description logics, it is possible to express no-
tions similar to sub-classing; as we restrict ourselves to a simple version of ontologies,
we can assume our roles to be typed even with this simple type system.



– if ϕ1, ϕ2 ∈ ΦK then ¬ϕ1 ∈ ΦK and ϕ1 ∨ ϕ2 ∈ ΦK ,
– if ϕ ∈ ΦK then ∀x : ϕ ∈ ΦK and ∃x : ϕ ∈ ΦK .

As usual, we write free(F ) to denote the free and bound(F ) for the bound vari-
ables of a formula F .

The meaning of first-order logic is usually defined with respect to a logical
structure. A logical structure fixes the universe out of which elements of the types
are taken as well as an interpretation of the predicate and function symbols.

Definition 3. Let K be an ontology with types TK , predicate symbols PK , and
function symbols FK . A logical structure over K, SK = (U , I), consists of

– U =
⋃
T∈TK UT the universe of values split up for the different types, and

– I an interpretation of the predicate and function symbols, i.e., for every
p ∈ PK of type T1 × . . . × TK → bool and every f ∈ FK of type T1 × . . . ×
TK → T we have a predicate I(p) : UT1

× . . . × UTk
→ Ubool and a function

I(f) : UT1
× . . .× UTk

→ UT , respectively.

We assume standard domains and interpretations for integers, sets, and boolean,
e.g., Ubool = {true, false}. Therefore all logical structures of an ontology agree
on standard types and their operations, but may differ on domain specific parts.

To define a semantics for formulae with free variables, we need a valuation
of variables. We let σ : V → U be a valuation of V ⊆ Var with (type-correct)
values from U . We write σ |=S F for a structure S and a formula F if S together
with σ is a model for F (viz. F holds true in S and σ); refer to, e.g., [1] for a
formal definition. If the formula contains no free variables, we can elide σ and just
write |=S F , or S |= F . Note that an ontology usually does not fix a structure
because it neither gives a universe nor an interpretation for its predicates. It
does, however, define constraints on valid interpretations by the rules R.

Definition 4. A structure S over an ontology K = (C,P,R) satisfies the rules
R of the ontology, S |= R, if it satisfies every rule in R, i.e., ∀r ∈ R : S |= r.

Note that rules do not contain free variables, and therefore no σ is needed here.

3 Services and Templates

The ontology and logical formulae over the ontology are basic building blocks for
services and compositions. A service in our notation is an entity which generates
outputs for given inputs. The signature fixes the types of inputs and outputs.

Definition 5. A service signature over an ontology K specifies the name of the
service as well as the type, order, and number of inputs T1 × · · · × Tj and the
type, order, and number of outputs Tj+1 × · · · × Tk, where each Ti ∈ TK .

Additionally, a service is specified by its pre- and postcondition (also: effect).
Both of these are given as first-order formulae. They are formulated over a set
of input and output variables.2

2 In combination also known as IOPE (Input/Output/Precondition/Effect) in SOA.



Definition 6. A service description of a service Svc over an ontology K consists
of service signature, lists of input variables I and output variables O, a precondi-
tion preSvc and a postcondition postSvc, both elements of ΦK . Variables are typed
according to the signature of Svc, that is, for Svc : T1×· · ·×Tj → Tj+1×· · ·×Tk:

– I = (i1, . . . , ij) with type(il) = Tl for all 0 < l ≤ j, and
– O = (ij+1, . . . , ik) with type(il) = Tl for all j < l ≤ k.

The precondition describes only inputs, the postcondition inputs and outputs:
free(preSvc) ⊆ I and free(postSvc) ⊆ I ∪O.

The set of service descriptions over an ontology K is denoted SVCK . Services
are composed using a workflow describing the order of execution of the services.
Workflows comprise control flow (using control structures) and data flow (using
variables) between services. While different notations are in practical use (e.g.,
WS-BPEL [23]), we use a simple programming language style notation here.

Definition 7. Let K be an ontology. The syntax of a workflow W over K can
be described by the following rules:

W ::= skip | u := t |W1;W2 | (uj+1, . . . , uk) := Svc(i1, . . . , ij)

| if B then W1 else W2 fi | while B do W od

| foreach a ∈ A do W od

with variables u, a,A; expression t of type type(u); A of type set T ; a of type
T ∈ TK ; B ∈ ΦK ; and Svc a service call with service description Svc, with inputs
i1, . . . , ij, and outputs uj+1, . . . , uk, with type and order fixed by the signature.

Here, we augment usual imperative programming elements with an iteration
construct for set types and with service calls. Workflows are build over arbitrary
sets of services, defined on the same ontology. For template workflows, we do not
use concrete services but service placeholders. Formally, a service placeholder has
a signature like a service, but instead of formulae for pre- and postconditions
we just write presp

Svc and postspSvc . We write SPK to denote the set of service
placeholders over K.

Example 2. The template in Fig. 1 accepts one input and produces one output,
both of a set type with element type Elem. It uses one service placeholder, V ,
and the predicates fp and g from Example 1. Its workflow initializes the output
variable A′, and then iterates over the input set A. Every element is given to
the service placeholder V , and then filtered by applying fp to the result of the
service call. If filtering succeeds, the element is put in the output set A′.

Like services, templates have pre- and postconditions: they define the correct-
ness properties which we intend to achieve with the template, and allow us to
treat instantiated templates as any other services. The last part we find in a
template are constraints. They define conditions on instantiations: if a template
instantiation cannot guarantee these constraints, the postcondition of the tem-
plate might not be achieved, i.e., the template concretion might not be correct.
We will make this more precise in Section 5.



Name : Filter
Inputs : A with type(A) = set Elem
Outputs : A′ with type(A′) = set Elem
Services : V : Elem→ Value
Precondition : {∀a ∈ A : presp

V (a)}
Postcondition: {A′ = {a ∈ A | g(a)}}
Constraints : {∀x, y : postspV (x, y) ∧ fp(y) ⇒ g(x),

∀x, y : postspV (x, y) ∧ ¬fp(y) ⇒ ¬g(x)}
1 A′ := ∅ ;
2 foreach a ∈ A do
3 (y) := V (a) ;
4 if fp(y) then A′ := A′ ∪ {a} fi ;

5 od

Fig. 1. Template to filter a list, using a filter fp and a validation service V

Definition 8. A workflow template WT over an ontology K consists of

– a name N ,
– a list of typed input variables I and typed output variables O,
– a set of services placeholders SPK ,
– a precondition pre ∈ ΦK and a postcondition post ∈ ΦK ,
– a set of constraint rules C as in Def. 1, and
– a workflow description W .

In short: WT = (N, I,O,SPK , pre, post , C,W ).

Later, we see how templates get instantiated. To this end, we need concrete, ex-
isting services described by a domain ontology, to replace the service placehold-
ers. However, our ultimate aim is to show correctness on the level of templates,
and inherit their correctness onto instantiations. Thus, we will now define the
semantics of templates and, with this help, their correctness.

4 Semantics of Templates

The key principle of our approach is to take correct templates, instantiate them,
and afterwards be able to check correctness of instances by checking simple
side-conditions. We start with the meaning of “correctness of templates”. Fig-
ure 1 shows a template with pre- and postconditions and constraints. Basically,
these state the property which the template should guarantee: if the precondi-
tion holds and the constraints are fulfilled, then the postcondition is achieved.
All these parts contain undefined symbols: neither do we know the pre- and
postconditions of the employed services (they are placeholders), nor the mean-
ing of the predicates of the template ontology. The definition of a semantics
of templates and their correctness therefore necessarily has to be abstract, i.e.,
defined modulo a concrete meaning. This meaning can only be fixed once we



have a logical structure. This is, however, not given by an ontology; thus the
logical structure is a parameter for our semantics. The second parameter to the
semantics is the concretion of service placeholders with actual services, given by
a mapping π : SPK → SVCK .

Definition 9. Let K be an ontology, SPK a set of service placeholders over K,
and SVCK be a set of service descriptions over K. Then π : SPK → SVCK is a
concretion of service placeholders, if it respects signatures, i.e.

if π(sp) = svc and sp : T1 × · · · × Tk → Tk+1 × · · · × TN ,

then svc : T1 × · · · × Tk → Tk+1 × · · · × TN .

We lift the definition of π to replace pre- and postconditions of service placehold-
ers with their counterparts of the corresponding service, such that π(presp) ∈ ΦK
with free(π(presp)) = Isvc , and π(postsp) ∈ ΦK with free(π(postsp)) = Isvc ∪
Osvc . We use π to replace placeholders in any formula.

We define an operational semantics for workflows, much alike [1], however,
always parameterized with a structure S and a concretion π. The semantics is
defined by a transition relation between configurations. A configuration consists
of a workflow to be executed and a state. We introduce a failure state fail which
is entered once a service is called outside its preconditions. The workflow stops
in fail, thus we define a blocking semantics for service calls here.

Definition 10. Let S = (U , I) be a structure of an ontology K, and Var a set
of variables. A state σ over S is a type-correct mapping from Var to U . The set
of all states over S is denoted ΣS . We let Σfail

S = ΣS ∪ {fail}.
For a formula F ∈ ΦK we define the set of states satisfying F with respect

to a structure S as JF KS = {σ ∈ ΣS | σ |=S F}.
A configuration 〈W, τ〉 has a workflow W over K and a state τ ∈ Σfail

S .

We use E to stand for the empty workflow. Later, the semantics of workflows
J · K will map initial to final configurations. For this, we first define transitions
between configurations by means of the set of axioms and rules given in Fig. 2.
The main deviation from the standard semantics given in [1] is that we take
two parameters into account: evaluation of conditions is parameterized in the
interpretation of predicates as given in the structure S, and influenced by the
concretion of placeholders, π. We also add rules for the foreach statement and
for service calls. Note that both introduce nondeterminism into the transition
system: foreach iterates over the set of elements in an arbitrary order, and
service calls can have more than one successor state.

Consider, e.g., rules (a) and (b) in Fig. 2: if a conditional statement is to
be executed in state σ, then W1 is selected as the next statement if and only
if the condition B is true in the given structure S (with placeholders replaced);
otherwise, W2 is the next statement. In both cases, the state remains the same, as
these rules only deal with the selection of the next workflow statement. Note that
the states σ in the rules exclude the failure state, i.e., configurations 〈W, fail〉
have no outgoing transitions.



〈skip, σ〉 →π
S 〈E, σ〉

〈u := t, σ〉 →π
S 〈E, σ[u := σ(t)]〉

〈W1, σ〉 →π
S 〈W2, τ〉

〈W1;W,σ〉 →π
S 〈W2;W, τ〉

〈if B then W1 else W2 fi, σ〉 →π
S 〈W1, σ〉 if σ |=S π(B) (a)

〈if B then W1 else W2 fi, σ〉 →π
S 〈W2, σ〉 if σ |=S ¬π(B) (b)

〈while B do W od, σ〉 →π
S 〈W ; while B do W od, σ〉

if σ |= π(B)

〈while B do W od, σ〉 →π
S 〈E, σ〉 if σ |= ¬π(B)

〈foreach a ∈ A do W od, σ〉 →π
S 〈E, σ〉 if σ(A) = ∅

〈foreach a ∈ A do W od, σ〉 →π
S 〈W ; foreach a ∈ A do W od, σ′〉

if σ(A) 6= ∅ ∧ σ′(a) = v ∧
v ∈ σ(A) ∧ σ′(A) = σ(A) \ {v}

〈(uj+1, . . . , uk) := Svc(i1, . . . , ij), σ〉 →π
S{

〈E, σ[uj+1 := vj+1, . . . , uk := vk]〉 | π(postspSvc(σ(i1), . . . , σ(ij), vj+1 . . . , vk))
}

if σ |=S π(presp
Svc(σ(i1), . . . , σ(ij)))

〈(uj+1, . . . , uk) := Svc(i1, . . . , ij), σ〉 →π
S 〈(uj+1, . . . , uk) := Svc(i1, . . . , ij), fail〉

if σ |=S ¬π(presp
Svc(σ(i1), . . . , σ(ij)))

Fig. 2. Transition axioms and rules based on [1], with additional rules for service
calls and foreach constructs

The transition rules are used to derive the semantics of workflows. In this pa-
per, we only define a partial correctness semantics, i.e., we do not specifically
care about termination. Transitions lead to transition sequences, where a non-
extensible transition sequence of a workflow W starting in σ is a computation
of W . If it is finite and ends in 〈E, τ〉 or 〈W ′, fail〉, then it terminates. We use
the transitive, reflexive closure→∗ of→ to describe the effect of finite transition
sequences. The semantics of partial correctness is again parameterized with a
logical structure and a concretion mapping for service placeholders.

Definition 11. Let S be a logical structure and π a concretion mapping. The
partial correctness semantics of a workflow W with respect to S and π maps an
initial state to a set of possible final states

JW KπS : ΣS → 2ΣS∪{fail}, with JW KπS(σ) = {τ | 〈W,σ〉→π
S
∗〈W ′, τ〉}

where W ′ = E or τ = fail.

We define a workflow template to be correct, if all computations starting in a
state which satisfies the precondition, end in a state which fulfills the postcon-
dition. Since services are only placeholders, correctness can only be stated when



the template works correctly for arbitrary concretions, as long as they obey the
concretized constraints of the template. So far, we only operate on the tem-
plate ontology, and thus arbitrary concretion means inserting arbitrary formulae
for pre- and postconditions of placeholders. Therefore, our concretion mapping
π : SPK → SVCK maps placeholders to arbitrary service descriptions over K.

Definition 12. Let WT = (N, I,O,SPK , pre, post , C,W ) be a workflow tem-
plate, and K = (CK , PK , RK) the corresponding ontology. We say WT is correct
if the following holds:

∀ logical structures S over K,∀ concretions π : SPK → SVCK s.t.

S |= RK ∧ S |= π(C) : JW KπS(Jπ(pre) KS) ⊆ Jπ(post) KS .
There are different ways of proving template correctness. The verification ap-
proach introduced in [27] encodes correctness as satisfiability problem. For brevity,
we provide a correctness proof for Example 2 in terms of Hoare-style verifica-
tion. Since our semantics is almost the same as that in [1], we can readily use
their proof calculus (augmenting it with rules for foreach and service calls; rules
omitted here). The proof outline in Fig. 3 shows that, starting from the precon-
dition, the postcondition is reached by the workflow; to do this, we rewrite the
if without else into an if-then-else with an empty else (skip) construct.

5 Template Instantiation

Templates are used to describe generic forms of service compositions, indepen-
dent of concrete domains and thus concrete services. To describe templates we
employ template ontologies which fix the concepts usable in a template. For
instantiation, we replace service placeholders with concrete services, which are
typed over concrete domain ontologies. To this end, we define a mapping between
a template ontology and a domain ontology. While general ontology mapping has
to deal with different ontology conflicts [22,19], we assume a perfect mapping
without conflicts.

Definition 13. Let KT = (CT , PT , RT ) be a template ontology and KD =
(CD, PD, RD) be a domain ontology. Then KTBfKD is an homomorphous on-
tology mapping from KT to KD by f , if f is a pair of mappings f = (fC : CT →
CD, fP : PT → PD) such that

– fP preserves signatures with respect to fC , that is ∀p ∈ PT with p : T1 ×
· · · × Tn → bool we have fP (p) : fC(T1)× · · · × fC(Tn)→ bool;

– f preserves the rules RT , that is ∀r ∈ RT with r = b1∧· · ·∧bn → h1∧· · ·∧hm,
there is r′ ∈ RD with r′ = f(b1) ∧ · · · ∧ f(bn)→ f(h1) ∧ · · · ∧ f(hm).

We assume the mapping pair f to map standard types to themselves, e.g.,
f(bool) = bool, f(set T ) = set (f(T )). For brevity, we use f as a shorthand
notation for the application of the correct mappings fC , fP , or rule preservation.

To replace service placeholders (typed over a template ontology KT ) with
service descriptions (typed over a domain ontology KD), we define an concretion
πf for two ontologies with KTBfKD.



1 {∀a ∈ A : presp
V (a) ∧A0 = A}

2 A′ := ∅
3 {inv:A′ = {a′ ∈ A0 \A | g(a′)}}
4 foreach a ∈ A do
5 {A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)}}
6 (y) := V (a)
7 {postspV (a, y) ∧A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)}} // service call

8 if fp(y) then
9 {fp(y) ∧ postspV (a, y) ∧A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)}}

10 A′ := A′ ∪ {a}
11 {g(a)∧A′ = {a′ ∈ A0 \ (A∪{a}) | g(a′)}∪ {a}} // constr./set union

12 {inv}
13 else
14 {¬fp(y) ∧ postspV (a, y) ∧A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)}}
15 skip
16 {¬g(a) ∧A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)}} // constraint

17 {inv}
18 fi
19 {inv}
20 od
21 {inv ∧A = ∅} // foreach

22 {A′ = {a′ ∈ A0 | g(a′)}}

Fig. 3. Proof outline for correctness of the filter template; comments refer
to the semantics definition

Definition 14. Let KT and KD be ontologies with KTBfKD, let SPT be the
set of service placeholders over KT , and SVCD be the set of service descriptions
over KD. Then πf : SPT → SVCD is a concretion of service placeholders from
KT to KD, if it respects signatures with respect to f , that is,

if πf (sp) = svc and sp : T1 × · · · × Tk → Tk+1 × · · · × TN ,

then svc : f(T1)× · · · × f(Tk)→ f(Tk+1)× · · · × f(TN ) .

We lift πf to pre- and postconditions of placeholders, such that πf (presp) ∈ ΦD
and free(πf (presp)) = Isvc , as well as πf (postsp) ∈ ΦD and free(πf (postsp)) =
Isvc ∪Osvc . In short, πf maps placeholders to services, using the ontology map-
ping f of KTBfKD to translate types from the template to the domain ontology.

As the semantics of workflows rely on logical structures, we need to clarify
the relation of structures over KT to structures over KD: if a structure satisfies
the rules of KD, then there exists a corresponding one satisfying the rules of KT .

Proposition 1. Let KT = (CT , PT , RT ) and KD = (CD, PD, RD) be ontologies
and S = (U , I) a logical structure over KD. If KTBfKD, and S |= RD, then we
can construct a corresponding logical structure SBf , where

SBf = (UBf , IBf ), with UBf

T = Uf(T ) and

IBf (p) = I(f(p)) for p ∈ PT



such that SBf |= RT .

Later, we will reason about formulae containing placeholders, which are satisfied
by a logical structure, and which follow from the rules of an ontology. Therefore,
in addition to the construction of a corresponding logical structure, we construct
a corresponding mapping from placeholders to service descriptions as well.

Proposition 2. Let KT = (CT , PT , RT ) and KD = (CD, PD, RD) be ontologies
with KTBfKD, and S = (U , I) a logical structure over KD. Let πf : SPT →
SVCD be a concretion, and Ψ ∈ ΦT be a formula containing placeholders from
SPT . If S satisfies the rules of KD and the concretized formula πf (Ψ), then

we can construct a corresponding concretion π
Bf

f : SPT → SVCT within the
template ontology; let signature names be sp ∈ SPT , svc ∈ SVCD, svc′ ∈ SVCT
and πf (sp) = svc, π

Bf

f (sp) = svc′, and svc and svc′ refer to the same name; if

π
Bf

f is signature preserving (Def. 14), and

π
Bf

f (sp) = svc′ with svc′ : T1 × · · · × Tj → Tj+1 × · · · × TN ,

then we also know, that

πf (sp) = svc with svc : f(T1)× · · · × f(Tj)→ f(Tj+1)× · · · × f(TN )

presvc′ ∈ ΦT such that f(presvc′) = presvc

postsvc′ ∈ ΦT such that f(postsvc′) = postsvc ;

and we can conclude SBf |= π
Bf

f (Ψ).

Proof: Consider some state σ |=S πf (Ψ) with Ψ ∈ ΦT . Then, the interpreta-
tions ID are fix for every predicate. We can construct SBf by Prop. 1, where
the interpretations of template predicates are by construction the same as the
interpretations of the corresponding (by f) domain predicates. The only pred-
icates without interpretations are the pre- and postconditions of placeholders.
We can construct π

Bf

f such that f(π
Bf

f (presp
svc)) = πf (presp

svc) (same for postcon-
dition). By definition, the interpretations are then mapped to the corresponding
predicates, and σ |=S πf (Ψ)⇒ σ |=SBf π

Bf

f (Ψ).

The same is true for σ 6|=S πf (Ψ), therefore σ |=S πf (Ψ)⇔ σ |=SBf π
Bf

f (Ψ).
ut

We can conclude that the set of states satisfying a formula with instantiated
placeholders under a structure S, is the same as for the corresponding SBf :

Lemma 1. Let KT = (CT , PT , RT ) a template ontology and KD = (CD, PD, RD)
a domain ontology with KTBfKD, a concretion πf , a formula F ∈ ΦT contain-
ing placeholders from SPT , and a structure S |= πf (F ), then

Jπf (F ) KS = JπBf

f (F ) KSBf .

Note that we do not need to give an interpretation for the standard function
and predicate symbols since their interpretation is always the same.

We continue our example with a domain ontology and a service description.



Example 3. Let KD be an ontology of the (simplified) domain of restaurants
with concepts CD = {Restaurant ,Rating}, predicates PD = {isMinRating :
Rating → bool, goodRestaurant : Restaurant → bool, fastFood : Restaurant →
bool, cheap : Restaurant → bool, hasRating : Restaurant × Rating → bool}
and rules3

fastFood(res)⇒ cheap(res)

hasRating(res, rat) ∧ isMinRating(rat)⇒ goodRestaurant(res)

hasRating(res, rat) ∧ ¬isMinRating(rat)⇒ ¬goodRestaurant(res)

We define a mapping f = (fC , fP ) from KT of Example 1 with KTBfKD as:

fC : Elem 7→ Restaurant ,Value 7→ Rating

fP : fp 7→ isMinRating , g 7→ goodRestaurant .

Since the template ontology has no rules, f trivially preserves them. For our
restaurant ontology, we assume a service Vld to provide a lookup service for
ratings of restaurants. It consists of the signature Restaurant → Rating , an
input res, an output rat , precondition preVld = true (it provides ratings for
all restaurants), and postcondition postVld = hasRating(res, rat) (the returned
rating belongs to the input restaurant).

Such services can replace service placeholders in the template. In addition, in-
stantiation requires replacing boolean conditions in the template workflow (be-
cause they use template predicates) with their counterparts in the domain on-
tology. To this end, we apply the ontology mapping f to the boolean conditions.

Definition 15. Let WT = (N, I,O,SPT , pre, post , C,W ) be a workflow tem-
plate over a template ontology KT , let KD be a domain ontology with set of
services SVCD and KTBfKD with f = (fC , fP ). Let πf : SPT → SVCD be a
concretion of the service placeholders in WT to services of the domain ontol-
ogy. The instantiation of the workflow W with respect to π and f , πf (W ), is
inductively defined as follows:

πf (skip) := skip πf (u := t) := u := t

πf ((uj+1, . . . , uk) := Svc(i1, . . . , ij)) := (uj+1, . . . , uk) := πf (Svc)(i1, . . . , ij)

πf (W1;W2) := πf (W1);πf (W2)

πf (if B then W1 else W2 fi) := if f(B) then πf (W1) else πf (W2) fi

πf (while B do W od) := while f(B) do πf (W ) od

πf (foreach a ∈ A do W od) := foreach a ∈ A do πf (W ) od .

Note that terms t do not need to be mapped by f since they only contain function
symbols over standard types.

3 Ontology languages provide dedicated constructs to specify different properties of
predicates, e.g., transitivity or cardinality (“every restaurant has exactly one rat-
ing”). These constructs can be expressed using rules, but for simplicity, we omitted
them in this example.



Name : RestaurantFilter
Inputs : A with type(A) = set Restaurant
Outputs : A′ with type(A′) = set Restaurant
Services : Vld : Restaurant → Rating
Precondition : {∀a ∈ A : preVld(a)}
Postcondition: {A′ = {a ∈ A | g(a)}}
Constraints : {∀x, y : postVld(x, y) ∧ isMinRating(y) ⇒ goodRestaurant(x),

∀x, y : postVld(x, y) ∧ ¬isMinRating(y) ⇒ ¬goodRestaurant(x)}
1 A′ := ∅ ;
2 foreach a ∈ A do
3 (y) := Vld(a);
4 if isMinRating(y) then A′ := A′ ∪ {a} fi ;

5 od

Fig. 4. Instantiation of the Filter template with a restaurant ontology and
a rating acquisition service

When templates are instantiated, we get service compositions. A service com-
position is a workflow (over a domain ontology) without service placeholders.
Figure 4 shows an instantiation of the filter template from Fig. 1, using the
ontology mapping of Example 3 and πf (V ) = Vld .

For the semantics of service compositions, we re-use the semantics definition
of templates. This time, however, we can omit the parameter πf , since all ser-
vices are concrete. Therefore, the only parameter left for the semantics is the
logical structure: the interpretation of domain ontology predicates is still not
fixed. The correctness condition can thus directly be re-used, except that service
compositions do not come with fixed pre- and postconditions (unlike templates).

Definition 16. A service composition W over a domain ontology K is correct
with respect to some precondition pre ∈ ΦK and some postcondition post ∈ ΦK
if the following holds:

∀ logical structures S s.t. S |= RK : JW KS(J pre KS) ⊆ J post KS .

We have defined correctness of templates and service compositions as well as
semantics for both. If a template and a composition are typed over the same
ontology, we can conclude from the definitions that they have the same semantics.

Lemma 2. Let WT be a template with workflow W , and π : SPK → SVCK be
an instantiation with services over ontology K. Then the following holds:

∀ logical structures S : JW KπS = Jπ(W ) KS .

From the semantics and correctness definitions above, and assuming that the
template is already proven correct, we state the following: To prove correctness
of a service composition, it is sufficient to show that the instantiated constraints
of the template can be derived from the rules of the domain ontology.



{S | S |= RT ∧
(1)

(2)

JW Kπ
Bf
f

S correct

︸ ︷︷ ︸

(3)

JW Kπ
Bf
f

S = JπBf

f (W ) KS(4) Jπf (W ) KS correct(5)

{S | S |= RD ∧
S |= πf (C)}S |= π

Bf

f (C)}

{S | S |= RD}
{S | S |= f(RT )}

{S | S |= RT }

Fig. 5. Overview of the proof of Theorem 1, with main steps (1) to (5)

Theorem 1. Let WT = (N, I,O,SPT , pre, post , C,W ) be a correct workflow
template over a template ontology KT , KD a domain ontology such that KTBfKD

with a mapping f = (fC , fP ), and let πf : SPT → SVCD be a concretion of ser-
vice placeholders in the template with services of the domain ontology.

If RD |= πf (C) then πf (W ) is correct with respect to πf (pre) and πf (post).

Figure 5 gives an overview of the proof. First, we select a structure which satisfies
the concretized constraints of the template (1). Then, we construct the corre-
sponding structure which satisfies the original constraints (2). By definition, we
know the semantics of the template (3) and can conclude that its instantiation
has the same semantics (4). As the template is correct, the instantiation is also
correct (5). We will now give the formal proof.

Proof: Let WT = (N, I,O,SPT , pre, post , C,W ) be a correct workflow tem-
plate over a template ontology KT , and πf (W ) be a service composition over a
domain ontology KD with KTBfKD. We have to show that, for any concretion
πf where the domain ontology satisfies the concretized template constraints,
πf (W ) is indeed a correct instantiation of template WT , that is, it is correct
with respect to the concretized precondition and postcondition of WT . Formally:
for all structures SD and instantiations πf the following has to hold:

SD |= RD ∧RD |= πf (C) : Jπf (W ) KSD (Jπf (pre) KSD ) ⊆ Jπf (post) KSD .

To start, fix SD and πf such that

SD |= RD ∧RD |= πf (C) .

If SD satisfies its rules, then it satisfies the subset of rules that is the range of
the homomorphous mapping:

SD |= RD ⇒ SD |= f(RT ) because f(RT ) ⊆ RD (by Def. 13).

Also, if both RD |= πf (C) and SD |= RD, then SD |= πf (C). Therefore

SD |= f(RT ) ∧ SD |= πf (C)



of course also holds. Now we “switch” to the template ontology; by KTBfKD,
we can construct a corresponding structure over the template ontology (Prop. 1)
along with a mapping π

Bf

f : SPT → SVCT (Prop. 2):

∃SBf ,∃πBf

f : SBf |= RT ∧ SBf |= π
Bf

f (C) .

By Def. 12, and because WT is correct, we know

∃SBf ,∃πBf

f :

SBf |= RT ∧ SBf |= π
Bf

f (C) : JW Kπ
Bf
f

SBf
(JπBf

f (pre) KSBf ) ⊆ JπBf

f (post) KSBf .

As we are currently solely in the template ontology, by Lemma 2 we know that
a template and an instantiation have the same semantics, and therefore

∃SBf , π
Bf

f :

SBf |= RT ∧ SBf |= π
Bf

f (C) : JπBf

f (W ) KSBf (JπBf

f (pre) KSBf ) ⊆ JπBf

f (post) KSBf .

If we “switch back” to the domain ontology, by Lemma 1, we can use our original
SD again:

SD |= RD ∧ SD |= πf (C) : Jπf (W ) KSD (Jπf (pre) KSD ) ⊆ Jπf (post) KSD .

It is therefore sufficient to show that RD |= πf (C), if the template is already
proven to be correct, and KTBfKD holds. ut

For our example template, we look at the instantiation πf (V ) = Vld from
Fig. 4. It can easily be shown that the concretized constraints follow from
the rules RD of the restaurant domain. Thus the service composition as given
by the instantiated template is correct with respect to the mapped pre- and
postconditions of the template which are ∀a ∈ A : true (precondition) and
A′ = {a ∈ A | goodRestaurant(a)}.

6 Discussion

Our approach contains the following aspects: (1) we have correct templates with
a formal, parameterized semantics, (2) instantiate them with services of a con-
crete domain, and (3) show correctness of the instantiation by correctness of
simple side-conditions. As instantiated templates come along with a full-fledged
service description, they can be treated as services themselves, and therefore be
re-used as services in other template instantiations.

On a basic level, verification of service compositions is not fundamentally
different from verification of programs. However, especially the context of on-
the-fly composition and verification comes with timing constraints; we therefore
believe that it is not feasible to prove correctness of service compositions individ-
ually. Domain-independent templates can, on the other hand, be verified without



timing constraints (e.g., by dedicated specialists). Then, instantiations can be
created on-the-fly, without the necessity of a complete verification: checking the
validity of the instantiated constraints is sufficient.

Working with templates in general is common in modular software design
methods, component-based software development, and service-oriented architec-
tures, either by dedicated modeling constructs, or by best-practices. However,
templates are not necessarily verified.

An early approach of formally specifying a service composition as a param-
eterized template, and to get provably correct instantiations, is the CARE ap-
proach [20,16]. In CARE so-called fragments are used for modeling: primitives,
which come with a black-box description and are proven to be correct externally;
and composites, which are used to model complex algorithms. The Z modeling
language [28] is used as a concise formal notation. For a composition’s speci-
fication, a proof obligation is derived automatically and can be proven by an
automated (and/or interactive) theorem prover to show that the instantiation is
correct wrt. the requirements. In contrast to CARE, we define correctness for an
incomplete template, and show that it is sufficient to proof that an instantiation
adheres to come constraints, instead of proving correctness for the complete in-
stantiation. Also, we integrate formalized domain knowledge into our approach.
[15] also uses the CARE method, but focuses on matching and adaptation.

Based on the development of adaptation techniques, [9] advocates the need
for verification at runtime, to verify compositions which changed while already
deployed. SimuLizar [6] extends the Palladio Component Model (PCM, [7]) with
fuzzy requirements for adaptation using the temporal-logic-based RELAX lan-
guage, targeting scalability analysis. While both focus on non-functional prop-
erties, it would be promising to apply our template- and constraint-based veri-
fication to similar runtime contexts.

There is also more research to define formal semantics for existing industrial
workflow languages. While [26] defines an event algebra for general workflows,
[10] defines a semantic for WS-BPEL [23] based on abstract machines, and [24]
based on Petri nets. [18] derives a data flow network from BPEL and translate
it to a Promela [17] model.

Also based on generalized data flow networks, the REO approach [3] focuses
on communication between entities (e.g., services), by using channel-based com-
munication models, and defining a semantics based on times data streams [2].

While we use a simple imperative programming style language to present our
approach, we believe it is possible to apply our results to existing workflow or
software architecture languages. To do this, the target language needs a notion
of placeholders, and a proper mapping between the languages has to be defined.
Our own ongoing experiments are based on an extension of PCM (esp. with
pre-/postconditions, [4]), where we also work on SAT-based verification of the
instantiation process.



7 Conclusion

In this paper, we presented an approach to create service compositions for dif-
ferent domains by instantiation of domain-independent templates. Moreover, if
these templates are provably correct, we have shown that verification of service
compositions can be reduced to verification of side-conditions of the instantia-
tion: the instantiated template constraints have to hold in the target domain.

To prove this, we defined an abstract semantics for workflow templates con-
taining service placeholders, which is parameterized with concretions (of place-
holders), and logical structures (which fix the concrete meaning). We defined
correctness with respect to pre- and postconditions based on this parameter-
ized semantics. If templates formalize instantiation constraints in the form of
rules, we have shown that all possible template instantiations are correct, if the
(corresponding) instantiation of these constraints are correct.

Therefore, using this approach to create service compositions, their verifica-
tion can be reduced to verification of side-conditions.

We would like to thank our colleague Felix Mohr for several discussions about
the use of templates in service compositions, as well as the anonymous reviewers
for their feedback.
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