
Abstract-Pilot aided channel estimation is considered for wireless
MIMO systems in presence of fading correlation.  Assuming a lin-
ear minimum mean squared error based channel estimator,  we
study statistical shaping of the training sequence via a matrix pre-
filter depending on the correlation properties of the channel. The
new scheme is a general concept that can readily be applied to
smart antenna multiple-input single-output systems. Further-
more, in a quasi-stationary environment with limited mobility, it
requires only a long-term update interval of the prefilter, thus
admitting its use in FDD systems with low-rate feedback link for
the correlation matrices.  Simulation results of a MIMO system
with maximum eigenmode transmission including realistic chan-
nel estimation demonstrate the effectiveness of the proposed
scheme with a significant SNR gain.

I. INTRODUCTION

Provided that both receiver and transmitter of a MIMO sys-
tem are aware of the long-term stable correlation properties of
the channel (e.g. via low-rate feedback etc.), this knowledge
should be exploited to improve the overall system perfor-
mance.  In this paper we study channel estimation (CE) aspects
of a MIMO system in the presence of fading correlation.  With
a growing number of TX antennas, the length of the training
sequence needs also to be increased, leaving less space for data
transmission and thus impacting the overall spectral efficiency
of the MIMO system [1].  Hence, CE is a critical part of the
system, motivating research of more advanced pilot symbol
assisted CE schemes [2][3] that minimize training overhead.
We mention that on the other hand there are approaches that try
to avoid channel estimation (at the expense of a performance
penalty) by introducing differential modulation [4].

Standard orthogonal training sequences are the starting point
for our work. On the basis of a well-known simplified flat fad-
ing model for spatially correlated wireless MIMO channels (an
extension to more general channel models is straightforward)
we derive statistical transmit prefiltering schemes for the
MIMO training sequence. Alternatively, the prefiltering
scheme can be conceived as an optimal training sequence
design. At the RX we assume linear minimum mean squared
error (MMSE) CE [5]. By minimizing the resulting overall
mean squared error (MSE) of the channel estimator, we derive
the optimum linear transmit prefilter.

The effectiveness of the proposed scheme is demonstrated
via Monte-Carlo simulations of the CE MSE and on the other
hand via bit error rate (BER) simulations comprising CE
effects for transmission on the maximum eigenmode of the

MIMO channel.  Application of the concept to smart antenna
multiple-input single-output (MISO) systems with an antenna
array at the base station only and a single antenna at the mobile
station is possible.

II. SIGNAL AND CHANNEL MODEL

In the remainder of the paper, bold lowercase letters denote
column vectors, bold uppercase letters describe matrices, by Is
we denote an identity matrix of size s×s, vec(X) stacks the col-
umns of matrix X in a column vector, diag(x)=diag(xT) returns
a diagonal matrix with the elements of x on the diagonal, ⊗  is
the Kronecker product, X* means complex conjugate, XT

means transpose, and XH means Hermitian (conjugate trans-
pose).

We consider the transmission of a training sequence over a
flat fading MIMO link in Fig. 1

, (1)

where S is a MTX×Nt training sequence of length Nt symbols
and MTX is the number of TX antennas.  We presume orthogo-
nal training sequences. A possible choice for a training
sequence fulfilling this criterion could be a standard DFT
matrix with elements

(2)

with the orthogonality property

. (3)

F is a MTX×MTX linear matrix transmit prefilter.  We men-
tion that the product FS could also be interpreted as a new
training sequence , however, due to the invertibility of S,
both formulations are mathematically equivalent.

H is the MRX×MTX MIMO channel matrix with correlated
Rayleigh fading elements,  N is the MRX×Nt noise matrix with

, (4)

and covariance matrix of the noise column vectors

. (5)
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Matrix Y is the noisy MRX×Nt receive sequence (see Fig. 1).
By MRX we denote the number of RX antennas.  By appropri-
ate processing of the received training sequence Y, the MIMO
receiver is capable of producing a channel estimate  in
Fig. 1.

Fig. 1: System model

Using a widely accepted simplified channel model (e.g.
[6][7]), the correlated MIMO channel can be described by the
matrix product

, (6)

where Hw is a MRX×MTX matrix of complex i . i.d. Gaussian
variables of unity variance and

, (7)

where RRX and RTX is the long-term stable (normalized)
receive and transmit correlation matrix, respectively, with

(8)

in order to normalize the channel gain.

III. LINEAR MMSE MIMO CHANNEL ESTIMATION

In order to derive the MMSE MIMO channel estimator, we
rewrite (1) in vector form in order to be able to apply standard
results from estimation theory

, (9)

where we have used [8]

. (10)

Denoting the covariance matrix of h by Rhh, while the cova-
riance matrix of n is

, (11)

the linear MMSE estimator of h is given by the well-known
equation [9]

. (12)

We deploy the overall MSE ε [9]

(13)

 as a measure of the quality of the MIMO channel estimator.
Note that for the derivation of (13) we have used (3) and the
properties of the Kronecker product [8]

. (14)

 For the specific channel model in (6) it can be shown with
(10) that the channel covariance reads

(15)

and with (14) the MSE is given by

. (16)

After introducing the eigenvalue decompositions (EVD)
with matrices  and

, which contain the sorted
(descending) eigenvalues

, (17)

we find from (16) after simple manipulations

. (18)

Without loss of generality (VTX is unitary and thus invert-
ible) we decompose F with general matrix Φf

(19)

and introduce for brevity the MRX×MRX matrix

. (20)

Now (18) reads

, (21)

whereas we emphasize again that (21) is valid for the spe-
cific channel model in (6) with its Kronecker covariance struc-
ture (15).

IV. TRAINING SEQUENCE PREFILTER DESIGN

A. Structure of the prefilter

For the design of the optimum prefilter in the sense that it
minimizes the MSE in (32), we have to to solve the constrained
optimization problem under a power constraint ρ

, (22)

 where ‘s.t.’ stands for subject to and we normalize the trans-
mit power to ρ=MTX. For solving (22), we state the following

Definition 1. [10, 7.7.1]
Let A, B∈ Mn (where Mn is the set of complex n×n matrices)
be Hermitian matrices. We write Α≥Β, if the matrix A-B is
positive semidefinite. Equivalently, Α>Β means A-B is posi-
tive definite.

Theorem 1. [10, 7.7.8]
Let A∈ Mn be positive definite and S⊂ {1,2,…,n} be an index
set. Then , where the left-hand side is the
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ĥ Rhh
1– XHRnn

1– X+( ) 1– XHR ñ ñ
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principal submatrix of A-1 determined by deletion of the rows
and columns indicated by S, while the right-hand side is the
inverse of the corresponding submatrix of A. The equality is
only valid for diagonal block matrices A.

Corollary 1. [10, 7.1.5]
The trace, the determinant, and all principal minors of a posi-
tive definite matrix are positive.

First we note from (21) that

. (23)

By Theorem 1 in combination with Corollary 1 it can readily
be checked that for minimum MSE in (22), the matrix in (23)
has to be block-diagonal, which can only be fulfilled with diag-
onal . Without loss of generality we can therefore
assume that the optimal

(24)

  is a real diagonal power allocation (PA) matrix that assign
transmit power to the different long-term eigenmodes of the
channel. To this end, note that the constrained optimization
problem (22) is a function of  alone. Due to the block-
diagonal structure, with the general formula

(25)

the MSE in (21) and (22) can be rewritten as

. (26)

In order to further simplify matters and to gain a better
insight into the problem, in the following we focus on the
AWGN case with R=1/N0·I [see (20)], such that (26) reduces
to

, (27)

which is the basis for the following derivations. For high
SNR (N0→0), we get from (27)

. (28)

Obviously, the channel estimation error is independent of
the correlation properties of the channel at high SNR.

B. Design of Φf  for both RX and TX correlation

Applying the method of Lagrange multipliers (with multi-
plier µ) for minimizing the MSE in (27) under a power con-
traint leads to the condition

. (29)

for all 1≤l≤MTX. A closed form solution for the general case
of arbitrary array sizes is not possible (the equation in (29)
essentially reduces to finding the roots of a polynomial)  and
one has to resort to numerical optimization methods. However,
one can find solutions for the low and high SNR regions.

For high SNR (N0→0), we get from (28) by Lagrange opti-
mization or majorization theory [11] the optimal Φf=ρ/MTX·I,
resulting in F=ρ/MTX·I, i.e. there is essentially no prefilter. We
conclude that standard orthogonal training sequences are opti-
mal in the high SNR region.

On the other hand, for low SNR (N0→∞), we get from (27)
with the series expansion for small x

(30)

and (8) the MSE approximation

. (31)

The second term should be maximized for minimizing the
MSE. To this end, it is obvious that we should pour all power
on the strongest long-term eigenmode of the channel, i.e. use
all power for the φk corresponding to the maximum λk. Obvi-
ously, standard training sequences are clearly suboptimum in
the low SNR region. Interestingly, an optimum training
sequence design for this region consists of a one-dimensional
training sequence that is transmitted on the strongest long-term
eigenmode of the channel.

C. Design of Φf  for TX correlation only

Without RX correlation, from (29) we can compute a closed-
form equation for Φf, namely

, (32)

The Lagrange multiplier can be determined via the power
constraint and reads

. (33)

In (32) the ’+’ sign indicates that all diagonal elements have
to be greater or equal to 0. However, from (32) this is equiva-
lent to

, (34)
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An iterative procedure can be used to assure (34), where the
last diagonal element of Φf is subsequently set to 0 and the
matrices involved in the calculation of (33) and (34) are
reduced by one element. Inserting (33) in (34) and solving for
N0 one can determine the switching point, where the transmit-
ter switches from 1 to 2 active eigenmodes used for transmis-
sion of the training sequence

. (35)

For longer training sequences, the switching point obviously
shifts to lower SNR values. Furthermore, if a vector

 is majorized by a vector  (higher
correlation), then the switching point moves to higher SNR
values. Equation (35) can be generalized for the switching
point between L and L+1 eigenmodes

. (36)

Higher channel correlation and shorter training sequences
shift the switching points to higher SNR, such that in these
cases prefiltering becomes more effective.

D. Design of Φf  for RX correlation only

On the other hand, if the fading at the transmit antenna array
is completely uncorrelated, i.e. ΛTX=I, and there is only corre-
lation present at the receiver, (29) reads again for all 1≤l≤MTX

. (37)

This can only be fulfilled if all φf,l agree in size, i.e. for this
special case we find in matrix notation Φf=ρ/MTX·I, implying

that the training sequence is left unchanged.  This result agrees
with intuition.  When there is no transmit correlation present,
there are no prominent directions and the transmitter equally
distributes power.

V. STRUCTURE OF MMSE CHANNEL ESTIMATOR

In an AWGN environment and with the optimal prefilter
structure according to (19), it can be shown from (12) that the
channel estimator is given by

. (38)

Obviously, with the optimum training sequence design the
receiver just has to invert a diagonal matrix, resulting in simple
scalar operations and thus low complexity. In particular, for
vanishing RX correlation we find

. (39)

Using (10), it can be seen that (39) is equivalent to the
matrix equation

. (40)

Note that estimated channel coefficients for one particular
RX antenna are a function of the received training sequence at
that antenna only. As there is no correlation between the RX
antenna elements, no information can be acquired from the sig-
nal at other RX antennas. Again, the diagonalization in the
eigenmode domain becomes obvious in (40). In the low SNR
region it was shown above that only the strongest eigenmode is
used for training sequence transmission. In this special case,
(40) reduces to

, (41)

where we have defined

. (42)

Note that the channel estimator in (41) thus reduces to a rank
1 matrix.

On the other hand, consider the case of RX correlation only,
where (38) reduces to

. (43)

Applying (10), we have the matrix equivalent

. (44)

VI. MSE AND BER SIMULATIONS

We study the effects of statistically shaping the training
sequence according to the correlation properties of the channel
with a prefilter F designed according to (19) and matrix Φf
according to (32), i.e. we are focusing on the case of TX corre-
lation only.  To this end, we investigate the overall MSE of the
channel estimator given in (18) or (21), respectively.

In Fig. 2 we have plotted the resulting MSE of the channel
estimator for a 4×4 system with uncorrelated fading for refer-
ence and with TX correlation according to a single main direc-
tion of departure, Laplacian power distribution and an angular
spread (AS) of 2 degrees (strong correlation). For the corre-
lated case, we show results with and without prefiltering of a
DFT training sequence.  The antenna array at the transmitter
has an antenna element spacing of 0.5 wavelengths. We
emphasize that this scenario corresponds to a heavily corre-
lated channel suited for maximum eigenmode transmission
(beamforming), with a TX correlation matrix given by
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ĥ S* N0R
RX

1– NtI+( ) 1–⊗( ) y⋅=
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. (45)

With a length Nt=4 training sequence one can observe a sig-
nificant reduction of the MSE with prefiltering over a wide
range in the low SNR region with a maximum gain factor of
about 3 in the range of -10 to 10 dB. The insights gained from
the MSE simulations are the key for effectively deploying the
proposed CE scheme. Obviously, it can only improve the sys-
tem performance, if the operating point of the system agrees
with the range of MSE improvements.

Fig. 2: MSE and gain with TX AS 2°, MTX=4, MRX=4, Nt=4

For the same scenario the squared power allocation coeffi-
cients are depicted in (3), where the switching points according
to (35) and (36) clearly emerge.

Fig. 3: PA coefficients with TX AS 2°, MTX=4, MRX=4, Nt=4

As an example, we consider the downlink of a MIMO sys-
tem with maximum eigenmode transmission.  In order to sepa-
rate the effects of CE at RX and TX, we presume ideal CE at
the TX, while RX CE is based on the novel CE scheme.  In
Fig. 4 we have plotted BER simulation results for a 4×4 system
with QPSK modulation and Nt={8,16}. The performance
improvement due to enhanced CE is obvious in this strongly

semi-correlated scenario with again an AS of 2 degrees at the
TX.  As expected, in the given SNR range the gain is higher
with a shorter training sequence.

Fig. 4: BER of maximum eigenmode transmission, MTX=4, MRX=4
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