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ABSTRACT 

We present several mechanisms that enable effective spread-
spectrum audio watermarking systems: prevention against detec-
tion desynchronization, cepstrum filtering, and chess watermarks. 
We have incorporated these techniques into a system capable of 
reliably detecting a watermark in an audio clip that has been 
modified using a composition of attacks that degrade the original 
audio characteristics well beyond the limit of acceptable quality. 
Such attacks include: fluctuating scaling in the time and fre-
quency domain, compression, addition and multiplication of 
noise, resampling, requantization, normalization, filtering, and 
random cutting and pasting of signal samples. 

1. INTRODUCTION 

Traditional data protection techniques such as encryption are not 
adequate for audio copyright enforcement, because audio must be 
played back after decryption. Therefore, in most scenarios it is 
possible to record the decrypted content; in the worst case by 
recording the analog output of the playback device. By inserting 
watermarks in the audio content itself [1], one can enable copy-
right protection, while surviving the re-recording attack.  

Most audio watermarking schemes rely on the imperfections 
of the human auditory system (HAS). In the time domain, it has 
been demonstrated that the HAS is insensitive to small level 
changes [2] and insertion of low-amplitude echoes [3]. Data 
hiding in the frequency domain takes advantage of the insensitiv-
ity of the HAS to small spectral magnitude changes [4]–[6]. 
Quantization index modulation is another type of data hiding 
algorithms that increases the security of the augmented data at 
the cost of decreased tolerance to attack noise stronger than the 
watermark modulation [7]. 

One of the most promising watermarking techniques relies 
on hiding a low-amplitude spread-spectrum (SS) sequence, 
which can be detected via correlation techniques [8]. Usually, 
embedding is performed in high amplitude portions of the signal 
[4]. In Section 2 we discuss the problems with traditional SS 
watermarking schemes. In Section 3 we introduce a novel, highly 
reliable and robust framework for hiding and detecting SS wa-
termarks. By introducing new components to SS watermarking, 
such as chip redundancy, synchronization search, cepstrum filter-
ing, and chess watermarks, we significantly improve detection 
performance. In Section 4 we discuss system implementation 
issues, and we show that our enhanced SS system is robust to a 
wide variety of signal manipulation attacks, including ones that 
degrade the original audio well beyond the limits of acceptable 
quality. Therefore, we believe our techniques can be integrated 

into an effective copyright enforcement system for distribution of 
high-fidelity digital music. 

2. BASICS OF SS WATERMARKING 

Let us denote as x the original signal vector to be watermarked. It 
represents a block of samples from an appropriate invertible 
transformation on the original audio signal [4], [6], [8]. The cor-
responding watermarked vector is generated by y = x + w, where 
the watermark w has elements iw  (chips) assigned to one of two 
equiprobable values, i.e. { , },iw ∈ −∆ +∆  independently of x. 
Parameter ∆ should be set based on the sensitivity of the HAS to 
amplitude changes. In our case, x is a vector of magnitude fre-
quency components in a decibel scale, so ∆ should not be higher 
than about 1 dB. A correlation detector performs the optimal test 
for the presence of a watermark [8]: 

 2( )C y w x w w x w N= ⋅ = + ⋅ = ⋅ + ∆  (1) 

where N is the cardinality of the vectors, and the correlation be-
tween two vectors u and v is defined by i iu v u v⋅ ∑� . Under the 
mild assumption that the original clip x can be modeled as a 
Gaussian random vector, i.e. N( , ), ,i x x xx m σ σ >> ∆� the value 
of the normalized correlation test is given by 
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where ρ = 1 if the watermark is present (and zero otherwise), and 
r is a correlation noise caused by the “carrier” signal x, with 

( )2 2 2N(0, ), .σ σ σ= ∆�i r r xr N The optimal detection rule is to 
declare the watermark present if Q > T. The choice of the thresh-
old T controls the tradeoff between false alarm and detection 
probabilities; e.g. if the watermark is absent, the false alarm 
probability is ( )Pr[ ] erfc /xQ T T Nσ> = [9]. A similar analysis 
can be performed if x is assumed to be Laplacian, which is a 
better model if x is in a linear rather than decibel scale [8]. 

Advantages of SS watermarking include: (i) testing for wa-
termarks does not require the original and (ii) watermark detec-
tion is exceptionally resilient to attacks that can be modeled as 
additive or multiplicative noise. Disadvantages include: (i) the 
watermarked signal and the watermark have to be perfectly syn-
chronized while computing (1) and (ii) for a sufficiently small 
error probability, the vector length N may need to be quite large, 
increasing detection complexity and delay.  

3. IMPROVING SS AUDIO WATERMARKING 

In our audio watermarking system, the vector x is composed of 
the dB magnitudes of several frames of a modulated complex 
lapped transform (MCLT) [10]. After addition of the watermark, 



we generate the time-domain watermarked audio signal by com-
bining the marked vector y with the original phase of x, and pass-
ing those modified frames through the inverse MCLT. For 
44.1 kHz sampling, we use a length-2048 MCLT. Only the 
MCLT coefficients within the 2–7 kHz subband are modified and 
considered in the detection process, to minimize carrier noise 
effects as well as sensitivity to downsampling and compression. 

3.1 Mechanisms Against Desynchronization Attacks 

The correlation metric in (1) is reliable only if the detection chips 

iw  are aligned with those used in marking. Therefore, a mali-
cious attacker can attempt to desynchronize the correlation by 
time- or frequency-scale modifications. We now describe a 
methodology for adding redundancy to the watermark chip pat-
tern, so that the correlation metric is still reliable in the presence 
of scale modifications. 

The basic idea behind redundant chip coding is shown in 
Figure 1. The leftmost subfigure depicts a perfect synchroniza-
tion between a nine-chip watermark w and a nine-chip water-
marked signal y = x + w (assuming x = 0 in that segment). The 
normalized correlation in that case is Q = 1. However, if the wa-
termark is shifted for one sample (middle of Figure 1), the nor-
malized correlation becomes Q = –1/3, a major change. To pre-
vent that sensitivity, we spread each chip of the SS sequence onto 
R consecutive samples, and during detection we include only 
chips at the center of the region. In our example, we use R = 3, 
which guarantees the desired result Q = 1 (right of Figure 1). In 
general, it is easy to show that the correlation is guaranteed to be 
correct even if a linear shift of up to floor(R/2) samples across 
the watermarking domain is induced. 

In the example above, the frequency magnitude spectrum 
remains unchanged. However, when an audio track is played 
back at a different speed, MCLT components are shifted both in 
time and in frequency. Plus, the amount of shift is proportional to 
the center frequency and time of the MCLT coefficient position 
in the time-frequency plane. To maintain correlation reliability 
even under such conditions, we introduce chip redundancies both 
along the time and frequency axes. Each bit iw  of an SS se-
quence is spread (replicated): 
• in frequency: over a subband of MCLT samples kx  that 

spans over , 1,2, , ,∈ = !jk F j J consecutive frequency indi-
ces within a single MCLT frame (where J is the number of 
SS sequence bits per MCLT block),  

• and in time: over 0T  consecutive MCLT frames.  
The boundaries along the frequency axis , 1,2, , ,jF j J= !  are 
computed using a geometric progression:  
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where   and  i F i i FF F Fδ δ′′ ′+ + =  is the width of the decoding 
region along the frequency axis and F FV V′ >  is the desired vari-
able frequency shift coverage. Similarly, the redundancy factor 

0T  imposed along the time axis is replicated m  times, where m  
is delimited by 

 0 0T TmT V T δ< −  (3) 

where Tδ  is the width of the decoding region along the time axis 
and 0T  is the lower bound on the replication in the time domain 
(e.g. due to the impact of signal cropping or insertion of up to 
100 ms). Once (3) cannot be satisfied, we iteratively compute kT  
similarly to iF . Within a region of j kF T  samples watermarked 
with the same SS sequence bit, only the center F Tδ δ  samples 
are integrated in the correlation test (1). It is straightforward to 
prove that such generation of encoding and decoding regions 
guarantees that regardless of induced FV  and TV , the correla-
tion test is performed in perfect synchronization. Figure 2 illus-
trates these concepts. 

Resilience to static time and pitch scaling is obtained by 
performing multiple correlation tests. Each test assumes a differ-
ent combination of time and pitch scaling. For example, in order 
to cover static time changes of ± 10% and static frequency 
changes of ± 5%, in steps of FV ′  = 1%, the watermark detector 
needs to compute 105 different correlation tests. Note that FV ′  
has to be twice as large as FV and that there should be a 50% 
overlap in coverage between two successive iterations. The 
search step along the time axis equals Tδ . Figure 3 depicts the 
normalized correlation Q values obtained from a detector during 
the watermark search for marked (top) and non-marked (bottom) 
audio clips. Peaks of Q values clearly indicate the existence and 
the location of each watermark. 

 
 
 
 
 
 
 

Figure 1. An example of using triple redundancy to improve the 
normalized correlation in the case of a desynchronization attack. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Illustration of geometrically progressed redundancies 
applied to SS sequence bits within a single freq-spectrum block. 
Each depicted subband is encoded with the same bit, whereas 
the detector integrates only the center locations of each region 
(indicated by the arrows). 
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3.2 Cepstrum Filtering (CF) Pre-Processing 

The variance 2
xσ  of the original signal directly affects the carrier 

noise r in (2). Audio clips with large energy fluctuations or with 
strong harmonics are especially bound to produce large xσ . 
Thus we propose here a nonlinear processing step to reduce the 
carrier noise. One approach is to subtract a moving average from 
the frequency spectrum right before correlation; a sort of whiten-
ing step. Unfortunately, as bits of the SS sequence are spread 
over frequency ranges, this technique induces partial removal of 
the watermark chips. We have developed a cepstrum filtering 
(CF) technique that produces significantly better results than just 
spectral whitening. 

With CF we reduce xσ in (2) through the following steps: 
• Compute an approximate cepstrum of the dB magnitude 

MCLT vector y under test via a discrete cosine transform 
(DCT) operator; DCT( )z y= . 

• Filter out the first K (typically 5 < K < 20) cepstrum coeffi-
cients, i.e. set 0, 0,1,..., 1.iz i K= = −  

• Reconstruct the frequency spectrum via an inverse DCT, 
IDCT( )y z=� . The filtered frequency spectrum y�  replaces y 

in the correlation detector (1). 
The rationale behind CF is that large variations in y can only 
come from large variations in x, since |w| is limited to a small 
value ∆. Thus, by filtering out large variations in y we can reduce 
the carrier noise significantly, without affecting much the ex-
pected value ρ. That is particularly efficient if the watermark 
sequence w has a nonwhite spectrum containing more noise at 
higher frequencies, as discussed in the next subsection. 

Figure 4 illustrates the impact of CF on the signal variance 
(top plot) and detection performance (middle and bottom plots). 
We see in the top plot that the signal variance is reduced by a 
factor of almost four. The detector in the middle plot does not 
use CF, whereas the one in the bottom plot does. All other pa-
rameters of the detection and embedding are equivalent. Thus, in 
order to attain the performance of CF detector, a non-CF detector 
must integrate almost four times more magnitude points. 

3.3 Chess Watermarks 

Because of the relatively short MCLT frames (~30ms), we can 
assume that the audio signal has a slowly varying magnitude 
spectrum. Thus, for short watermarks, a possible sequence in 
time of consecutive watermark chips equal to +∆ can pose “false 
alarm” problems if correlated with large positive x values. In 
practice, that problem occurs frequently for quiet clips with 
strong harmonics (e.g. piano or sax solo). To alleviate the prob-
lem, it is important to attenuate the DC component of the water-
marking chips along the time direction. 

We define a “perfect watermark” (PW) as a sequence of al-
ternating +∆ and –∆ chips (or 0 and 1 bits, respectively), along 
both the time and frequency axis. Correlation with PW results in 
highly improved correlation convergence for a non-watermarked 
signal, as illustrated in Figure 5 (a). To leverage the convergence 
efficacy of PW with the security of pseudo-random SS se-
quences, we introduce “chess-watermarks” (CW). We define a 
CW as a stochastic approximation to a PW, by using the simple 
first-order state machine depicted in Figure 5 (b). Whereas the 
probability p of switching from the 0 state to the 1 state for tradi-
tional SS sequences is desired to be one-half, we built CWs to 
enforce frequent toggling of bits along the time axis or, equiva-
lently, to emphasize high frequencies in the watermark sequence. 
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Figure 3. Maximum normalized correlation Q values retrieved 
during a search for a watermark in a marked (top) and un-
marked (bottom) audio clip. 
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Figure 4. Variance reduction through cepstrum filtering (CF). 
Top: a typical watermarked signal y = x + w prior to CF (the 
thick line is smooth envelope corresponding to the cepstrum co-
efficients that are filtered out), and the same  y after CF. Middle: 
maximum normalized correlation Q values (for signals with and 
without watermarks, as in Figure 3) with CF turned off. Bottom: 
Q values with CF turned on; note the significant reduction in the 
variance of Q. 
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We typically select p around 0.75. In a typical implementation, 
we have enforced that consecutive 4-tuples of bits along the time 
axis are pseudo-randomly chosen from the following alphabet S 
= {0101,1010,1001,0110}, thus reducing the domain of all pos-
sible n4 -bit SS sequences from n42  to n4 . For a sufficiently 
large n, the reduction in the sequence domain does not pose a 
security threat, while resulting in correlation convergence similar 
to PW (typically 200>n ). 

4. TECHNOLOGY IMPLEMENTATION, 
ROBUSTNESS, AND SECURITY  

We have designed a complete SS audio watermarking system 
using the enhancements described in the previous section. A 
reference implementation of our audio watermarking technology 
on an x86 platform requires about 32 KB of memory for code 
and 100 KB for data. The data buffer stores averaged frequency 
magnitudes for 12.1 seconds of audio, for a watermark length of 
11 s. Watermarks are searched with FV ′ = ± 2%, which requires 
~ 40 tests per search point. Real-time watermark detection under 
these circumstances requires ~ 15 MIPS. Watermark encoding is 
an order of magnitude faster, with smaller memory footprints. 

While watermarking techniques for images can be tested 
with the Stirmark tool [11], to date a similar benchmark has not 
been developed for audio. Thus, we have tested our proposed 
watermarking technology using a composition of common sound 
editing tools and malicious attacks [12], including all tests de-
fined by the Secure Digital Music Initiative (SDMI) [13]. We 
tested the system against a benchmark suite of eighty 15-sec 
audio clips, which included: jazz, classical, voice, pop, instru-
ment solos (accordion, piano, guitar, sax, etc.), and rock. In that 
dataset, there were no errors, and we estimated the error prob-
ability to be well below 10-6. Significantly lower error probabili-
ties can be achieved by increasing the watermark length. 

Other attacks against SS audio watermarking include: (i) de-
synchronization (discussed in Subsection 3.1), (ii) averaging – 
which we prevent by placing watermarks at random positions in 
an audio clip, and (iii) exhaustive search of watermark bits by 
adding noise to the audio signal– which we address by adding a 
pseudo-random biased offset to the threshold T at each test.  

5. CONCLUSION  

A common deficiency in SS watermarking systems, which per-
form correlation-based detection, is lack of robustness against 
desynchronization and large amplitude variations in the audio 
carrier. We have developed a set of novel techniques that signifi-
cantly improve SS watermark systems, by imposing particular 
structures to watermark patterns (while retaining plenty of ran-
domness) and applying a nonlinear filter to reduce carrier noise. 
Using these techniques, we developed an audio protection system 
that is capable to reliably detect watermarks, even in audio clips 
that have been modified using a composition of attacks that de-
grade the content well beyond the limit of acceptable quality. 
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Figure 5. a) Normalized correlation Q convergence with water-
mark length, for a non-watermarked signal. Top three plots: 
90% percentile limits of Q (90% of the correlation values are 
under each curve), for a traditional purely random SS sequence, 
a perfect watermark (PW), and a chess watermark (CW). Bot-
tom three plots: the corresponding standard deviations of Q, in 
the same order. b) Simple state machine that produces a chess 
watermark (p > 0.5). 
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