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time-varying communication delays
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Abstract
This paper investigates an observer-based control strategy for networked multi-agent systems with general linear dynamics and time-varying communi-

cation delays in a sampling setting. The communication topology is assumed to be directed fixed. Different from a traditional observer-based controller

for a single system, the objects that need to be observed here are the state differences between an agent and its neighbours. Using a system transfor-

mation method, some equivalent conditions concerning the consensus of multi-agent systems are established. Moreover, we prove that both the con-

nection weights and the communication topology play an important role in the study of multi-agent systems, and establish a linear matrix inequality

based observer design method.
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Introduction

In recent years, the coordination problem of multi-agent sys-

tems has attracted much attention due to its extensive appli-

cations in various areas, ranging from cooperative control of

unmanned aircraft, autonomous formation flight, control of

communication networks to design of sensor networks,

swarm-based computing and rendezvous in space. One criti-

cal and canonical issue in the coordination of multi-agent sys-

tems is the consensus problem, which usually refers to the

problem of how to reach an agreement, such as the position

and velocity among a group of autonomous mobile agents in

a dynamic agent system. This is a familiar phenomenon in

our real life, for example, robots need to arrive at an agree-

ment so as to accomplish some complicated tasks. Flocks of

birds tend to synchronize during migration in order to resist

aggression and reach their destinations. Investigations of such

problems are of interest, in both theory and engineering

applications.
In the past decade, consensus problems of multi-agent sys-

tems have developed very quickly and several research topics

have been addressed (Ren and Cao, 2011). But, most existing

consensus protocols are based on relative states between

neighbouring agents. However, in a practical engineering sys-

tem, it is usually impossible to directly obtain all states of sys-

tems due to economic costs or constraints on measurement.

Thus, distributed estimation via observer design for multi-

agent coordination attracts the attention of scholars (Hong et

al., 2008; Scardovi and Sepulchre, 2009; Wang et al., 2009; Li

et al., 2010). Hong et al. (2008) studied distributed observer

design for leader-following control of multi-agent networks.

Wang et al. (2009) constructed an observer-based dynamic

output error feedback control for a general case, and pro-

posed some sufficient conditions for achieving consensus. For

multi-agent systems with time-varying topology, under the

strict assumption that the matrix A in system model was

Hurwitz stable or critical Hurwitz stable, Scardovi and

Sepulchre (2009) studied the consensus problems with observ-

ers where it is required that the communication graph is uni-

formly connected. For multi-agent systems with general

linear dynamics, based on relative output measurements, Li

et al. (2010) proposed observer-type consensus protocols,

which can be regarded as an extension of the traditional

observer-based controller for a single system.
However, Scardovi and Sepulchre (2009), Wang et al.

(2009) and Li et al. (2010) did not investigate the sampled-

data consensus of multi-agent systems, i.e. consensus in a

sampled-data setting. In fact, with the development of digital

sensors and controllers, in many cases, the system dynamics

are normally continuous while the synthesis of control law

can only use the data sampled at the discrete sampling

instants. Therefore, sampled control for continuous-time sys-

tems is more coincident with applications in our real life and

has become an interesting topic (Liu et al., 2010; Zhang and

Tian, 2010; Liu and Liu, 2011; Ren and Cao, 2011). On the

other hand, time delay is a common phenomenon for real

control systems (Jiang et al., 2010; Zhang and Tian, 2010;
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Rudy and Nejat, 2011), which may arise from the moving of

vehicles, the congestion of communication channels, etc.

Moreover, time delay is an important factor to cause a system

to diverge or oscillate (Papachristodoulou et al., 2010).
According to the above analysis, it is necessary to investi-

gate the observer-based consensus of networked multi-agent

systems with time-varying communication delays in a sam-

pling setting. Unfortunately, at present, few papers have stud-

ied this problem, even for linear multi-agent system with

directed fixed topology. This motivated us to write this paper.

Our paper can be regarded as an extension of Scardovi and

Sepulchre (2009) and Wang et al. (2009). Specifically, our sys-

tem model, the communication topology and communication

constraints investigated in this article are quite different

from Wang et al. (2009). Specifically, our system model is

not a normal multi-agent systems, but is a networked multi-

agent system, i.e. all the agents are connected through a

communication network. Many problems such as sampled-

data setting and time delay that were neglected in Wang et

al. (2009) are investigated in our article. The topology in

this article is directed fixed topology, which is more compli-

cated than the undirected fixed topology in Wang et al.

(2009). Compared with Scardovi and Sepulchre (2009), our

consensus results can be applied to many multi-agent sys-

tem since the assumption condition that the matrix A in the

system model is Hurwitz stable or critical Hurwitz stable is

not necessary in our article.
Our main contributions are threefold. (I) Based on matrix

theory and the system transformation method, some equiva-

lent algebraic conditions concerning the consensus of multi-

agent systems are established. (II) Moreover, we prove that

not only the communication topology but also the connection

weights play an important role in the study of multi-agent sys-

tems. (III) Observers can be designed by solving a set of linear

matrix inequalities (LMIs).
Notation. We use standard notations throughout this

paper. Let MT be the transpose of the matrix M .

M . 0 (M \ 0) means that M is positive definite (negative

definite). In represents the identity matrix of dimension n, and

I denotes the identity matrix of an appropriate dimension.

DiagfA1, � � � ,Ang represents a block-diagonal matrix with

matrices Ai, i= 1, � � � , n on its diagonal. The symbol � will be
used to denote a symmetric structure in a matrix, that is,

L N

� R

� �
=

L N

NT R

� �
. 1n is a vector with all entries equal to

1. r( � ) and det( � ) represent the spectral radius and determi-

nant of a matrix, respectively. k x k and k A k denote the

Euclidean norm of vector x and A, respectively. A� B denotes

the Kronecker product. A;B denotes that the matrix A is sim-

ilar to the matrix B. Matrices, if their dimensions are not

explicitly stated, are assumed to be compatible for algebraic

operations. Rþ and C denote the sets of positive numbers and

complex numbers, respectively. For s 2 C, Re(s) and Im(s)

denote its real and imaginary part, respectively.

Problem formulations and preliminaries

In this section, we first introduce some graph knowledge and

the networked multi-agent system model, then we formulate

our problems and propose some lemmas as the preliminaries

of our paper.

Graph theory

Let G =(V ,E ,A ) denote a weighted graph, where

V = f1, � � � ,Ng is the node set, E � V 3V denotes the edge

set and A = ½aijvij� is the weighted adjacency matrix with

vij . 0. Here, vij . 0 is said to be the weight between the

agent i and the agent j, which reflects the dependence of the

agent i on the agent j. A directed edge of G is denoted by

eij =(j, i), where j is called the parent node of i and i is called

the child node of j. If the edge eij =(j, i) 2 E , then aij = 1,

otherwise aij = 0. Suppose that each node has no self edge,

i.e. aii = 0 for all i. The set of neighbours of node i is denoted

by N i = fj 2 V : (j, i) 2 E g. The Laplacian matrix L= ½lij� of
digraph G is defined by lij = � aijvij for i 6¼ j and

lij =
PN

k = 1, k 6¼i

aikvik for i= j. A path of G from node i to node

j is a sequence of finite-ordered edges in the form of

(i, k1), (k1, k2), � � � , (kl, j). A directed graph is strongly con-

nected if for any distinct nodes, there exists a path between

them. A directed graph has or contains a directed spanning

tree if there exists a node called a root such that there exists a

directed path from this node to every other node. A subgraph

G 1 =(V 1,E 1,A 1) of G is a graph such that V 1 � V and

E 1 � E .

Problem formulation

Consider N agents with general linear dynamics

_xi(t)=Axi(t)+Bui(t), t 2 R
þ

yi(t)=Cxi(t), i 2 I : = f1, � � � ,Ng

�
ð1Þ

where xi(t) 2 R
p is the state, ui(t) 2 R

q is the control input and

yi(t) 2 R
m is the measured output.

Remark 1. In our paper, the agents evolve in a space that pos-

sesses a measurable vector field. For example, the agents may

represent vehicles travelling in an environment that possesses

a temperature, chemical or magnetic field.
A model of the networked multi-agent system used in this

paper is shown in Figure 1.
Throughout the paper, we make the following

assumptions.

Assumption 1. In this paper, directed graphs under fixed

topology are considered. Matrix A described in (1) is not

Hurwitz stable, i.e. the open-loop system is not stable.

Assumption 2. For simplicity, but without loss of generality,

all the time delays exist in the communication channels

between the sensors and observers.

Assumption 3. Every agent is regarded as a plant. The plant

output node (sensor) is assumed to be time driven, and its

sampling period is h, whereas the observer is assumed to be

event driven.
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Assumption 4. The measured output of agent j at the time of

kh is yj(kh). The information that agent i obtained from agent

j at the time of kh+ tk
ij is described by aijvij½yj(kh)� yi(kh)�,

where aij, vij are the adjacency relationship, the connection

weight from agent j and agent i, respectively. tk
ij,

0 \ tk
ij \ h, i= 1, � � � ,N , j 2 Ni is the communication delay

from agent j to agent i during the kth sampling period.

Assumption 5. Set a buffer in the receiver of every agent. Let

tk = max
i= 1, ���,N , j2Ni

ftk
ijg be the maximum delay during the kth

sampling period, t = max
k
ftkg be the maximum delay of the

multi-agent system. Let kh+ t be the threshold time of all

the buffers during every sampling period.
For agent i, suppose the obtained information at the time

of kh+ t is hi(kh), which is composed of the output informa-

tion difference between agent i and its neighbours. Specifically

hi(kh)=
XN

j= 1

aijvij½yj(kh)� yi(kh)� ð2Þ

Therefore, at the time of kh+ t, the ith buffer releases the sig-
nal hi(kh), which is used to renew the input of the ith

observer.
In general, most papers adopt the agreement protocol

based on state feedback

ui(t)=K
PN

j= 1

aijvij½xj(kh)� xi(kh)�, 8t 2 ½kh+ t, (k + 1)h+ t)

However, in this paper, we assume that not all the states of

agents can be obtained directly, and design an observer-based
agreement protocol

_̂xi(t)=Ax̂i(t)+Bui(t)+Gfhi(kh)� C
PN

j= 1

aijvij½x̂j(kh)� x̂i(kh)�g

ui(t)=K
PN

j= 1

aijvij½x̂j(kh)� x̂i(kh)�, 8t 2 ½kh+ t, (k + 1)h+ t)

8>>><
>>>:

ð3Þ

where x̂i(t) 2 R
p is the protocol state, i 2 I , G and K are the

feedback gain matrices to be designed, and aij and vij are as

defined in the subsection on graph theory. The term

C
PN

j= 1

aijvij½x̂j(kh)� x̂i(kh)� in (3) denotes the information

exchanges between agent i and those of its neighbours in the

kth sampling period.
Then, by (2) and (3), system (1) can be written as

_�xi(t)= �A�xi(t)+ �B
XN

j= 1

aijvij½�xj(kh)� �xi(kh)�,

8t 2 ½kh+ t, (k + 1)h+ t) ð4Þ

where �xi(t)= ½x̂T
i (t), xT

i (t)�
T , �A=

A 0

0 A

� �
, �B=

BK � GC GC

BK 0

� �
.

Remark 2. Compared with traditional multi-agent systems,

networked multi-agent systems, such as distributed robots

and mobile sensor networks, have posed a number of chal-

lenges in terms of their theoretic analysis and synthesis

(Zhang and Tian, 2010). Agents in such networks are

required to operate in concert with each other in order to

achieve system-level objectives, for example, the consensus

problem investigated in this paper.

Figure 1 The structure of observer-based multi-agent systems in a communication network.
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Remark 3. As the agreement protocol describes a viable

means of making networked agents achieve a common value

in a decentralized manner, it makes sense to adopt decentra-

lized observer-based control strategies since some state vari-

ables of agents may not be measured in practice (Hong

et al., 2008). For example, each vehicle in a multi-vehicle

system uses a digital sensor and observer to send and

receive messages sampled at discrete instants, whereas the

position, velocity and the direction angle are continuous

physical processes. Thus, the observer-based consensus pro-

tocol designed in this paper is more suitable for multi-agent

systems.
In this paper, we aim to design an observer-based control

protocol to guarantee that system (1) reaches consensus.
Here, the concept of consensus is given as the following.

Definition 1. Multi-agent system (1) with strategies (2) and (3)

reaches consensus if there exist gain matrices K,G and con-

nection weights vij such that the states of system (4) satisfy

lim
t!+‘

k �xi(t)� �xj(t) k = 0 for arbitrary i, j 2 I .
Let zi(t)=�xi(t)� �x1(t), i= 2, � � � ,N . Define z(t)= ½zT

2 (t),

� � � , zT
N (t)�

T , then we can equivalently obtain a reduced system

_z(t)=Fz(t)+Hz(kh), 8t 2 ½kh+ t, (k + 1)h+ t) ð5Þ

where F = IN�1 � �A, H = � ~L� �B and

~L=

l22 � l12 � � � l2N � l1N

..

. . .
. ..

.

lN2 � l12 � � � lNN � l1N

2
64

3
75 is defined as the reduced

Laplacian matrix, where lij is the corresponding element in

the Laplacian matrix L. The relationship between ~L, L and the

graph is given by the following lemma.

Lemma 1. In Zhang and Tian (2009), ~L has no zero eigenva-

lue, if and only if the Laplacian matrix L has only one zero

eigenvalue, if and only if the graph G has a directed spanning

tree.

Remark 4. Obviously, lim
t!+‘

k �xi(t)� �xj(t) k = 0 is equivalent

to lim
t!+‘

k zi(t) k = 0, 8i, j 2 I , i.e. the consensus problem of

system (1) can be transformed into the stability problem of a

reduced system (5). Hence, in the following discussion, we

will focus on seeking the necessary and sufficient conditions

to guarantee the stability of system (5).

Consensus analysis

In this section, we aim to establish the necessary and sufficient

conditions to guarantee that system (1) reaches consensus.

Theorem 1. For a fixed topology, system (1) reaches consen-

sus, if and only if r(F(t))\ 1, where

F(t)=
0 I2p3(N�1)

�~L�
R h

h�t
e

�Asds�B IN�1 � e
�Ah � ~L�

R h�t

0
e

�Asds�B

� �

Proof. (Necessity) If system (1) reaches consensus, then sys-

tem (5) is asymptotically stable.
For system (5), it is easy to obtain its corresponding discre-

tization model

z((k + 1)h)= (eFh +

Z h�t

0

eFsdsH)z(kh)+

Z h

h�t

eFsdsHz((k � 1)h)

= (IN�1 � e
�Ah � ~L�

Z h�t

0

e
�Asds�B)z(kh)

� ~L�
Z h

h�t

e
�Asds�Bz((k � 1)h):

ð6Þ

Defining �z(k)= ½zT (kh), zT ((k + 1)h)�T , then by (6), we get

�z(k)=F(t)�z(k � 1) ð7Þ

By the asymptotical stability of system (5), we get that system
(7) is also asymptotically stable, i.e. r(F(t))\ 1:

(Sufficiency) For system (7), if r(F(t))\ 1, then we get

k z(kh) k! 0, k ! ‘. For 8t 2 ½kh, (k + 1)h), two cases are

discussed as follows.

Case 1. 8t 2 ½kh, kh+ t), by system (4)

xi(t)= eA(t�kh)xi(kh)+
R t�kh

0
eAsdsBK

PN
j= 1

aijvij½x̂j((k � 1)h)� x̂i((k � 1)h)�

Hence

k xi(t)� x1(t) k< ekAk(t�kh) k xi(kh)� x1(kh) k

+

Z t�kh

0

ekAksds k BK k

3½
XN

j= 1

aijvij k x̂j((k � 1)h)� x̂i((k � 1)h) k

+
XN

j= 1

a1jv1j k x̂j((k � 1)h)� x̂1((k � 1)h) k�

ð8ÞSimilarly

x̂i(t)= eA(t�kh)x̂i(kh)

+

Z t�kh

0

eAsdsf(BK � GC)

XN

j= 1

aijvij½x̂j((k � 1)h)� x̂i((k � 1)h))�

+GC
XN

j= 1

aijvij½xj((k � 1)h)� xi((k � 1)h)�g

k x̂i(t)� x̂1(t) k < ekAk(t�kh) k x̂i(kh)� x̂1(kh) k

+

Z t�kh

0

ekAksdsfk BK � GC k ½
XN

j= 1

aijvij k

x̂j((k � 1)h)� x̂i((k � 1)h) k

+
XN

j= 1

a1jv1j k x̂j((k � 1)h)� x̂1((k � 1)h) k�

+ k GC k ½
XN

j= 1

aijvij k xj((k � 1)h)� xi((k � 1)h) k

+
XN

j= 1

a1jv1j k xj((k � 1)h)� x1((k � 1)h) k�g

ð9Þ
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Case 2. 8t 2 ½kh+ t, (k + 1)h), by system (4), we have

xi(t)= eA(t�kh)xi(kh)+

Z h

h�t

eAsdsBK

XN

j= 1

aijvij½x̂j((k � 1)h)� x̂i((k � 1)h)�

+

Z t�kh�t

0

eAsdsBK
XN

j= 1

aijvij½x̂j(kh)� x̂i(kh)�

k xi(t)� x1(t) k < ekAk(t�kh) k xi(kh)� x1(kh) k

+

Z h

h�t

ekAksds k BK k ½
XN

j= 1

aijvij k x̂j((k � 1)h)� x̂i((k � 1)h) k

+
XN

j= 1

a1jv1j k x̂j((k � 1)h)� x̂1((k � 1)h) k�

+

Z t�kh�t

0

ekAksds k BK k ½
XN

j= 1

aijvij k x̂j(kh)� x̂i(kh) k

+
XN

j= 1

a1jv1j k x̂j(kh)� x̂1(kh) k� ð10Þ

Similarly

x̂i(t)= eA(t�kh)x̂i(kh)

+

Z h

h�t

eAsdsf(BK � GC)

XN

j= 1

aijvij½x̂j((k � 1)h)� x̂i((k � 1)h)�

+GC
XN

j= 1

aijvij½xj((k � 1)h)� xi((k � 1)h)�g

+

Z t�kh�t

0

eAsdsf(BK � GC)
XN

j= 1

aijvij½x̂j(kh)� x̂i(kh)�

+GC
XN

j= 1

aijvij½xj(kh)� xi(kh)�g

k x̂i(t)� x̂1(t) k < ekAk(t�kh) k x̂i(kh)� x̂1(kh) k

+

Z h

h�t

ekAksdsfk BK � GC k

½
XN

j= 1

aijvij k x̂j((k � 1)h)� x̂i((k � 1)h) k

+
XN

j= 1

a1jv1j k x̂j((k � 1)h)� x̂1((k � 1)h) k�

+ k GC k ½
XN

j= 1

aijvij k xj((k � 1)h)� xi((k � 1)h) k

+
XN

j= 1

a1jv1j k xj((k � 1)h)� x1((k � 1)h) k�g

+

Z t�kh�t

0

ekAksdsfk BK � GC k

½
XN

j= 1

aijvij k x̂j(kh)� x̂i(kh) k

+
XN

j= 1

a1jv1j k x̂j(kh)� x̂1(kh) k�+ k GC k

½
XN

j= 1

aijvij k xj(kh)� xi(kh) k

+
XN

j= 1

a1jv1j k xj(kh)� x1(kh) k�g
ð11Þ

Obviously, for 8t 2 ½kh, (k + 1)h)

lim
k!+‘

k z(kh) k = 0 ,

lim
k!+‘

k xi(kh)� x1(kh) k = 0, lim
k!+‘

jjx̂i(kh)� x̂1(kh)jj = 0,

, lim
k!+‘

k xi(kh)� xj(kh) k = 0,

limk!+‘ k x̂i(kh)� x̂j(kh) k = 0,

i, j 2 I
ð12Þ

Furthermore, by (8), (10) and (12), we prove

lim
t!+‘

k xi(t)� x1(t) k = 0,

limt!+‘ k xi(t)� xj(t) k = 0, i, j 2 I

Similarly, by (9), (11) and (12), we get

lim
t!+‘

k x̂i(t)� x̂1(t) k = 0,

lim
t!+‘

k x̂i(t)� x̂j(t) k = 0, i, j 2 I

Thus, by Definition 1, multi-agent system (1) reaches consen-

sus. h

Remark 5. Theorem 1 has established a necessary and suffi-

cient consensus criterion, but it is difficult for us to compute

r(F(t)) for its complexity. Hence, we aim to further seek nec-

essary and sufficient conditions to guarantee that r(F(t))\ 1

in the following analysis.
Let ~L=T�1JT , where J is the Jordan canonical form of ~L

with diagonal elements l1,l2, � � � , lN�1. First, by the proper-

ties of the Kronecker product

F(t)=
0 IN�1 � I2p

0 IN�1 � e
�Ah

" #
�

0 0

~L�
R h

h�t
e

�Asds�B ~L�
R h�t

0
e

�Asds�B

" #

; IN�1 �
0 I2p

0 e
�Ah

" #
� ~L�

0 0R h

h�t
e

�Asds�B
R h�t

0
e

�Asds�B

" #

=(T�1 � I4p)~F(t)(T � I4p)

where

~F(t)= IN�1 �
0 I2p

0 e
�Ah

� �
� J� 0 0R h

h�t
e

�Asds�B
R h�t

0
e

�Asds�B

� �
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Then, we have

det (sI4p(N�1) �F(t))= det (sI4p(N�1) � ~F(t))

= det (

sI4p � ~F1(t) � � � �

..

. . .
. ..

.

0 � � � sI4p � ~FN�1(t)

2
664

3
775)

=
YN�1

i= 1

det (sI4p � ~Fi(t))

ð13Þ

where ~Fi(t)=
0 I2p

�li

R h

h�t
e

�Asds�B e
�Ah � li

R h�t

0
e

�Asds�B

� �
, i=

1, � � � ,N � 1.

Remark 6. From the above analysis, it is easy to obtain that

r(F(t))\ 1 can be equivalently converted into

r(Fi(t))\ 1, i= 1, 2, � � �N � 1. It is comparatively easy to

compute r(Fi(t)).

Proposition 1. System

_vi(t)= �Avi(t)� li
�Bvi(kh), 8t 2 ½kh+ t, (k + 1)h+ t) ð14Þ

is asymptotically stable if and only if r(~Fi(t))\ 1,

i= 1, � � � ,N � 1, where �A, �B are defined as in (4), li are the

eigenvalues of ~L defined as in (5).

Proof. The corresponding discretization model of system (14)

is given as

vi((k + 1)h)= (e
�Ah +

Z h�t

0

e
�Asds(� li

�B))vi(kh)

+

Z h

h�t

e
�Asds � (� li

�B)vi((k � 1)h)

= (e
�Ah � li

Z h�t

0

e
�Asds � �B)vi(kh)� liZ h

h�t

e
�Asds � �Bvi((k � 1)h)

ð15Þ

Defining �vi(k)= ½vT
i (kh), vT

i ((k + 1)h)�T , then by (15), we get

�vi(k)= ~Fi(t)�vi(k � 1) ð16Þ

(Necessity) (14) is asymptotically stable ) (16) is asymptoti-

cally stable) r(~Fi(t))\ 1.
(Sufficiency) For 8t 2 ½kh, (k + 1)h), two cases are dis-

cussed as follows.

Case 1. 8t 2 ½kh, kh+ t)

vi(t)= e
�A(t�kh)vi(kh)+

Z t�kh

0

e
�Asds(� li

�B)vi((k � 1)h)

k vi(t) k < ek
�Ak(t�kh) k vi(kh) k

+

Z t�kh

0

ek
�Aksds k �li

�B kk vi((k � 1)h) k
ð17Þ

Case 2. 8t 2 ½kh+ t, (k + 1)h)

vi(t)= e
�A(t�kh)vi(kh)+

Z h

h�t

e
�Asds(� li

�B)vi((k � 1)h)

+

Z t�kh�t

0

e
�Asds(� li

�B)vi(kh)

k vi(t) k < ek
�Ak(t�kh) k vi(kh) k

+

Z h

h�t

ek
�Aksds k �li

�B kk vi((k � 1)h) k

+

Z t�kh�t

0

ek
�Aksds k �li

�B kk vi(kh) k

ð18Þ

Then, we can obtain the results as

r(~Fi(t))\ 1 )k �vi(k) k! 0, k ! +‘ )k vi(kh) k! 0,
k vi((k � 1)h) k! 0, k ! +‘)k vi(t) k! 0, t! +‘ (by

equations (17) and (18)) ) system (14) is asymptotically

stable. h

For system (14), let d(t)= t � kh, t 2 ½kh+ t,

(k + 1)h+ t), dm = t, dM = h+ t, then system (14) can be

equivalently converted into the following delay systems

_vi(t)= �Avi(t)� li
�Bvi(t � d(t)), t 2 ½kh+ t, (k + 1)h+ t),

i= 1, � � � , N � 1 ð19Þ

Summarizing the above discussions, some equivalent proper-

ties about consensus problem can be obtained in the following
theorem.

Theorem 2. For a fixed topology, the following propositions

are equivalent.

(a) The multi-agent system (1) reaches consensus.
(b) System (5) is asymptotically stable.
(c) r(F(t))\ 1.
(d) r(~Fi(t))\ 1, i= 1, � � � ,N � 1.
(e) All the subsystems described in (14) are asymptoti-

cally stable.
(f) All the delay differential equations described in (19)

are asymptotically stable.

Proof. By Remark 3, (a), (b). By Theorem 1, (a), (c). By

equation (13), (c), (d). By Proposition 1, (d), (e). By
equation (19), (e), (f ). Hence, (a), (b), (c), (d),
(e), (f ). h

Remark 7. It is easy to see that the difference among all the

subsystems in system (19) is caused by the different eigenva-

lues of ~L, which are affected by the connection weights and

topology of multi-agent systems. Moreover, Example 1 in the
section on simulations indicates that for the general linear

multi-agent systems via sampled control, the connection

weights cannot be chosen arbitrarily. Otherwise, there may

not exist feedback gain matrices such that the multi-agent

system (1) reaches consensus. Therefore, it is necessary to
regard the connection weights as the parameters to be

designed for improving the consentability of the multi-agent

system.
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Based on Theorem 2, we get the following theorem.

Theorem 3. Suppose there exist gain matrices K,G such that
system

_v(t)= �Av(t)� �Bv(t � d(t)), t 2 ½kh+ t, (k + 1)h+ t) ð20Þ

is asymptotically stable. Then, there exist connection weights

vij such that system (1) reaches consensus if and only if the
graph G contains a directed spanning tree.

Proof. (Necessity) Now we prove the necessity by
contradiction.

Suppose there is no directed spanning tree contained in

the graph G , by Lemma 1, ~L has at least one zero eigenvalue

under arbitrary connection weights. Without loss of general-
ity, suppose l1 = 0, we have

det (sI4p � ~F1(t))= det (
sI2p �I2p

0 sI2p � e
�Ah

" #
)

= det (sI2p) det (sI2p � e
�Ah)

where �A is defined as in system (4). Let A=P�1
A JAPA, where

JA is the Jordan canonical form of A with diagonal elements
m1, � � � ,mp. We conclude

det (sI2p � e
�Ah)= det (

sIp � eAh 0

0 sIp � eAh

" #
)

=
Yp

i= 1

(s� emih)
Yp

i= 1

(s� emih)

Because A is not Hurwitz stable, there exists at least one

eigenvalue mi that satisfies Re(mi)˜ 0, i 2 I1 : = f1, � � � , pg:
As a result, jemihj˜ 1 and r(~F1(t))˜ 1. By Theorem 2, the
multi-agent system (1) cannot reach consensus. Therefore, the

graph contains a directed spanning tree under the given
conditions.

(Sufficiency) If the graph G contains a directed spanning
tree, we introduce a method to choose the connection weights

such that all the eigenvalues of ~L are equal and not zero.
Suppose G 0 =(V ,E 0,A 0) is a subgraph containing a directed

spanning tree, then E 0 2 E . First, we renumber the agents in

the following way: the number of the agent that corresponds
to the root in the G 0 is 1, whereas for the nodes corresponding

to the remaining agents, the number of the child node is larger

than that of its parent node. Then, let

vij =

1, if eij 2 E 0

0, if eij 2 E nE 0

arbitrary, other case

8><
>:

For the given connection weights above,

~L=

1 0 � � � 0

� 1 � � � 0

..

. ..
. . .

. ..
.

� � � � � 1

2
664

3
775: Obviously, l1 =l2 = � � � =lN�1 = 1.

Then, all the subsystems described in system (19) become sys-
tem (20). Obviously, if there exist feedback gain matrices K,G

such that system (20) is asymptotically stable, by Theorem 2,
system (1) reaches consensus. h

Remark 8. Theorem 3 establishes necessary and sufficient
conditions on the graph G to guarantee the consensus of sys-
tem (1). Compared with the algebraic conditions shown in
Theorems 1 and 2, this theorem is easy to imply.

In the following, we establish the LMI-based stabilizability
criteria for system (20).

Proposition 2. System (20) is asymptotically stable, if there
exist matrices P1 . 0,X1 . 0,X2 . 0,Y1,Y2, S,R,Z1, Z2, T ,G,K

and a . 0 satisfying the following matrix inequalities

UT
0 XU0 � Q0 JT

0 (K,G)+aUT
0

� Y

� �
. 0 ð21Þ

UT
1 XU1 � Q1 JT

1 (K,G)+aUT
1

� Y

� �
. 0 ð22Þ

R T

� Z1

� �
. 0 ð23Þ

where X =
X1 0

0 X2

� �
Y =

Y1 0

0 Y2

� �
, X =a2Y�1, Q0 =

G �TT

� �S

� �
,

G=F+
0 P1

P1 0

� �
, F=

T

0

� �
+

T

0

� �T

+
S 0

0 dM R

� �

+ dmZ1 +(dM � dm)Z2,

J0(K,G)=
�A �I2p ��B
�A �I2p ��B

� �
, U0 =

I2p 0 0

0 I2p 0

� �
,

Q1 =
�R 0

0 �Z2

� �
, J1(K,G)=

�B 0 0
�B 0 0

� �
,

U1 =
0 I2p 0

0 0 I2p

� �
,

�A=
A 0

0 A

� �
, �B=

BK � GC GC

BK 0

� �
:

Proof. This proposition is a special case of Theorems 2 and 3
in Naghshtabrizi and Hespanha (2005). h

Remark 9. Summarizing the whole analysis of this paper, our
paper can be regarded as an extension of Scardovi and
Sepulchre (2009) and Wang et al. (2009). Specifically, our sys-
tem model, the communication topology and communication

constraints investigated in this article are quite different from
Wang et al. (2009). Specifically, our system model is not for
normal multi-agent system, but networked multi-agent sys-
tems, i.e. all the agents are connected through a communica-
tion network. Many problems such as sampled-data setting
and time delay that were neglected in Wang et al. (2009) are
investigated in our article. The topology in this article is
directed fixed topology, which is more complicated than the
undirected fixed topology in Wang et al. (2009). Compared
with Scardovi and Sepulchre (2009), our consensus results
can be applied to many multi-agent system since the

Xie and Chen 7

 at PENNSYLVANIA STATE UNIV on March 4, 2016tim.sagepub.comDownloaded from 

http://tim.sagepub.com/


assumption condition that the matrix A in the system model
is Hurwitz stable or critical Hurwitz stable is not necessary in

our article.

Simulations

In this section, four examples are given to illustrate our main

results in this paper.

Example 1. Consider a multi-agent supporting system

(MASS) with three agents, whose interaction topology is
shown in Figure 2, that obviously contains a directed span-

ning tree. Let A= 1,B= 1,C = 1, the sampling period h=ln
2 and the time delay t = 0. Select the connection weights as

follows: v21 = 1, v32 = 5�
ffiffiffiffiffi
17
p

, v13 = 5+
ffiffiffiffiffi
17
p

, whereas vij

is an arbitrary positive number for the other cases. Then, the

eigenvalues of ~L=
1 5+

ffiffiffiffiffi
17
p

�5+
ffiffiffiffiffi
17
p

10

� �
are l1 = 2,

l2 = 9

F(0)=

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 2� (K � G) �G �(5+
ffiffiffiffiffi
17
p

)(K � G) �(5+
ffiffiffiffiffi
17
p

)G
0 0 0 0 �K 2 �(5+

ffiffiffiffiffi
17
p

)K 0

0 0 0 0 �(� 5+
ffiffiffiffiffi
17
p

)(K � G) �(� 5+
ffiffiffiffiffi
17
p

)G 2� 10(K � G) �10G

0 0 0 0 �(� 5+
ffiffiffiffiffi
17
p

)K 0 �10K 2

2
66666666664

3
77777777775

~F1(0)=

0 0 1 0

0 0 0 1

0 0 2� l1(K � G) �l1G

0 0 �l1K 2

2
664

3
775,

~F2(0)=

0 0 1 0

0 0 0 1

0 0 2� l2(K � G) �l2G

0 0 �l2K 2

2
664

3
775

It is easy to compute that

det (sI4p � ~Fi(0))=

s 0 �1 0

0 s 0 �1

0 0 s� (2� li(K � G)) liG

0 0 liK s� 2

���������

���������
= s2½s2 � (4� li(K � G))s+(4� 2li(K � G)� l2

i GK)�= 0, i= 1, 2

ð24Þ

By (24), ~Fi(0) has two nonzero eigenvalues si3, si4, satisfying

jsi3 + si4j= j4� li(K � G)j, i= 1, 2: By Theorem 2, this

multi-agent system can achieve consensus if and only if

r(~F1(0))\ 1, r(~F2(0))\ 1, i.e. all the eigenvalues of
~F1(0), ~F2(0) are in the unit circle. Hence, (i) js13 + s14j=
j4� l1(K � G)j\ js13j+ js14j\ 2, i.e. G+ 1 \ K \ G+ 3,

and (ii) js23 + s24j= j4� l2(K � G)j\ js23j+ js24j\ 2, i.e.

G+ 2
9

\ K \ G + 6
9
.

Obviously, for arbitrary G, there does not exist K satisfy-

ing (i) and (ii) simultaneously. Therefore, although the graph

contains a directed spanning tree, there are no feedback gain

matrices such that the multi-agent system (1) reaches consen-

sus with the connection weights given above. Hence, the

choice of connection weights has a great effect on the consen-

sus of the multi-agent system and should be regarded as the

parameter to be designed.

Example 2. This example is partly taken from Example 1 in

Xi et al. (2010). For the model of a MASS given by
€ji(t)+

D
m

_ji(t)+
k
m

ji(t)= ui(t), i 2 f1, � � � ,Ng, suppose that

the system state cannot be obtained directly, then the

observer-based control system can be given as

€ji(t)+
D
m

_ji(t)+
k
m

ji(t)= ui(t), i 2 f1, � � � ,Ng
yi(t)= ji(t)

(

where m is the mass of each agent, D is the damping at each

agent, k is the stiffness at each agent, ji(t) is the height of each
agent and ui(t) is the consensus protocol. Let

xi(t)= ½ji(t), _ji(t)�T , then the dynamics of the MASS with N

agents can be described by (1) with A=
0 1

� k
m
� D

m

� �
,

B=
0

1

� �
, C = 1 0½ �. Consider a MASS with four agents,

whose interaction topology is shown in Figure 3, and all the

connection weights are equal to 1. Obviously, the topology

graph has a directed spanning tree. The Laplacian matrix of

the graph is L=

0 0 0 0

�1 1 0 0

0 �1 1 0

0 0 �1 1

2
664

3
775, and the eigenvalues of

~L are l1 =l2 =l3 = 1. Let a= 1, dm = 0:01, dM = 0:05,

t = 0:01,m= 1000, k = 2,D= 100. By solving LMIs

Figure 2 The topology graph of agents.

Figure 3 The topology graph with a directed spanning tree.
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(21)–(23), we obtain K = 0:0041 5:8551 �,G =½
�6:4916 �0:0083½ �T . By Theorem 3, this multi-agent sys-

tem can reach consensus.
As stated in Example 1 in Xi et al. (2010), our MASS can

be regarded as an earthquake damage-preventing building

system, where each agent in this MASS tries to keep the build-

ing horizontal when an earthquake occurs. After the earth-

quake, the MASS should recover to be static and horizontal,

which means that the velocity and position of each agent con-

verge to zero and a constant, respectively. Let ji(t), _ji(t) denote

the absolute height/velocity of each agent in a given coordinate.

Figures 4 and 5 show the simulation results with the initial val-

ues �x1(0)= ½1, � 3, 5, � 11�T , �x2(0)= ½2, � 4, 6, � 12�T ,
�x3(0)= ½3, � 5, 7, � 13�T , �x4(0)= ½4, � 6, 8, � 14�T : One can

see that this MASS can recover to be static and horizontal

asymptotically.
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Figure 4 The first and second state trajectories of each agent.
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Figure 5 The observer-error trajectories.
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Example 3. Consider a multi-agent system with four agents,
satisfying

_xi(t)=
0 0:22

0:002 �0:1

� �
xi(t)+

1

0:1

� �
ui(t),

yi(t)= 1 0½ �xi(t), i= 1, 2, 3, 4:

8<
:

The corresponding communication topology graph

given by Figure 6 does not have a directed spanning tree.
By Theorem 3, the multi-agent system cannot reach
consensus. Choose v21 = 0:3,v23 = 0:2,v43 = 1. Hence,

L=

0 0 0 0

�0:3 0:5 �0:2 0

0 0 0 0

0 0 �1 1

2
664

3
775: Given K = 0:002 0:01½ �, G =

0:003 0:002½ �T . Let a= 1, dm = 0:01, dM = 0:05, t = 0:01,
then the simulation results are shown in Figures 7 and 8,

where �x1(0)= ½1, � 3, 5, � 11�T , �x2(0)= ½2, � 4, 6, � 12�T ,
�x3(0)= ½3, � 5, 7, � 13�T , �x4(0)= ½4, � 6, 8, � 14�T :

Example 4. This example is taken from Example 6.1 in Wang

et al. (2009)

_xi(t)=

0 1 1

�1 0 1

�1 �1 0

2
64

3
75xi(t)+

0

0

1

2
64
3
75ui(t)

yi(t)= 2 1 3½ �xi(t) i= 1, 2, 3, 4

8>>><
>>>:

Assume the adjacent graph is given by Figure 3. Let

a= 1, dm = 0:01, dM = 0:05, t = 0:01: By solving LMIs

(21)–(23), we obtain G= ½�1:0393, � 0:5135, � 1:1467�T ,
K = ½�1:0960 � 0:5956 4:3218�. By Theorem 3, this multi-

agent system can reach consensus. Figures 9 and 10 show the

simulation results with the initial values �x1(0)=

½1, 7, 3, 1, 11, 1�T , �x2(0)= ½�5, 2, 9, 2, � 9, 2�T , �x3(0)= ½�4, 6,

3, 13, 3, � 3�T , �x4(0)= ½7, 4, � 4, 4, � 14, � 8�T : Wang et al.

(2009) cannot determine whether this multi-agent system

reaches consensus or not since delay phenomena were

neglected. Compared with Wang et al. (2009), our simulations

show that although the state trajectories in our paper change

in a larger range, networked multi-agent systems with both

time delays and sampled-data control can still reach consen-

sus by using longer times.

Conclusions

This paper has studied the consensus problem of data-

sampled multi-agent systems with time-varying communica-

tion delays under fixed topology. Some necessary and suffi-

cient conditions for the consensus problem have been

obtained. The study of networked multi-agent systems is still

a challenging problem, and this paper can serve as a stepping

stone to study more complicated networked systems with

both sampling and time delays. Future work includes consen-

sus problems in the stochastic switching topology case and

Figure 6 The topology graph with no directed spanning tree.
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Figure 7 The state trajectories of each agent.

10 Transactions of the Institute of Measurement and Control 0(0)

 at PENNSYLVANIA STATE UNIV on March 4, 2016tim.sagepub.comDownloaded from 

http://tim.sagepub.com/


the case that the mobile agents communicate via a network
with noise, variable delays and occasional packet losses.
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Figure 8 The observer-error trajectories.
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Figure 10 The observer-error trajectories.
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