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Abstract 

 

  In this paper we discuss the two-dimensional discrete quaternion Fourier 

transform (DQFT). We derive several properties of the DQFT which 

correspond to those of the (continuous) quaternion Fourier transform 

(QFT). 
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1  Introduction 
    

The classical Fourier transform (FT) has a long story. It is invented by the 

French mathematician, Joseph Fourier, in the early nineteenth century. The FT is a 

mathematical operation that transforms a function of a real variable in a given 

domain into another function in another domain.  The domains differ from one 

application to another. In signal processing, the FT transforms the signal from the 

original domain to the spectral or frequency domain. In the frequency domain  
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many characteristics of the signal are revealed.  

On the other hand, the discrete Fourier transform (DFT) is widely known and 

used in signal and image processing. Many fundamental algorithms can be 

realized by DFT, such us the convolution, spectrum estimation and correlation.  

Recently, the topic of generalization of the FT to the quaternion algebra called 

the quaternion Fourier transform (QFT) has received considerable attention. For 

example, Bu� low [1] and Ell [2] generalized the FT by substituting the FT kernel 

with quaternion exponential kernel in the FT definition. Many properties of the 

QFT are already known such as translation, modulation, differentiation, and 

uncertainty principle (see [5, 7, 8]).  

The purpose of this paper is to introduce the two-dimensional discrete 

quaternion Fourier transform (DQFT) as a generalization of the DFT using 

quaternion algebra. We derive its important properties which are corresponding 

properties of the QFT. These properties are useful to construct the discrete 

versions of generalized transform, such as the discrete quaternion wavelet 

transform, discrete quaternionic windowed Fourier transform and discrete 

quaternion multiplier (see [6,9]). 

 

2  Quaternion Algebra 
 

The first concept of quaternions [1] was formally introduced by Hamilton in 

1843 and is denoted by �. It is an associative non-commutative four dimensional 

algebra							 																	� � �	� � �� 	 
�� 	 ��
 	 ����,				��, ��, �
, �� 		 ∈ �.																									�1�  

The orthogonal imaginary units 
, �, and	� satisfy the multiplication rules: 

            		

 � �
 � �
 � �1, 
� � ��
, 
� � ��
, �� � ���, and	
�� � �1.				   

We may express a quaternion � as a scalar part denoted by	����� � �� and a pure 

quaternion q denoted by Vec��� � 
�� 	 ��
 	 ��� �  . The conjugate of a 

quaternion � is obtained by changing the signs of the pure quaternion, that is,  																																																																																		�! � �� � 
�� � ��
 � ���.																							�2�                

It is a linear anti-involution, that is, for every #, � ∈ 	� we have  																														#̿ � #,									# 	 �!!!!!!! � #̅ 	 �!, #�!!! � �!#̅.																																              (3) 

It is not difficult to see that from equation  �1� and the third term of equation  �3� 
we obtain the norm of a quaternion � as 																																			|�| � (��! 	� (��
 	 ��
 	 �

 	 ��
.																															 
From equations  �1�, �2�, and	�3� we get the invers 

																																																																	�)� � �!|�|
.																																																		 
This fact shows that � is a normed division algebra.  

For a pure quaternion * and a pure unit quaternion  , * can be resolved into 

its component parallel �*∥� and perpendicular �*,� to  , i.e. 																																																												* � *∥ 	 *,.																																						            (4) 
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Here *∥ � �

 �* �  * � for  * ∥   and *, � �


 �* 	  * � for * -  .  Therefore, 

we have the following result, which will be used in the next section. 

Proposition 2.1 If  * and   are two pure quaternions, then  

• * and   are parallel �* ∥  � if and only if * �  * 

• * and   are perpendicular �* -  � if and only if * � � *. 
Hereinafter, we will denote a finite sequence of the quaternion numbers by            

         					�.�/, 0�, 0 2 /, 0 2 3,4�			.  

We also get the following proposition. 

 

 

3  Definition of Discrete Quaternion Fourier Transform (DQFT) 
 

Analogous to the two-dimensional discrete Fourier transform (DFT), we may 

define the 2D discrete quaternion Fourier transform (DQFT).  Due to the 

non-commutative property of the quaternion multiplication, there are at least three 

different definitions of the DQFT. Here in defining the DQFT we adopt the type II 

DQFT definition proposed by Ell and Sangwine in [2, 3]. 

Definition 3.1. Let .�/, 0�  be a two-dimensional quaternion discrete-time 

sequence. The DQFT of .�/, 0�  is defined by 567�8, 9� ∈ �:;<�/ � 0,1,2,…3 � 1; 	0 � 0,1,2, … , 4 � 1�,	where 

																						57�.��8, 9� � 	567�8, 9� � ? ?.�/, 0�@)A
BCDE: FGH< I.<)�

GJ�

:)�

DJ�
																�5� 

With L is any pure unit quaternion such that L
 =-1. 

 

Theorem 3.2. The IDQFT is invertible and its inverse is given by 

																	56)7M	567N�/, 0� � 	.�/, 0� � 134 ? ?567�8, 9�@A
BCDE: FGH< I<)�

HJ�

:)�

EJ�
.							�6�	 

 

Proof. Substituting (5) to the right-hand side of (6) we immediately get  56)7M	567N�/, 0�																																																																																																															 
																					� 		 134 ? ? P? ? .�/′, 0′�<)�

G′J�

:)�

D′J�
@)A
B�D′E: FG′H< �Q<)�

GJ�
@A
B�DE: FGH< �:)�

DJ�
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			� 134 ? ?.�/′, 0′�	 ? ? @A
BRSD)D′TE: FSG)G′TH< U<)�

G′J�

:)�

D′J�

<)�

GJ�

:)�

DJ�
																																			 

Notice that when / � /′	and	0 � 0′, we have @A
BRCVWV′IX
Y FCZWZ′I[\ U � 1.  

We further obtain 

? ? @A
BRSD)D′TE: FSG)G′TH< U<)�

G′J�

:)�

D′J�
� 34,where	/ � /′	and	0 � 0′. 

However, when / ` /′	and	0 ` 0′, then we get 

? ? @A
BRSD)D′TE: FSG)G′TH< U<)�

G′J�

:)�

D′J�
� 0. 

It follows that 

134 ? ? P.�/′, 0′�	a? ? @A
BRSD)D′TE: FSG)G′TH< U<)�

G′J�

:)�

D′J�
bQ<)�

GJ�

:)�

DJ�
� .�/, 0�. 

It means that  

						 134 ? ? P	? ? .�/′, 0′�	@)A
BRD
′E: FG′H< U<)�

G′J�

:)�

D′J�
Q 	@A
BCDE: FGH< I<)�

GJ�

:)�

DJ�
� .�/, 0�. 

 
 

That is 56)7M	567N�/, 0� � .�/, 0�	for	0 2 /, 0 2 �3 � 1�, �4 � 1�. This proves 

the theorem.                                                                   ∎ 

 

 

4  Properties of DQFT 

This section is devoted to the investigation of several properties of the DQFT. 

We find most of them are corresponding generalization versions of the DFT 

(compare to [4]). 

Theorem 4.1. The following properties hold for the DQFT 

(i) Shifts or translation. If the discrete translation of the quaternion sequence .�/, 0�	is defined by fDg,Gg.�/, 0� � .�/ �/�, 0 � 0��, then  

																					5hVg,Zg	6	
7 �8, 9� � 567�8, 9�@)A
BCVgXY FZg[\ I.										                   (7)                 

Especially, if i�/, 0� is a pure quaternion sequence, then 

 

     5hXg,[gi7 �8, 9� � @)A
BCVgXY FZg[\ I5i∥,j7 �8, 9� 	 @A
BCVgXY FZg[\ I5ik,A7 �8, 9�.	   (8)  
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(ii) Modulation. Consider the discrete modulation of the quaternion sequence  

 .�/, 0� is defined by    

3Eg,Hg.�/, 0� � .�/, 0�@A
BCDEg: FGHg< I. 
Then we have 5:Xg,[g6

7 �8, 9� � 567�8 � 8�, 9 � 9��. 
If i�/, 0�  is a pure quaternion sequence 

and	3Eg,Hgi�/, 0� � i�/, 0�@A
BCVXgY FZ[g\ I
, then 5:Xg,[g	i

7 	�8, 9� � 5i∥,j7 �8 � 8�, 9 � 9�� 	 5ik,j7 �8 	 8�, 9 	 9��.											 
 

Proof. We only prove part (i) and other being similar. Indeed, we have 

5hVg,Zg	6	
7 �8, 9� � ? ? .�/ �/�, 0 � 0��

<)�

GgJ�

:)�

DgJ�
@)A
BCDE: FGH< I.				 

Performing the change of variables /′ � / �/�  and  0′ � 0 � 0�  into the 

above expression, we easily obtain 

5hVg,Zg	6	
7 �8, 9� 	� ? ? .�/′, 0′�<)�

G′J�

:)�

D′J�
@)A
BR�D

′FDg�E: F�G′FGg�H< U														 
																																	� ? ? .�/′, 0′�<)�

G′J�

:)�

D′J�
@)A
BRD

′E: FG′H< U	@)A
BCDgE: FGgH< I	.	 
Because  i�/, 0� is a pure quaternion sequence, then using Preposition 2.1 we 

may decompose  i�/, 0�  with respect to the axis L  into i∥,A�/, 0� 	i,,A�/, 0�. It means that we have 5hVg,Zg	i	
7 �8, 9�  

� ? ? i�/′, 0′�<)�

G′J�

:)�

D′J�
@)A
BR�D

′FDg�E: F�G′FGg�H< U																															 

	� ? ? Ci∥,A�/′, 0′� 	 i,,A�/′, 0′�I	<)�

G′J�

:)�

D′J�
@)A
BR�D

′FDg�E: F�G′FGg�H< U	 

		� ? i∥,A�/′, 0′�:)�

D′J�
@)A
BR�D

′FDg�E: F�G′FGg�H< U																															 

			 ? ? i,,A�/′, 0′�<)�

G′J�

:)�

D′J�
@)A
BR�D

′FDg�E: F�G′FGg�H< U																					 
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		� ? ? i∥,A�/′, 0′�<)�

G′J�

:)�

D′J�
@)A
BRD

′E: FG′H< U@)A
BCDgE: FGgH< I																			 

				 ? ? i,,A�/′, 0′�<)�

G′J�

:)�

D′J�
@)A
BRD

′E: FG′H< U@)A
BCDgE: FGgH< I								 

			� 	 @)A
BCDgE: FGgH< I ? ?i∥,A�/′, 0′�<)�

G′J�

:)�

D′J�
@)A
BRD

′E: FG′H< U																			 
			@A
BCDgE: FGgH< I 	 ? ? 	i,,A�/′, 0′�<)�

G′J�

:)�

D′J�
@)A
BRD

′E: FG′H< U						 
� 	@)A
BCDgE: FGgH< I5i∥,A7 �8, 9� 	 @A
BCDgE: FGgH< I5ik,j7 �8, 9�	.																 

This is the desired result.                                                     ∎ 

                                                                             

The following theorem is a discrete version of the Rayleigh-Plancherel theorem. 

 

Theorem 4.2 For a discrete quaternion sequence .�/, 0� we get 

? ?|.�/, 0�|
<)�

GJ�
�:)�

DJ�
134 ? ?l	567�8, 9�l


<)�

HJ�

:)�

EJ�
. 

 

 

Proof. It readily follows from the definition of the DQFT �5� that  

? ?|.�/, 0�|
<)�

GJ�

:)�

DJ�
																																																																																																					 

																													� ? ? .�/, 0�.�/, 0�!!!!!!!!!!<)�

GJ�

:)�

DJ�
																																																						 

																																� 	 134 ? ?a? ?567�8, 9�@A
BCDE: FGH< I<)�

HJ�

:)�

EJ�
b	.�/, 0�!!!!!!!!!!<)�

GJ�

:)�

DJ�
 

																														� 	 134 ? ? 	567�8, 9�
<)�

HJ�

:)�

EJ�
? ?.�/,0�	@)A
BCDE: FGH< I!!!!!!!!!!!!!!!!!!!!!!!!!!!!<)�

GJ�

:)�

DJ�
 

� 134 ? ? 	567�8, 9�
<)�

HJ�

:)�

EJ�
567�8, 9�!!!!!!!!!!!											 
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� 134 ? ? 	l567�8, 9�l

<)�

HJ�

:)�

EJ�
,																							 

As desired.                                                                 ∎ 

                                                                     

Theorem 4.3 Let .�/, 0� be a quaternion sequence. Then we obtain 

                  	56̅7�8, 9� � 	56g7�8, 9� � 
	56m7�8, 9� � �	56n7�8, 9� � �	56o7�8, 9�. 
 

Proof. Application of Definition 3.1 gives 	56̅7�8, 9�  

	� ? ?.�/, 0�!!!!!!!!!!	@)A
BCDE: FGH< I<)�

GJ�

:)�

DJ�
																																																																																		 

� ? ?�.��/, 0� � 
.��/, 0� � �.
�/, 0� � �.��/, 0��@)A
BCDE: FGH< I<)�

GJ�

:)�

DJ�
										 

� ? ?.��/, 0�@)A
BCDE: FGH< I<)�

GJ�

:)�

DJ�
� 
 ? ?.��/, 0�@)A
BCDE: FGH< I<)�

GJ�

:)�

DJ�
																	 

					�� ? ?.��/, 0�@)A
BCDE: FGH< I<)�

GJ�

:)�

DJ�
� �? ?.��/, 0�@)A
BCDE: FGH< I<)�

GJ�

:)�

DJ�
								 

� 	56g7�8, 9� � 
	56m7�8, 9� � �	56n7�8, 9� � �	56o7�8, 9�	.																																																 
This completes the proof of theorem.                                     ∎ 

                                                    

Theorem 4.4 Let .�/, 0� be a quaternion sequence. Then we also get 

                   567��8, �9�!!!!!!!!!!!!!!! � 	56g7�8, 9� 	 	5i7��8,�9�!!!!!!!!!!!!!!!! . 

 
Proof. Simple calculations yield  	567��8,�9�!!!!!!!!!!!!!!!!																																																																																																																																																											 
� ? ?.�/, 0�	@A
BCDE: FGH< I!!!!!!!!!!!!!!!!!!!!!!!!!!<)�

GJ�

:)�

DJ�
																																																																																						 

� ? ?�.��/, 0� 	 i�/, 0��	@A
BCDE: FGH< I!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<)�

GJ�

:)�

DJ�
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� ? ?.��/, 0�@A
BCDE: FGH< I!!!!!!!!!!!!!!!!!!!!!!!!!!<)�

GJ�
	 ? ?i�/, 0�	@A
BCDE: FGH< I!!!!!!!!!!!!!!!!!!!!!!!!!!<)�

GJ�

:)�

DJ�

:)�

DJ�
																						 

� ? ?.��/, 0�	@)A
BCDE: FGH< I<)�

GJ�
	:)�

DJ�
? ?i�/, 0�	@A
BCDE: FGH< I!!!!!!!!!!!!!!!!!!!!!!!!!!<)�

GJ�

:)�

DJ�
																		 

� 	56g7�8, 9� 	 	5i7��8,�9�!!!!!!!!!!!!!!!!	.																																																																																													 
This finishes the proof of theorem.    ∎ 

                                             

The following corollary shows that the quaternion conjugation property of the 

DQFT holds if .�/, 0� is real sequence. 

Corollary 4.5 Assume that  .�/, 0� is a real sequence. Then the above identity 

reduces to 

                                            	56̅7�8, 9� � 567��8,�9�!!!!!!!!!!!!!!!, 
which resembles the analogous theorem for the DFT. 
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