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Patterns for visualization evaluation

Niklas Elmqvist and Ji Soo Yi

Abstract
We propose a pattern-based approach to evaluating data visualization: a set of general and reusable solutions
to commonly occurring problems in evaluating visualization tools, techniques, and systems. Patterns have
had significant impact in a wide array of disciplines, particularly software engineering, and we believe that
they provide a powerful lens for characterizing visualization evaluation practices by offering practical, tried-
and-tested tips, and tricks that can be adopted immediately. The 20 patterns presented here have also been
added to a freely editable Wiki repository. The motivation for creating this evaluation pattern language is to
(a) capture and formalize ‘‘dark’’ practices for visualization evaluation not currently recorded in the literature,
(b) disseminate these hard-won experiences to researchers and practitioners alike, (c) provide a standardized
vocabulary for designing visualization evaluation, and (d) invite the community to add new evaluation patterns
to a growing repository of patterns.

Keywords
Visualization, evaluation, validation, patterns, best practices, pattern language

Introduction

Evaluating data visualization systems is generally held

to be difficult,1,2 even to the point where it is seen as a

black art consisting of equal parts prior experience

and trial and error. Why is this the case? Visualization

systems are generally designed to scaffold high-level

cognitive activities, such as understanding particular

phenomena, finding insight about a problem, and

making a decision in the face of complex or massive

data.3 Such high-level tasks are difficult to isolate,

characterize, and quantify. Furthermore, it is far from

clear that a bottom–up model of assembling higher

level tasks from many low-level tasks is a valid

approach.4 As a result, visualization papers tend to

have a much lower incidence of evaluation than papers

in the broader discipline of human–computer interac-

tion (HCI): Lam et al.3 show that for the four major

visualization venues (EuroVis, 2002–2011; InfoVis,

1995–2010; IVS, 2002–2010; and VAST, 2006–

2010), over half of the papers (489 out of 850; 57%)

included no evaluation of any kind (not even a case

study). In comparison, even a cursory read of the

proceedings of leading HCI conferences, such as the

ACM CHI conference, will show that the vast majority

of HCI papers do include at least some form of

evaluation.

Of course, validation through empirical evaluation is

key to the scientific method and is a cornerstone

for most scientific domains. The field of visualization

has certainly reached well past the breakthrough

stage in its development,5 but many visualization papers

still insist on ‘‘validation through awesome example’’:

merely showing pictures of a visualization (stills

and video) in the hope of convincing the reader. For the

field of visualization to move solidly into replication,

empiricism, and theory (see the Breakthrough, Replica-

tion, Empiricism, Theory, Automation, Maturity
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(BRETAM) model5), empirical evaluation with human

subjects is vital.

What is needed to promote more and higher quality

evaluation in visualization? Despite the difficulty of

evaluating visualization systems, it can certainly be

done and has in fact been very successfully demon-

strated in recent work (e.g., Andrews et al.,6 Dwyer

et al.7 and Kang et al.8). Individual researchers possess

vast amounts of tacit knowledge about visualization

evaluation that is not formally recorded in the litera-

ture. In other words, the problem is perhaps not so

much how to effectively evaluate visualization, but

rather how to democratize this existing know-how

across the entire scientific community. Stated differ-

ently, the question is how we can collect best practices

from existing work and communicate these to a

broader audience. Recent literature has done just that

by discussing the different abstraction levels and pit-

falls of visualization evaluation,9,10 as well as by cate-

gorizing representative scenarios of evaluation studies

of visualizations.3 However, these efforts are all fairly

high level, and there is no natural venue for sharing

the nifty tips and tricks of visualization evaluation that

individual practitioners and researchers have accumu-

lated over the years.

To remedy this state of affairs, we present a pattern-

based approach to visualization evaluation: essentially,

a set of general and reusable solutions to commonly

occurring problems in evaluating tools, techniques,

and systems for visual sensemaking. The patterns’ con-

cept was originally introduced for urban planning11

and has since become a powerful tool for capturing

best practices in many domains, particularly in soft-

ware engineering.12 The patterns presented in this arti-

cle are examples of hard-won, tried-and-tested ideas

that will be useful while conducting visualization eva-

luation studies. In fact, some of these patterns capture

evaluation practices that experienced visualization

researchers are already doing but do not talk about;

the aforementioned ‘‘dark’’ knowledge that novices to

the field may find difficult to access.

The purpose for creating such an evaluation pattern

language is to (a) capture and formalize existing prac-

tices for visualization evaluation, (b) disseminate this

hard-won experience to researchers, students, and

practitioners alike, (c) provide a standardized vocabu-

lary for designing visualization evaluation, and (d)

invite the visualization community to design, derive,

and discuss new evaluation methods within the con-

text of a growing pattern repository.

This article is a significantly extended version of a

research article13 presented at the BELIV 2012

(Beyond Time and Errors: Novel Evaluation Methods

for Visualization) workshop colocated with IEEE

VisWeek 2012 in Seattle, Washington. The new

material in this version includes a collection of defini-

tions, several new evaluation patterns, and a revised

categorization of existing patterns.

Background

In this section, we first establish a common vocabulary

for evaluation with human subjects. We then explore

evaluation in visualization as well as the patterns’

movement in different domains. For more background

on evaluation in HCI and visualization, see a general

HCI textbook (such as Rogers et al.14) as well as prior

work by Plaisant,2 Carpendale,1 and Lam.15

Definitions

Evaluation with human subjects (or, more preferably,

human participants16) is common in HCI and takes

many shapes and forms, such as interviews, focus

groups, cognitive walkthroughs, expert reviews, and

participatory design. One of the most basic classifiers

for evaluation methods is whether they are quantita-

tive or qualitative. Quantitative evaluation focuses on

collecting performance measurements, for example,

on time and errors, that can be analyzed using statisti-

cal methods. Qualitative evaluation, on the other hand,

collects more in-depth and free-form data, such as

observations, notes, and transcripts, and is often used

for more exploratory or explanatory purposes.

Additional dimensions exist, like whether using the

evaluation for formative or summative purposes, con-

ducting the evaluation in the laboratory or in the field,

and at a single time or over a longer time period.

Furthermore, some studies do not fit cleanly in any

one of these categories; it is certainly possible to col-

lect qualitative data while performing a mainly quanti-

tative experiment (such as free-form comments in a

posttest survey) and vice versa (recording mouse inter-

action while engaging a domain expert in a structured

review).

While there exists a bewildering array of terms in

HCI evaluation, we will use a basic set of definitions

in this article. Please note that we make no claims that

these definitions are definite and general beyond the

scope of this article. We define an evaluation study (also

known as just ‘‘evaluation,’’ ‘‘user evaluation,’’ or ‘‘user

study’’—the term ‘‘user’’ is ubiquitous in HCI evalua-

tion but actually somewhat problematic: first, we are

most often evaluating usage as opposed to the users

themselves, and second, the term itself has somewhat

negative connotations (e.g., drug user)) as an empiri-

cal inquiry with the goal of answering one or several

research questions. Evaluation studies generally con-

sist of one or several experiments (or ‘‘user experi-

ments’’)—an orderly procedure conducted to verify,
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refute, or derive one or several hypotheses—although

this is not always the case (for example, an evaluation

study can be entirely observational). We also adopt the

notion of expanded boundaries of evaluation studies,

which also include exploration and/or problem charac-

terization phases.3 A participant (the term ‘‘subject’’ is

commonly used instead of ‘‘participant,’’ but its use is

generally depreciated) is an individual participating in

an evaluation study; most studies involve several parti-

cipants (from a handful to hundreds).

Experiments generally engage participants in per-

forming certain tasks: an activity that the participant is

asked to accomplish that is representative of an experi-

mental hypothesis. Quantitative experiments, often

called controlled experiments, generally involve compari-

sons in task performance between different partici-

pants and different experimental conditions. An

experimental condition is a complete set of values for the

factors, also known as independent variables, of the

experiment. Factors are variables that the experimen-

ter has determined may potentially affect task perfor-

mance; examples include the size of the dataset, the

amount of screen space available, and indeed, the

visualization technique used. The instantiation of a

task with a particular participant, data, and experi-

mental condition is often called a trial. Controlled

experiments generally measure quantitative metrics, or

dependent variables, for each trial; for example, the trial

completion time, the accuracy, and the number of

mouse clicks. Analysis of this data is then often per-

formed using inferential statistical methods that allow

for making probabilistic statements as to the influence

of any factors on task performance. For qualitative

studies, on the other hand, analysis often takes less

formal and more interpretative methodology; one

example is the grounded evaluation proposed by

Isenberg et al.17

Evaluation studies, regardless of being qualitative

or quantitative in nature, can either take place in a sin-

gle session or may be spread out in time and span sev-

eral sessions. The latter is known as a longitudinal

study. Furthermore, the validity of a study or an indi-

vidual experiment is a measure of its degree of well-

foundedness and is often divided into different aspects

of the study: (a) internal validity being the degree to

which the outcome is a function of the controlled

parameters of the experiment, (b) external validity

being the degree to which (internally valid) results can

be generalized, and (c) ecological validity being the

degree to which results can be applied to the real

world outside of the research and laboratory setting.

External validity can be easily confused with ecological

validity, but they are different concepts.

Evaluating visualization

Several visualization systems and techniques have

been evaluated using low-level quantitative studies.

Examples include work on graphical perception,18–20

animation,21–23 and navigation24–26 for visualization.

However, empirical evaluation for visualization

beyond time and error is difficult.1,2 This is mostly

due to the open-ended nature of most visualization

tasks, which makes designing relevant quantitative

metrics difficult,27 as well as due to the large individual

differences among participants (i.e. the participant’s

innate and learned ability in understanding visual

representations or background knowledge).28,29 For

example, evaluating a canonical visualization task such

as investigative analysis has been proven to be espe-

cially difficult.8 Furthermore, it is also not clear that

generalizing performance for higher level tasks from

many low-level tasks is a valid approach.4 This is also

the reason for the emphasis on qualitative and explora-

tory user studies of visualization in the literature.

Several important examples of qualitative evalua-

tions exist. Seven common scenarios of evaluation

studies have been identified through extensive review

of existing literature by Lam et al.,3 which will provide

a good overview. Separate efforts by Bier et al.30 and

Jeong et al.31 studied professional analysts solving

investigative tasks for intelligence and financial

domains. Kang et al.8 conducted a between-subjects

study of novice analysts using the Jigsaw32 system to

find a hidden threat in a large dataset of text reports.

They used external graders to score results, but

focused on qualitative observations rather than quanti-

tative measures when reporting the results from the

overall study. Saraiya et al.33 used free-form insight

reports to collect findings for microarray data analysis.

Most recently, Kwon et al.34 adapted insight-based

evaluation to an investigative analysis task similar to

that of Kang et al.,8 focusing on the role of time in

sensemaking.

An interesting trend in visualization evaluation is to

use observations and results on how people manually

perform particular tasks to inform visualization design.

Both Isenberg et al.35 and Robinson36 used qualitative

pen-and-paper studies to understand collaboration

patterns for analysts working together on a complex

task. Similarly, Van Ham and Rogowitz37 qualitatively

studied how people manually organized graph layouts,

deriving several recommendations for graph layout

algorithms. Dwyer et al.7 later followed up van Ham

and Rogowitz’s work by explicitly comparing auto-

matic and user-generated graph layouts based on user

performance for several graph tasks using the various

layouts generated in an earlier phase of the study.
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Patterns

Patterns were originally introduced by architect

Christopher Alexander for describing best practices on

all levels of scale in urban planning, and a language of

some 253 such patterns was assembled in a 1977 book

on the topic.11 The purpose of a pattern is to suc-

cinctly capture proven solutions to common problems

in a reusable form that is accessible even to non-

experts; one of the original intentions with Alexander’s

urban planning pattern language was to give ordinary

people, and not just professionals, the means to design

their local communities to fit their own needs.

Since their original use, the patterns’ concept has

been adopted by many domains as a powerful mechan-

ism for capturing and communicating best practices in

design; examples include game design,38 pedagogy,

communication policy, and even chess strategy.

Perhaps most famously, patterns were adopted by the

software engineering community in the 1994 Gang of

Four book12 and has since had a prominent place in

computer science practice.39 Heer and Agrawala40

extended this tradition in 2006 to visualization soft-

ware by proposing 12 new design patterns that are pre-

valent in building visualization software. However, it is

important to note that these patterns deal with the

mechanics of implementing visualization using pro-

gramming and has nothing to do with evaluation.

Evaluation patterns

A visualization evaluation pattern is a proven solution to

a common problem encountered when evaluating a

visualization system. These patterns are reusable in

the sense that ‘‘you can use this solution a million

times over, without ever doing it the same way twice’’

(Alexander et al.,11 p. x). More specifically, the pur-

pose of adopting this concept for visualization evalua-

tion is to provide a catalog of best practices that other

researchers can easily adopt in their own work.

In the below treatment, we discuss the anatomy of a

pattern, the methodology we followed to identify eva-

luation patterns, and the repository of patterns that we

have created. We then present our list of patterns and

their high-level characteristics. The following sections

describe each of our 20 patterns in detail.

Anatomy of a pattern

Patterns are generally specified in terms of five basic

components regardless of application domain (soft-

ware engineering, education, design, etc.):12

� Name: a handle used to denote the pattern. The

name should be in the form of a capitalized noun

and should often be one or two words (with some

exceptions). An illustrative name helps make the

pattern become part of our design vocabulary and

eases communication about a pattern between

collaborators.
� Problem: a description of the problem and its con-

text where the pattern can be applied.
� Solution: how to solve the problem in a reusable

and flexible way. The solution is described in gen-

eral terms without talking about specific solutions.

This is so that the same solution can be applied to

the same problem to produce different concrete

designs.
� Consequences: applying a specific pattern will

always have repercussions on the evaluation on

both global and local scale. This section describes

some of these consequences and some caveats to

keep in mind when applying a specific pattern.
� Examples: one or several concrete examples are

also provided to illustrate how to use the pattern.

Many patterns are related in that they target similar

problems, have similar solutions, or depend on each

other. For this reason, we sometimes also include a

‘‘See also’’ section to list these related patterns.

Identifying patterns

In identifying the patterns found in this article, we

drew from our own work as well as from the literature.

This naturally means that our selection is based on our

own knowledge of the field and is therefore somewhat

arbitrary and subjective. We therefore make no claims

as to the completeness of our pattern language. We

intentionally employed this approach because patterns

often capture ‘‘dark’’ knowledge that is not clearly

reported in existing literature, or it is reported but not

emphasized. Furthermore, some of the patterns pre-

sented here are well-known in other fields and are

included here because they could be of benefit to the

visualization domain. In fact, some patterns are even

well-known in visualization evaluation folklore (e.g.,

Pilot Study), but we have included them here to for-

malize their existence.

Another step in identifying and validating the pat-

terns in this article was to present an earlier version of

this article at the BELIV 2012 workshop on October

14–15 in Seattle, WA. Discussions during the work-

shop gave us perspective and feedback on the existing

patterns (originally 12, now 20) and also gave us

insight on new patterns to add. In fact, a common

theme discussed at the BELIV workshop was what we

characterize as anti-patterns:41 examples of solutions

(often straightforward ones) that may initially seem

like a good idea to a common problem, but which
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ultimately do not work out. Munzner presents exam-

ples of this in her work on pitfalls in writing InfoVis

papers.9 Anti-patterns are not the focus of this work,

but their prevalence at the BELIV workshop also lends

credibility to our work, and the anti-pattern concept

should be studied in the future.

Using the patterns

Design patterns are intrinsically bottom–up,12 which

means that they are not intended to guide the top–

down design of an entire evaluation study but rather to

serve as components used to solve particular aspects of

a study. For this reason, experimenters may find them-

selves using not just one but potentially several pat-

terns to overcome particular problems or challenges in

their study. We recommend that experimenters first

acquaint themselves with our evaluation patterns (as

well as any additional patterns contributed by others).

Then, much like how design patterns are used in soft-

ware engineering,12 this basic knowledge should be

enough for experimenters to be able to look up rele-

vant patterns based on the practical problems that arise

in designing a particular evaluation study.

How to design an entire evaluation study from

scratch is outside the scope of this article. A good

starting point for top–down evaluation study design is

the work by Lam et al.,3 which takes the high-level

goals and research questions as a starting point in

describing seven scenarios for visualization evaluation.

Standard HCI textbooks such as Rogers et al.14 may

also be useful in this endeavor.

List of patterns

In this article, we propose 20 separate patterns, both

new and old, for visualization evaluation (see Table 1).

To bring structure to the visualization evaluation pat-

tern language as well as ease navigation in the reposi-

tory, we have created five broad categories of patterns

based on the high-level purpose that the researcher is

trying to achieve and the question he or she is trying

to answer. However, each category does not necessa-

rily correspond to a type of study (e.g., the

Exploration category is not required for an exploratory

study). Instead, while designing an evaluation study,

the experimenter should take a problem-driven

approach to selecting suitable patterns to use. For

example, ‘‘Exploration’’ patterns can be used to deter-

mine which factors are most important in an evalua-

tion (the ‘‘Exploration’’ category), whereas ‘‘Control’’

patterns can help resolve confounding factors and

‘‘Presentation’’ patterns suggest how to present the

collected data to readers.

� Exploration: patterns concerned with exploring

the design space of the evaluation study. Are we

using the right independent and dependent vari-

ables? Are we confident that the study is appropri-

ate? Are we asking the right questions?
� Control: mechanisms for controlling an evaluation

study design to achieve high internal validity. Is

the study itself sound and appropriate? Are the

results going to be conclusive? Are the tasks and

data representative?

Table 1. List of evaluation patterns presented in this article.

Category Pattern name Type Example

Exploration Factor Mining Quantitative Ware et al.42

Trial Mining Quantitative Ghani et al.21

Human Blackbox Quantitative Dwyer et al.7

Do-It-Yourself Qualitative (Common)
Wizard of Oz Both Walny et al.43

Control Luck Control Quantitative Pietriga et al.44

Time/Accuracy Elimination Quantitative (Common)
Deadwood Detector Quantitative Kim et al.45

Pair Analytics Qualitative Arias-Hernandez et al.46

Generalization Complementary Studies Both Elmqvist et al.47

Complementary Participants Both Andrews et al.6

Expert Review Qualitative Tory and Möller27

Paper Baseline Quantitative Kang et al.8

Validation Pilot Study Both (Common)
Coding Calibration Qualitative Kwon et al.34

Prototype Qualitative Henry and Fekete48

Statistics Verification Quantitative (Common)
Presentation Once Upon A Time Qualitative Elmqvist et al.49

Case Study Qualitative Shneiderman and Plaisant50

Visualizing Evaluation Both Kwon et al.34
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� Generalization: positioning an evaluation study to

achieve high external and ecological validity. Is this

study grounded in real-world practices? How can

these data be applied outside the laboratory? How

trustworthy are these results?
� Validation: finding the right balance, calibration,

and parameters for an evaluation to save time,

resources, and money. Are we testing the right

thing in the right way? Are we wasting time and

effort? Do we have all the data and information to

analyze the results?
� Presentation: reporting the results of an evaluation

correctly and economically. Are the results pre-

sented in a way where they can be easily under-

stood? How do we evaluate and analyze higher

level tasks and scenarios? How can we communi-

cate our results to our readers?

In the following sections of this article, we review

these 20 evaluation patterns in full detail.

Exploration patterns

Exploration patterns are intended for early evaluation

design when the experimenter is trying to find appro-

priate tasks, datasets, factors, and baselines for an eva-

luation. The goal of this stage is generally to achieve

confidence that the evaluation is appropriate for the

visualization being evaluated. The below patterns all

help in this early design process in various ways.

Factor Mining

Problem. Deciding upon an experimental design is

key to any successful controlled experiment, but this is

sometimes challenging for complex problem domains.

The factors that govern how difficult a trial will be to

complete successfully for a participant may be

unknown and difficult to control.

Solution. Split the experiment into two phases, where

the first phase is an exploratory study used for mining

suitable factors, and the second is a straightforward

experiment that uses the findings from the first. The

exploratory study should use representative trials (pos-

sibly generated using Trial Mining, see section ‘‘Trial

Mining’’). For each trial, calculate each of the metrics

that are candidates to be used as factors for the follow-

up experiment. When statistically analyzing the results,

include all the candidate metrics in the model and note

which ones have a significant main effect on the main

performance metrics. The significant metrics are the

ones that should be considered as factors, and the

range of values in the tested trials give an indication of

which levels to choose for each factor. Interaction

effects are particularly interesting to include since they

indicate situations where results are split depending on

a particular condition.

Consequences. Factor Mining will inevitably add

complexity, time, and budget expenditure to a project

since it requires an additional phase. Furthermore, in

order for the identified factors to be representative, the

trials have to be representative as well. This is often

problematic: if we knew how to construct a specific

trial at a specific level of difficulty, we would likely

already know the relevant factors and would not need

Factor Mining in the first place. To sidestep this issue,

Factor Mining is often used in conjunction with Trial

Mining to randomly generate a large number of trials,

characterize them, and select representative ones.

Examples. In a study from 2002, Ware et al.42 investi-

gated the factors influencing the aesthetics of graph

aesthetics. Various factors of a graph, such as continu-

ity, number of crossing, number of branches, shortest

path length, were measured. Then, the relationship

between these measures and the performance outcome

(answering the length of the shortest path between

two highlight nodes) was analyzed through regression

analysis. More recently, Factor Mining was used in a

study on the perception of animated node-link dia-

grams of dynamic graphs.21 In order to understand

which attributes of a dynamic graphs influence the

human perception capability, the work enumerates a

large number of dynamic graph metrics, such as node

and edge speed, angular momentum, and topology

change, but there exists no results on the relative sig-

nificance of these candidate metrics. Therefore, the

work used an exploratory study where the important

metrics (node speed and target separation) were iden-

tified. See also, section ‘‘Trial Mining.’’

Trial Mining

Problem. Generating representative trials is important

for ensuring validity, but it is not always possible to

generate a trial given specific experimental factor levels

such as size, complexity, or density. In other words,

the metrics used to characterize a trial may be descrip-

tive rather than generative, and determining how to

use them to generate specific trials is too complex or

time-consuming.

Solution. Instead of generating a specific trial from

parameters, generate a large number (tens of thou-

sands) of entirely random trials and calculate the
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factor metrics for each random trial. The descriptive

statistics for all these generated trials and their calcu-

lated metrics will give an idea of important metrics,

their data distribution, and their relevant levels (also

see section ‘‘Factor Mining’’).

Once the factor levels have been determined (as

intervals for each metric), search the database of ran-

dom trials and pick trials that meet the criteria. To

avoid inadvertently picking outlier trials, consider

selecting trials that fall within a specific confidence

interval around the mean for each metric.

Consequences. Using Trial Mining means giving up

the ability to generate a representative trial for a spe-

cific experimental condition and instead select from a

database of randomly generated trials. A lot of random

trials may have to be generated, the absolute majority

of which will be discarded and never used. All unused

trials represent wasted time and effort. This pattern

also hinges on being able to generate an unlimited

number of random trials, which is not possible for all

domains (such as text, images, and audio).

Examples. The Trial Mining pattern was used in a

recent study on perception of animated node-link dia-

grams of dynamic graphs,21 that is, graphs that change

over time. It was unclear what constituted a represen-

tative trial for dynamic graphs, so in an initial study, a

large number of trials (240,000) were generated. The

different graph metrics (node speed, degree, distance,

etc.) were calculated for each trial, and when selecting

the actual trials to use, trials were picked from within a

particular confidence interval (0.7 in this particular

example) for each metric.

Human Blackbox

Problem. Objectively measuring the quality of a solu-

tion created by a participant can be difficult if the

solution is not easily quantifiable and can only be sub-

jectively judged.

Solution. Instead of trying to give a subjective judg-

ment on a solution, which is open to bias (see section

‘‘Coding Calibration’’), create a follow-up evaluation

where new participants use the solutions from the first

evaluation to solve a particular task in a way that can

be quantified. The participants in the follow-up study

essentially become blackboxes—objects that can be

viewed only in terms of their inputs and outputs with-

out regards to its internal workings—that we do not

have to open, just study their outputs given specific

inputs. In other words, this pattern takes a highly

pragmatic approach to judging an artifact: instead of

trying to qualitatively assess the artifact, we simply

measure participant performance in using the artifact

to solve an information task.

Consequences. This pattern requires adding a second

evaluation, which is both costly and time-consuming.

It also requires designing a new task for the second

evaluation that uses the output from the first and yields

a result that can be easily quantified (i.e. completion

time, accuracy, and number of interactions).

Examples. To our knowledge, this pattern was first

used by Dwyer et al.7 in work that builds on an earlier

study of user-generated graph layouts.37 However,

Dwyer et al. added a second experiment where partici-

pants performed several graph tasks using the user-

generated layouts from the first experiment. In other

words, the performance of participants solving these

tasks in the second experiment became robust metrics

of the quality of each user-generated layout from the

first. In van Ham and Rogowitz’s37 original work, this

second experiment was not present, forcing the

authors to make more or less subjective judgments of

the quality of the user-generated layouts. Another

example of the Human Blackbox pattern was a set of

three graph revisitation experiments conducted by

Ghani and Elmqvist51 where the visual encodings

selected as quantitatively optimal by participants in

the first two experiments fed into the encodings used

in the third and final experiment. See also, section

‘‘Coding Calibration.’’

Do-It-Yourself

Problem. Visualization and interaction design com-

prises countless decisions on a wide array of aspects

ranging from color scheme, user interface, transitions,

selection techniques, and visual encodings. Attempting

to empirically validate all these design decisions using

human subjects is not practical. In fact, sometimes the

visualization system being evaluated is too complex—

for example, the expertise and time requirements may

be too high—or the intended user group is impossible

to access for evaluation.

Solution. In the time-honored tradition of scientists

experimenting on themselves, Do-It-Yourself (DIY)

engages a single individual—the designer herself or

himself—to serve as a human participant in a single,

continuously running evaluation on the design of a

visualization system or technique. This allows the

designer to make rapid progress based on their own
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expertise and experience, only deferring key and

important questions to large-scale empirical evalua-

tion. Less vital decisions can be made at the discretion

of the designer. However, since it can be difficult to

determine whether a decision is vital or not, even for

an experienced designer, it is very important that the

designer takes disciplined and structured notes while

using the DIY pattern.

Consequences. Applying DIY means that many deci-

sion designs can be made quickly and without the cost

of a human subject evaluation. Furthermore, utilizing

project members may virtually be the only way to find

participants for an evaluation that spans a very long

time or requires very specific expertise or background.

However, successfully applying the pattern typically

requires long experience in making the necessary

design decisions; a novice researcher may not be in a

position to reliably make these decisions.

Furthermore, even with an experienced experimenter,

a major weakness of DIY is the threat of lack of objec-

tivity and integrity: the participant may become too

wrapped up in the project or the system to be able to

reliably find flaws or make the right decisions. In other

words, DIY is generally not a replacement for formal

user experiments (although the examples below do use

them as such), but should only be used to focus actual

experiments on important questions.

Examples. DIY is routinely used by both visualization

practitioners and researchers alike when designing

new techniques and systems. However, the pattern

can also arguably be used in place of a large-scale

empirical evaluation if the experimental data are suffi-

ciently large or detailed. For example, MyLifeBits52 is

an ongoing DIY evaluation where one of the co-

authors—Gordon Bell—continually logs data about

his personal life using an automated database system.

Wigdor et al.53 present a longitudinal study of a single

participant using a digital tabletop as a replacement

for a desktop computer over the course of 13 months.

Similarly, a recent article54 presents the author’s own

experiences with using an interactive desk over the

duration of a full year. All three of these examples are

successful because they take a disciplined and struc-

tured approach to DIY evaluation by using careful

subjective observations and surveys paired with quan-

titative measurements. See also, sections ‘‘Paper

Baseline,’’ ‘‘Prototype,’’ and ‘‘Wizard of Oz.’’

Wizard of Oz

Problem. Many interesting research questions require

significant new technological advances in order to be

answered, but it is sometimes difficult to predict

whether this development effort will be worthwhile. In

fact, a positive outcome of the evaluation may be

necessary to motivate even pursuing a speculative

technical advance in the first place. This leads to a

chicken-and-egg problem: to evaluate the idea we

need an implementation, but to build an implementa-

tion, we must first evaluate the idea to motivate the

development effort.

Solution. Conduct an evaluation where the partici-

pants interact with a computer system that is partially

or fully operated by an experimenter (also known as

the Wizard). The experimenter (Wizard) manually

performs the computationally challenging tasks and

feeds the desired output back to the participant.

Participants are generally not informed of the exis-

tence of the experimenter posing as the computer sys-

tem and believe that the system is fully autonomous.

Rather than being a complete computer system, how-

ever, a Wizard of Oz visualization platform is merely a

more or less hollow interface that forwards requests to

the experimenter (often located in another room) and

returns the experimenter’s actions as output to the

participant.

The Wizard of Oz pattern is well-known in the gen-

eral HCI community55 (see below for more examples),

but has so far seen little use in the visualization com-

munity. For this reason, it is worthwhile to highlight in

this treatment.

Consequences. The Wizard of Oz pattern allows for

evaluating new or even speculative techniques and

mechanisms without the time and cost of implement-

ing them (such as speech recognition, gesture detec-

tion, and high-level reasoning). Participants believe

that the system is autonomous, thus encouraging natu-

ral behavior when interacting with it. However, as with

any method involving deception, there is a risk that

the participant realizes that there is another human

being involved, which may affect their performance.

Examples. A recent article by Walny et al.43 uses the

Wizard of Oz pattern to support robust pen and touch

recognition for data exploration on interactive white-

boards. The wizard received participant input on a

separate, networked computer and used a dedicated

control panel to issue system commands in response

to this input. In general HCI, Wizard of Oz protocols

have been used for similar computationally difficult

problems, such as natural language processing55 and

pen input recognition.56 See also, sections ‘‘Pair

Analytics’’ and ‘‘Prototype.’’
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Control patterns

Internal validity is widely defined as the degree to

which the outcome is a function of the controlled para-

meters of an evaluation. In other words, an experiment

with high internal validity is designed in such a way

that irrelevant parameters have little or no impact on

the results. The purpose of Control patterns is to

achieve high internal validity by controlling or elimi-

nating such irrelevant parameters.

Luck Control

Problem. Chance is sometimes a major factor for cer-

tain tasks, such as visual search. For example, if the

participant is searching for a target in a collection of

distractors by clicking on each potential target to find

out if it is the correct one, they may get lucky and

immediately pick the correct target (or unlucky and

always pick the correct target last). This renders the

distractors largely ineffective.

Solution. The common solution is to leave issues such

as this to random chance in the knowledge that they

will even out over the course of the evaluation, but

sometimes luck may have too large an impact to be

ignored. In such situations, the solution is to limit the

impact of luck by explicitly controlling discovery order

without the knowledge of the participants. For exam-

ple, if there are five potential targets (doors to open) to

pick and only one of them is the correct answer (one

door opens to the object the participant is looking for),

add an experimental factor D with values 1–5 that says

which of the five targets is the correct one. Whether a

potential target is the right one or not is determined

when the participant actually clicks on it (given earlier

clicks). Each participant will thus be lucky (D=1, i.e.

on the first click) and unlucky (D= 5, i.e. on the last

click) once per condition, and all other levels of chance

in-between.

Consequences. Using Luck Control requires an addi-

tional factor to be added to the experimental design,

which can sometimes be problematic for experiments

that already have a large number of conditions. In

addition, sometimes the number of possible outcomes

is too large to model directly using a factor; in such

situations, define intervals of outcomes as ‘‘easy,’’

‘‘medium,’’ and ‘‘difficult’’ in terms of the impact of

random chance (corresponding to, for example, dis-

covery order 1–5, 6–10, and 11–15). Finally, Luck

Control can only be used in situations where the deter-

mination of what potential target is the correct one

can be performed on the spot, and not when setting

up the trial.

A danger with this approach is that participants may

suspect that luck is being controlled. However, if done

correctly, this knowledge should not impact perfor-

mance; the decision of which potential target is the

correct one is lazily resolved.

Examples. A form of Luck Control is used in many

experiments that include factors to model the diffi-

culty of a trial. However, to our knowledge, explicitly

controlling discovery was first proposed by Pietriga

et al.44 in their operationalization of multiscale search.

Javed et al.25 use a similar approach when evaluating a

multi-focus technique called PolyZoom for exploring

two-dimensional (2D) multiscale spaces. Giving parti-

cipants a choice of four possible target areas on a map,

Javed balances which of the four areas actually contain

the target (without the participants’ knowledge)

instead of relying on random chance. See also, section

‘‘Time/Accuracy Elimination.’’

Time/Accuracy Elimination

Problem. Some evaluations come down to time and

error performance. However, it is often difficult to bal-

ance both measurements given the individual differ-

ences of participants (the so-called time/accuracy

tradeoff). One participant may be very thorough and

score few errors at the cost of high completion times,

whereas another participant may quickly solve tasks

while incurring many errors. This remains an issue

even with very specific instructions.

Solution. Design experimental tasks so that one of

time or error measurements are eliminated. An exam-

ple of eliminating error would be for a visual search

task, where the task can be designed so that the partici-

pant is not allowed to answer with an incorrect target;

the trial only ends when the correct target is selected.

Analogously, to eliminate timing, either give a specific

time limit (say, 10 s) or give no time limit at all to find

the target, but allow only one click.

Consequences. Eliminating time or error enables ana-

lyzing only one metric and will give more definite

answers on the impact of the conditions. On the other

hand, it may nuance tradeoffs between time and error

to be overlooked. Furthermore, one of the dangers

with eliminating one of these factors is that in forcing

the participant to be correct, he or she can sometimes

get stuck and not be able to complete the trial.
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Examples. In a recent study on occlusion manage-

ment for tabletop interfaces, Javed et al.57 used a task

where participants were asked to recall a sequence of

images while their completion time was recorded.

However, out-of-order selections were not possible; if

the participant selected the wrong image, a brief error

message flashed on the screen and an error counter

was increased. The participant was still required to

make the correct choice to progress to the next image

in the sequence. In other words, errors were elimi-

nated and only timing was analyzed.

Similarly, standard text entry evaluation stipulates

three error correction conditions: none, recommended, and

forced.58 Of the three, the ‘‘forced’’ condition is an exam-

ple of error elimination in that it does not allow typing

mistakes; only the correct key for the next letter to type

will result in output. See also, section ‘‘Luck Control.’’

Deadwood Detector

Problem. Crowdsourcing participants for studies is a

great way to collect lots of data quickly and economi-

cally.18,59 However, many participants are ‘‘deadwood’’

in that they are simply looking for the monetary com-

pensation and are not paying sufficient attention to the

evaluation tasks.

Solution. Various approaches have been proposed

to motivate crowdsourced workers (often called

Turkers) and filter out those who did not pay proper

attention.60–64 However, many of these approaches

require additional steps (e.g., adding dummy tasks) or

damage the validity of the study (e.g., removing out-

liers based on task performance). An effective and uni-

versally applicable approach is to measure the

randomness of a crowdsourced worker’s performance

while completing tasks. This approach is based on the

assumption that deadwood Turkers randomly select

responses in order to quickly get through the whole

evaluation, yielding more or less random responses,

that is, which follow the uniform distribution. Thus,

filtering out participant whose performance is not con-

sistent over time (i.e. p . pthreshold) effectively filters out

deadwood from the collected data.

Consequences. By identifying deadwood Turkers and

eliminating their data from the evaluation,

crowdsourcing-based approaches become a viable

option to collect data from a large number of study

participants.

Examples. This approach was used in a recent crowd-

sourced study to eliminate deadwood from collected

data.45 A more detailed procedure of this approach

was presented by Kim et al.65 at the BELIV 2012

workshop.

Pair Analytics

Problem. Understanding the cognitive process of a

participant using a visualization tool is difficult.

Conducting an interview after an evaluation session

may reveal some major points, but the results will be

mostly summative and will not capture details encoun-

tered on the fly. A think-aloud protocol may help cap-

ture such information, but this approach may affect

the behavior of the participant, and the collected data

are often somewhat random and difficult to under-

stand. Participants often cannot articulate what they

think, or provide too much information that is not

necessarily helpful. Finally, the tool itself often serves

as a barrier against effective sensemaking since most

visualization evaluations do not provide proper, long-

term training for the tool, making the participant less

than fluent in using it.

Solution. The basic idea of Pair Analytics46 is to form

a team consisting of an experimenter (often a visuali-

zation expert) and a participant (often a subject matter

expert) to explore the dataset and perform the

required tasks. The pair complements each other since

the experimenter is well-versed with the tool and will

‘‘drive’’ it, and the participant is well-versed with the

problem domain for the dataset to analyze.

Furthermore, in solving the task together, the driver

and the domain expert will be verbally externalizing

their cognitive processes when they communicate to

investigate the data. This verbal communication pro-

vides natural insight into the sensemaking process,

compared to think-aloud protocols where the verbal

communication is easily perceived as artificial by the

participant.

Consequences. The Pair Analytics pattern requires

that the experimenter who is driving the tool remains

objective. Nevertheless, a possible consequence of this

pattern is that the mere presence of the experimenter

will influence the domain expert in an unforeseen way.

Examples. The VAST 2007 competition66 included a

special session where the winners were invited to use

their visual analytics tools on a smaller dataset and

working together with a professional analyst. Similarly,

Grammel et al.67 used a human mediator to pilot

visualization construction software in order to deter-

mine how novice users create new visualizations. The
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mediator insulated the novice participants from the

complexities of the software, yet allowed the research-

ers to study the thought process and reasoning going

into this task. Additional examples of pair analytics

can be found at http://tinyurl.com/pair-analytics.

See also, sections ‘‘Complementary Participants,’’

‘‘Expert Review,’’ and ‘‘Wizard of Oz.’’

Generalization patterns

External, or ecological, validity is loosely defined as an

estimate of the degree to which the results of an eva-

luation can be applied to realistic situations. In con-

trast to control patterns, the purpose of generalization

patterns is to achieve high ecological validity by intro-

ducing different sets of environments, participants,

and real-world examples.

Complementary Studies

Problem. In designing a visualization user study, we

are often faced with a choice of a rigorous and unrea-

listic study, or a realistic but ad hoc one. Achieving

both in the same study is often impossible: for a rigor-

ous study, we need to be able to generate balanced

trials, which means that the data cannot be truly real.

For realistic data, on the other hand, we run into learn-

ing effects, variability in the trials, and difficulty con-

trolling all aspects of the task and dataset. In other

words, the rigorous toy study lacks ecological validity

(conformance to a realistic situation), whereas the ad

hoc study lacks internal validity (confidence of the mea-

sured results actually being a function of the factors).

Solution. The obvious solution for remedying the

above problem is to include both kinds of studies in a

paper and have them complement each other. The rig-

orous toy study will probably be the backbone of prov-

ing that the system or technique actually works in the

general (but unrealistic) case. The realistic ad hoc

study, on the other hand, will serve as a much-needed

sanity check and help to convince the reader that the

work is applicable to the real world.

Consequences. Using the Complementary Studies

patterns essentially requires twice the resources in

time, money, and preparation of conducting just one

of the two possible studies. Beyond that, describing the

details of two studies in the same research article may

be costly in terms of space. Furthermore, conducting

two or more studies evaluating the same phenomenon

may result in contradictory results; the researcher must

be ready to handle this case.

Examples. In evaluating visual search performance for

the Color Lens technique,47 which dynamically adapts

a color scale to fit the range of data values within a

magic lens, there was an option between searching

for a variable-strength feature (a circle) in a random

noise background and a named feature in a real photo-

graph (i.e. ‘‘find the deer in this picture of a forest’’).

Instead of choosing just one option, both studies

were conducted and reported on. Andrews et al.,6 in

a study of space layout practices for sensemaking,

perform two separate and complementary evaluations,

one engaging professional analysts and another enga-

ging graduate students (this is also an example of

Complementary Participants, see section ‘‘Comple-

mentary Participants’’). See also, section ‘‘Comple-

mentary Participants.’’

Complementary Participants

Problem. Many visualization systems are designed for

a particular expert user population, but getting access

to this population for evaluation purposes is often very

difficult. For example, a visual analytics system such

as Jigsaw32 is intended for expert analysts, but finding

a good number of actual analysts that are willing to

invest the time to help evaluate the system is difficult.

Solution. Run two versions of the evaluation: a smaller

version with a small number of expert analysts and a

larger version with non-expert participants selected

from the general population. The tasks and datasets

for the two versions can be radically different. Similar

to Complementary Studies, the few expert participants

allow for retaining ecological validity and may be able

to offer deep insights on the visualization, whereas the

larger pool of general participants provide internal

validity and information on human motor, perceptual,

and cognitive abilities not specific to experts.

Consequences. The Complementary Participants

does not entirely remove the need to engage expert

participants for an evaluation, but it does ease the bur-

den by radically reducing the number of such partici-

pants needed. This pattern may also require more

money and time than with one participant group.

Finally, it is possible, maybe even likely, that the two

participant group give rise to different and even con-

tradictory results.

Examples. The visual analytics tool Jigsaw32 has pri-

marily been evaluated using general non-expert parti-

cipants (often university students), such as in the

qualitative evaluation performed by Kang et al.8
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However, Jigsaw has also been utilized by professional

analysts (although not reported in the same article).

Andrews et al.6 used Complementary Participants and

Complementary Studies in evaluating their Analyst’s

Workstation tool, engaging five professional analysts in

one study, and eight students in another. See also, sec-

tion ‘‘Complementary Studies.’’

Expert Review

Problem. Using study participants recruited from the

general population is impractical if the visualization

system being evaluated requires very specialized

knowledge and skills. The experimenter may be look-

ing for deep and informed insights that no layperson

can provide. At the same time, expert users are often

protected and have little or no availability (or even

interest) to participate in a large-scale user evaluation.

Solution. In HCI, an expert review is a structured eva-

luation of an interactive system using a small set of

usability experts that explore the system with an eye

toward usability problems. Anecdotal evidence shows

that only five usability experts can find up to 75% of

all usability problems in a system.14 Tory and Möller27

propose the use of expert reviews as a method to eval-

uate visualization, not just on usability issues but also

on additional aspects. In fact, coupled with a pattern

such as Pair Analytics, an Expert Review (with the

domain expert serving as the participant), this pattern

allows for evaluating a new visualization system even

in an early formative stage where usability issues have

not yet been resolved.

Since Expert Reviews are structured evaluations, it

is often useful to provide the expert participant with

some form of written task sheet to follow. This sheet

should contain both simple, straightforward questions,

to get the participant up to speed with using the tool,

as well as more open-ended questions, to promote

deep insight.

Consequences. Using an Expert Review to evaluate a

visualization system significantly reduces the time and

cost investment of evaluation while still exposing the

system to human subjects for validation. Many times,

only a small number of expert participants are needed

for the review. Furthermore, the insights collected dur-

ing Expert Review will be of higher quality than those

given by laypersons. However, as observed by Tory

and Möller,27 Expert Reviews should not replace user

studies because different evaluation mechanisms test

different things (see the Complementary Participants

pattern). For example, an Expert Review will not allow

for comparing two different techniques or interface

designs. In fact, expert participants are still going to be

different and have different opinions, so an Expert

Review is no guarantee to achieve consistent results

across all participants.

Examples. Yi et al.68 employ the Expert Review pat-

tern to evaluate the TimeMatrix visualization tool for

dynamic graphs using three social scientists trained in

social network analysis (SNA). Similarly, Elmqvist

et al.49 use two visualization researchers to validate the

DataMeadow system for multivariate visual analytics.

See also, sections ‘‘Complementary Participants’’

and ‘‘Pair Analytics.’’

Paper Baseline

Problem. Determining how people make sense of data

‘‘in the wild’’ can often be obscured by the visualization

tools themselves. The participants may not be fully flu-

ent in using the tool, and the tools—being research

prototypes—may not have an optimal interaction

design. In fact, first developing a prototype tool with

the intention of supporting people’s ‘‘natural’’ mechan-

ism of interacting with data without knowing this

mechanism is actually somewhat counterproductive.

Solution. Instead of designing a visualization system

to use as an evaluation platform, conduct an entirely

paper-based evaluation. Rather than using interactive

computer displays, use paper printouts of the displays

to be studied and give them to each participant.

Participants can still be asked to explore data and solve

tasks, but they will be drawing on paper printouts

instead of a computer system. If appropriate, combine

the paper-based study with a visualization-based study

to compare the two.

Consequences. This pattern reduces the need for

costly and time-consuming software development.

However, it is most suitable for formative design and

will obviously not yield results for interactive behavior.

Furthermore, while a computer-based study is easy to

instrument, this is not the case for a paper-based one;

the experimenter may have to resort to videotaping

participants, or keep careful observation logs.

Examples. Kang et al.8 include a Paper Baseline con-

dition in their qualitative study of Jigsaw-32 where the

participant only receives paper printouts of the reports

that other participants use the Jigsaw tool to analyze.

Isenberg et al.35 and Robinson36 both base their stud-

ies of collaboration data analysis solely on paper
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printouts. See also, sections ‘‘Prototype’’ and ‘‘Wizard

of Oz.’’

Validation patterns

Validation patterns are intended for early confirmation

that the design of an evaluation study or an analysis

scheme is appropriate, thereby identifying problems

before wasting time and resources. The purpose of

Validation patterns is to increase the efficiency of such

evaluation processes.

Pilot Study

Problem. Evaluations often contain many parameters

specific to the visualization technique, such as the dif-

ficulty of the trials, task formulation and design, train-

ing sessions, blocking and order, data measurement,

and overall study balance. Such parameters often have

a large impact on the outcome of the evaluation.

Therefore, it is not scientifically valid to arbitrarily set

appropriate values for these parameters, and using the

study itself to calibrate the values is costly in time and

resources.

Solution. Perform several dry runs of the evaluation

study with unbiased participants. Each dry run (or

pilot) should mimic a real evaluation session as closely

as possible, but changes to the study may be made

after each pilot to improve its design. Pilot participants

should be objective and unbiased to yield the most

benefit (in other words, involving a project member as

a participant is a bad idea), but having expertise in

human subject evaluation is helpful since it allows the

participant themselves to give informed advice on how

to improve the study. Determining how many pilots to

run is open to debate; one or two is often too few,

whereas three or more allows for achieving stability in

the changes made to the study. It is also advisable to

conduct the planned statistical or qualitative analysis

using the collected pilot data, which often helps the

experimenter to identify any errors and mistakes in the

data collection. However, Pilot Study data should

never be included in the final analysis.

Consequences. Running one or several Pilot Studies is

a very common practice in human subjects evaluation,

but deserves being highlighted here as a pattern in rec-

ognition of its prominence. Even though Pilot Studies

add to the time investment of performing the evalua-

tion, they are truly invaluable in detecting problems

early, and therefore often repay themselves many times

over the course of a study. Furthermore, Pilot Studies

can be used to inform and motivate design decisions

for evaluation studies (they improve the validity of the

study) and should therefore be reported in the article.

A pilot can sometimes be run in combination with the

Expert Review (section ‘‘Expert Review’’), Prototype

(section ‘‘Prototype’’), and Wizard of Oz (section

‘‘Wizard of Oz’’) patterns.

Examples. Pilot Studies are typically not highlighted

in research articles, but are nevertheless used to cali-

brate most reported evaluations. One concrete exam-

ple is the Pilot Study used in a graphical perception

experiment by Javed et al.25 where findings from the

pilots were used to find suitable levels for the factors

included in the experiment. See also, sections ‘‘Expert

Review,’’ ‘‘Prototype,’’ and ‘‘Wizard of Oz.’’

Coding Calibration

Problem. When analyzing qualitative data (e.g., inter-

view results and insight reports), the data are often

coded to impose structure on large, unstructured data

by multiple coders (or raters). Unless the coding

scheme is determined by prior literature (rare in visua-

lization) or open coding69 is used, multiple coders

often need to construct a coding scheme while analyz-

ing the data (closed coding). This process is iterative

and often causes painful re-coding of the entire dataset

due to changes in coding scheme.

Solution. Having multiple meetings among coders to

calibrate a coding scheme while coding randomly

selected subsets (about 10%) of data is crucial.

During calibration, codebooks should be compared

and discrepancies between results discussed. The dis-

cussion often leads to refining codebooks, and clarified

definitions should be written on a shared document.

Calibration meetings should be continued until no

major disagreement is found. Even after the coding

scheme is stabilized, if any coder identifies unclear

cases, new meetings should be called. Inter-coder

reliability70 can be calculated after the coding scheme

is stabilized to clarify definitions and prevent minor

errors (although high inter-coder reliability cannot

guarantee similar analyses by all coders71).

Consequences. While it may require an additional

investment of effort, Coding Calibration ultimately

saves resources by establishing a code scheme as early

as possible.

Examples. Recent work by Kwon et al.34 uses a simi-

lar approach and reports on the calibration process to

some degree while coding insight reports, including
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the number of coders, inter-coder reliability, coding

calibration processes, and scoring schemes. In their

study of paper-based practices for visual analysis,

Isenberg et al.35 report on their methodology for cod-

ing notes and video captures of evaluation sessions.

Their description of having two separate coding passes

involving two coders would seem to indicate that

Coding Calibration was used between the two passes.

This coding approach is further described in another

article on ‘‘grounded evaluation.’’17

Prototype

Problem. Software development is costly, both in time

and resources, and this is particularly true for interac-

tive systems such as visualization tools where the

developer has to make countless design decisions on

interface, visual encodings, layout, and so on. Fully

implementing all design alternatives and comparing

their performance is therefore not practical.

Solution. To solve this issue, the field of HCI has long

promoted the use of prototypes14 of varying fidelity.

These prototypes are often built using cheap and read-

ily available resources, such as paper, Post-its�,

colored pens, scissors, and glue. They can then be

used in user-centered or participatory design sessions

with domain experts to determine which of several

alternatives is optimal, and what changes should be

made to them. Prototypes can be made increasingly

more complex by using digital tools or interface

mockups.

Prototypes serve an additional purpose: because

domain experts are generally not well-versed in soft-

ware development and visualization design, the proto-

types give a tangible example of what is possible using

the new technology (this use actually encroaches on

the Wizard of Oz pattern described in section ‘‘Wizard

of Oz’’).

Consequences. Applying the Prototype pattern requires

additional effort to create prototypes, potentially several

different ones, during the design phase of a project. This

is often costlier than simply starting software develop-

ment of the visualization tool itself. On the other hand,

having prototypes allows for collecting early formative

feedback from intended users. This may improve the

quality of the visualization tool that is ultimately devel-

oped based on this feedback.

Examples. While the Prototype pattern currently does

not yet appear to be widely used in the visualization

community, we are convinced that several researchers

use it without necessarily reporting this in their arti-

cles. A concrete example is Henry and Fekete,48 who

report on participatory design sessions for their

MatrixExplorer tool where paper prototypes were

used. Similarly, Walny et al.43 use a high-fidelity proto-

type of an interactive whiteboard for a Wizard of Oz

study where an administrator translates participant

handwriting input to system commands. See also, sec-

tions ‘‘Paper Baseline,’’ ‘‘Do-It-Yourself,’’ and ‘‘Wizard

of Oz.’’

Statistics Verification

Problem. Statistical data analysis of study results is

sometimes postponed until the data collection is fin-

ished due to various reasons (e.g., researchers are not

comfortable with statistical data analysis). Since the

researcher did not have a firm idea of the required sta-

tistical analysis in advance, the collected data tend to

have many issues: (1) unnecessary data were collected,

(2) confounding factors are not properly controlled,

and (3) a required statistical test is too complicated or

does not provide sufficient power.

Solution. Design the statistical tests before the data

are actually collected. Statistical tests should be ready

before evaluation begins. Even writing the scripts for a

statistical package (e.g., R, SAS, and SPSS) and run-

ning the test with fabricated data will help the experi-

menter focus on how to design the evaluation study. It

will also minimize any problems with analyzing the

data at a later stage, such as not having the right data,

not performing a representative task, or not being able

to use a specific statistical analysis (the data may not

be normally distributed, for example). If a statistical

consultant is available, getting his or her assistance

while designing the study would be instrumental as

well.

However, this does not mean that an experimenter

can simply delegate the whole statistical work to a sta-

tistician. The experimenter should be in charge of the

final decision of experimental designs since the only

experimenter clearly knows what he or she wants to

do. Thus, learning basic statistics is mandatory.

Several online materials specifically designed for HCI

researchers are also available (e.g., http://yatani.jp/

HCIstats in R and http://depts.washington.edu/

aimgroup/proj/ps4hci/in JMP and IBM SPSS72).

Consequences. Adopting this pattern will minimize

various adversary situations as discussed above. Since

data collection is often costly, collecting the wrong data

or missing out important design elements can cause

serious delay of a research project and/or be costly in
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terms of resources (e.g., participants’ compensation).

Furthermore, considering the statistical analysis up

front will let the researcher store the data in a format

amenable to this analysis, avoiding tedious and time-

consuming reformatting.

Examples. It is difficult to know whether experimental

designs in the literature were driven by statistical tests

or not. The quality of the statistical analysis is often an

indicator of whether or not the authors let their experi-

mental design be guided by the analytical methods.

For example, some articles include a subsection called

‘‘Data Analysis’’ under the ‘‘Method’’ section. This

might allude that data analysis approach was planned

while designing the experimental design. Two recent

studies on dynamic graph visualization51 and ani-

mated transitions73 use this pattern and include care-

ful descriptions of their data collection methods. See

also, section ‘‘Pilot Study.’’

Presentation patterns

Evaluations are meaningless if their results are not pre-

sented to an external audience. Presentation patterns

guide an experimenter in how to communicate the eva-

luation results clearly and efficiently.

Once Upon A Time

Problem. Proposing a novel visual representation,

interaction technique, or visualization system is often

a substantial contribution in itself, and also perform-

ing an in-depth human participant’s evaluation can

sometimes be too much for a single research article.

Meanwhile, simply listing the features of the technique

or explaining the underlying algorithms may be over-

whelming to readers.

Solution. Provide a fictional usage scenario to demon-

strate the utility of the new technique or system. This

scenario is basically a story. There is a character with a

problem, motivation, or question. The character gra-

dually solves a series of problems using different fea-

tures of the novel technique. The scenario is fictional

but should be believable, so readers can feel empathy

with the character. The scenario should be accompa-

nied by clear screenshots that highlight how the tech-

nique helps the character solve the problem,

potentially step by step. Screenshots may even be

annotated so that the reader can easily follow the nar-

rative. When an interaction technique is being

described, the authors can use a series of screenshots

(small multiples) or create a companion video to show

the action. In fact, basing a companion video on the

written scenario in the article makes the presentation

even stronger.

Consequences. A usage scenario gives the reader a

concrete example of how a user may use the proposed

techniques to solve a problem. It validates the work

without requiring an actual user evaluation to be per-

formed, which is cost-effective in terms of time and

resources. However, usage scenarios do not expose the

proposed technique or system to actual human partici-

pants, which means that the narrative is going to be

limited by the viewpoint of the author. For this reason,

this pattern is best used as a complement with actual

user evaluation studies.

Examples. One of the earliest notable examples of the

Once Upon A Time pattern is in the article describing

the GRASPARC system by Brodlie et al.,74 and Yi

et al.75 present a fictional scenario of choosing a break-

fast cereal using Dust & Magnet. Similarly, Elmqvist

et al.76 explain how the ScatterDice system can be

used using a story of a person buying a digital camera.

Case Study

Problem. Realistic tasks are often complex and high

level to the point that they cannot be isolated and

studied in a quantitative laboratory setting,2 and a

bottom–up model of assembling higher level tasks

from low-level ones has questionable value.4 In gen-

eral, laboratory studies tend to be one-off, simplistic,

and lack ecological validity by virtue of taking place in

a laboratory rather than a real work environment.

Furthermore, conducting a quantitative laboratory

study involving intended users is sometimes impracti-

cal; they may be too busy, located at a remote site, or

deal with sensitive data. In other words, the users are

willing to use the visualization tool in their real work-

ing environment, but cannot commit to a dedicated

user study solely for the purpose of scientific

evaluation.

Solution. Conduct a case study using a small set of

participants. Researchers collect whatever information

available and report individual cases. Since the envi-

ronment around the cases is not controllable, the

resulting insights cannot be generalized. However, its

ecological validity is very high given the particular con-

text used in the case study. Furthermore, the resulting

stories are not fictional as in the Once Upon A Time

pattern, but factual. Because researchers often report

a limited number of cases, the author should be care-

ful in reporting the outcomes. The outcomes should
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not be too generalized. Instead, each individual case

should be analyzed deeply with rich details.

A special case of a case study is the Multi-

Dimensional In-Depth Case Studies (MILCS) metho-

dology proposed by Shneiderman and Plaisant.50

MILCS is a disciplined approach to conducting case

studies with a small set of participants using a wide

range of methods over an extended period of time

(months to years).

Consequences. Running a Case Study yields realistic

and believable narratives of real users interacting with

the visualization tool without requiring massive time

and effort on behalf of the researcher. Even though

the results of a case study cannot be easily generaliz-

able, they may provide in-depth insights about how

the visualization techniques are used in a realistic

situation.

Examples. Liu et al.77 developed SellTrend, a visuali-

zation system for airline travel purchase requests, while

working with a global travel information service provi-

der. They presented their experiences designing and

evaluating the tool with their intended user group as a

case study. Shneiderman and Plaisant50 give several

additional examples of case studies in visualization and

HCI research.

Visualizing Evaluation

Problem. Data collected from an evaluation study are

often complicated. The data may be multidimensional

and even temporal. Traditional approaches to report

statistical analysis (e.g., p-values and bar charts with

confidence intervals) may not be sufficient to commu-

nicate the complexity of such data.

Solution. Use visualizations to report the evaluation

data (colloquially speaking, ‘‘eat your own dog food’’

or ‘‘dogfooding,’’ a term that refers to a company rou-

tinely using its own products to demonstrate their

quality). Since the audience of a visualization paper

should be able to make sense of (even novel) visualiza-

tions, researchers should actively exploit the benefits

of visualization techniques in their own articles. Of

course, this does not mean that one can dump all the

data into figures. Beyond bar charts (with confidence

intervals) and boxplots, which are useful for showing

performance data for different conditions in quantita-

tive experiments, the most practically useful visualiza-

tions for Visualizing Evaluation are likely event

timelines (see examples below). These give the reader

an indication of temporal trends, outliers, and patterns

in how a group of participants abstractly used a visua-

lization system.

The authors still need to carefully select only the rel-

evant data, choose the most appropriate visualization

technique, and provide easy-to-understand instruc-

tions as well as comprehensive legends. The visualiza-

tions also should resonate with the storyline of the

article. Furthermore, the most appropriate way to

explaining the data could very well be more traditional

methods.

Consequences. One of the most notable benefits of

this pattern is not necessarily showing more data in a

article, but that one can invite readers into the sense-

making process. Besides the findings and implications

reported by the authors, readers can delve into the eva-

luation data and find interesting details. This pattern

can also increase the credibility of the work by showing

a more holistic and complete view of the collected

data. However, it is important to note that graphical

representations do not replace the need for inferential

statistics for quantitative experiments.

Examples. Kwon et al.34 reported insights and view

usage over time in a visualization tool for 12 partici-

pants using a single timeline visualization included as

a figure in the article. This figure was inspired by simi-

lar figures in Isenberg et al.,35 Robinson,36 and Kang

et al.8

Discussion

Our selection of patterns in this article is not exhaus-

tive and is limited by our own work, our knowledge of

the field, and our personal experience in performing

visualization evaluation. More work is needed to

expand and develop this pattern language. Toward this

end, we have created a Wiki to serve as a repository

for visualization evaluation patterns. This Wiki can be

found on the following URL: http://visevalpatterns.

wikia.com/. The intention is for any member of the

visualization community to contribute their own eva-

luation patterns to the repository. Furthermore, all

new patterns should be discussed, evaluated, and

compared with existing patterns before they are

adopted as canonical evaluation patterns. For this

reason, the Wiki is editable by anyone willing to con-

tribute. To get the ball rolling, we have added the 20

evaluation patterns presented in this article to the

repository.

Why a pattern language, which by its very design is

bottom–up and may not give the high-level guidance

needed for newcomers to the field? Existing work has

already studied a more top–down scenario-based
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approach,3 and we find that a bottom–up catalog of

patterns is a good complement to such work. Patterns

are essentially ‘‘experience in a can,’’ ready to be

opened and used by anyone, regardless of their per-

sonal expertise and experience. For this reason, we

think that this work fills an important gap in the

literature.

Having said that, our treatment is not complete and

is far from a full pattern language. There is certainly

space for many more patterns, such as on interaction

logs, evaluation platforms, and visual search. An

important activity in the future will thus be to expand

this language to include such aspects. Furthermore,

the concept of anti-patterns may give rise to equally

useful examples of what not to do in visualization eva-

luation. Finally, an important point of improvement

will be to tie together all patterns into a complete lan-

guage by discussing their relationships, how to com-

bine them, and how to choose between them given a

specific situation.

In spite of its incompleteness, the collection of

patterns in this article provides us with some

insights. In structuring our work, we found that the

collected patterns can be neatly categorized into five

different categories of patterns: Exploration, Control,

Generalization, Validation, and Presentation patterns.

We found that each category represents what we have

striven to achieve in our evaluation studies. Some cate-

gories basically confirm what a research method

course may cover, such as striking a balance between

internal validity (Control patterns) and external valid-

ity (Generalization patterns). Other categories

(Exploration and Validation) actually shed light on

some of the ‘‘dark’’ practices that we and other authors

implicitly use in our evaluation studies. For example,

Exploration patterns are useful to determine what to

evaluate, whereas Validation patterns help us confirm

that we are evaluating the right things in the right way.

Additional patterns added to each of these categories

will only serve to illuminate these dark practices even

further.

Conclusion and future work

We have presented a pattern language for data visuali-

zation evaluation. While many of these patterns are

known (or even well-known) in the community, we

think that they provide a powerful lens for looking at

evaluation and will help to disseminate experience,

provide a standard vocabulary, and invite contribu-

tions by the community as a whole. Future work on

this topic will be to continually expand and evolve the

language of patterns based on current practices in the

domain. Furthermore, as observed above, identifying

anti-patterns for visualization evaluation is another

worthy future research goal.
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