
A Survey on Software Product Line Testing

Jihyun Lee
College of Liberal Arts, Daejeon University,
62 Daehak-ro, Dong-gu, Daejeon, Korea

jihyun30@kaist.ac.kr

Sungwon Kang, and Danhyung Lee
Department of Computer Science, KAIST

291 Daehak-ro, Yuseong-gu, Daejeon, Korea
{sungwon.kang, danlee}@kaist.ac.kr

ABSTRACT
Software product line (SPL) testing consists of two separate but
closely related test engineering activities: domain testing and
application testing. Various software product line testing
approaches have been developed over the last decade, and surveys
have been conducted on them. However, thus far none of them
deeply addressed the questions of what researches have been
conducted in order to overcome the challenges posed by the two
separate testing activities and their relationships. Thus, this paper
surveys the current software product line testing approaches by
defining a reference SPL testing processes and identifying, based
on them, key research perspectives that are important in SPL
testing. Through this survey, we identify the researches that
addressed the challenges and also derive open research
opportunities from each perspective.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – domain
engineering.

General Terms
Reliability, Verification.

Keywords
Software product line testing; Software product line engineering;
Software testing

1. INTRODUCTION
In software product line (SPL) engineering, domain engineering
sets up a common product line platform by identifying
commonality and variability while application engineering
develops individual products based on the platform. Domain
testing produces test assets that will be reused by products in the
product line. Domain testing includes testing for common parts
related to variable artifacts that may or may not be realized during
domain engineering. Meanwhile, application testing has to achieve
an efficient reuse of domain test assets while it tests application-
specific parts.

During the past ten years, many approaches to SPL testing have
been proposed. Several surveys on SPL testing have also been

conducted [1, 2, 3, 4, 33, 34, 45]. However, while addressing
questions such as what topics the past research has focused on,
they missed other important questions such as the main research
challenges in domain testing and application testing and how such
challenges have been resolved in each approach. Nor did the
studies [34, 45] that map out selected researches to pre-defined
research issues answer such questions. This paper tries to compare
and analyze in detail how the existing approaches tackle the
research challenges. To compare and analyze the existing SPL
testing approaches, this paper first defines a survey framework that
consists of a reference SPL testing process and research
perspectives. A reference SPL testing process clearly distinguishes
SPL testing from testing in a single-system development
environment. We analyze perspectives in SPL testing based on the
reference SPL testing processes. For comparison and analysis, this
paper selects from the published literature approaches with
significant contribution to the defined perspectives. Then, based on
the survey framework, with the contributions of the approaches
research opportunities thus far unresolved by the current
researches are identified from the gaps in between the survey
frameworks and the contributions.

This paper is organized as follows: Section 2 presents our survey
framework. Section 3 compares and analyzes the existing
approaches based on the survey framework. Section 4 summarizes
the open research questions, and finally, Section 5 concludes the
paper.

2. THE SURVEY FRAMEWORK
In this section, we define a reference SPL test process that
provides the basis for analyzing the differences between SPL
testing and single product testing. Based on the differences a
survey framework that consists of perspectives as major research
challenges and observations is derived. Then we select and classify
researches on SPL testing for survey. In this paper, the term
‘testing’ refers to the activities that include test case design (i.e.
description of test objectives, test data, test actions, expected
results, and execution preconditions for a test item) and test
execution (i.e. running a test on the domain or application artifacts
and producing its results).

2.1 The reference SPL testing process
SPL testing has a ‘W’-shape lifecycle [5], called extended V-
model in [46, 47] formed by two overlapping V-models as Figure
1 shows. The dotted arrows from left to right in Figure 1 indicate
that domain test assets are used as inputs to application testing.
Test assets such as test plans, test cases, and test scenarios must be
produced in the relevant engineering phase. To realize such test
assets, test engineers initiate system testing in the domain or
application requirements engineering phase, integration testing in
the domain or application architecture design, and unit testing in
the domain or application realization phase.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SPLC '12, September 02 - 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1094-9/12/09…$15.00.

31

P3

P5

P4

: Workflow
: Activity

: Domain test cases : Dataflow with inputs

Domain
system testing

: Selected test cases

App.
realization

app-specific req.

app-specific design

: App-specific test cases

binding info. in req.

binding info in design

binding info. in realization

Domain
req. eng.

Domain
design

Domain
integration

testing

Domain
unit testing

App.
req. eng.

App.
design

P2

Domain
realization

P1

App.
integration

testing

App.
unit testing

App. system
testing

app-specific detailed design

Domain codes
with variability

Domain design
with variability

Domain requirements
with variability

Figure 1. A reference SPL testing process

Test assets can be produced and executed either in domain testing
or in application testing. However, it is desirable to test core assets
in domain testing so that application testing can focus on the
application specific parts not covered in domain testing. In the
normal case, complete products are not obtained during domain
engineering because domain engineering focuses on core asset
development. Therefore, in most cases domain system testing can
only be conducted in a limited way.

2.2 A survey framework and research selection
In this sub-section we present the survey framework used in this
paper for comparing and analyzing existing approaches. The
survey framework consists of eight perspectives, where five of
them are derived from the reference SPL testing process and three
of them are defined to assess maturity of approaches.

The major difference between SPL testing and single product
testing comes from variability in domain artifacts. Handling
variability is very challenging and the decisions on how to deal
with it are the starting point in SPL testing. From this view, as the
reference SPL testing process in Figure 1 shows there are two
types of test cases in SPL testing, domain test cases (test cases
produced during domain engineering) and application test cases
(test cases produced during application engineering).

Domain test cases should have the forms that can be efficiently
reused in application testing and address variability. In addition,
test data for commonality and variability must be examined and
determined for test cases [9]. Further, an approach should have a
way for testing a member product of a product line that reuses
domain test cases and minimizes retesting for the parts that are
already tested in domain testing or by another member product
[45]. For them, a reasonable test case selection method should be
provided so as to select domain test cases to be executed.
Therefore, test case creation (which, in this paper, includes test
data, P1: Test case creation in Figure 1) and test case selection are

research challenges for SPL testing (P2: Test case selection in
Figure 1).

In addition, seldom all variants are implemented during domain
engineering. So domain testing must consider tests for non-
executable domain artifacts due to the undeveloped variants, i.e.
absent variants [7]. Coping with absent variants is also challenging
because absent variants can complicate integration testing and
system testing, making domain system testing impossible in some
cases. However, because the quality of domain artifacts affects the
quality of all member products in a product line, test execution of
parts linked to absent variants should be carefully handled during
domain testing (P3: Test execution for absent variants in Figure 1).

Absent variants are bound during application engineering. The
binding phases of absent variants can be widely apart [29], so
application integration and system testing are much more
complicated (P4: Variability binding in testing in Figure 1). If a
product is tested after all variants have been bound, the defect
correction cost becomes high. If testing is executed whenever
binding occurs, much effort will be required for developing test
stubs and drivers. Therefore, the cost tradeoff between defect
correction and test code development should be considered.

Application testing tests application-specific artifacts and re-tests
the domain artifacts that were already tested but need be re-
examined as new functionalities are added or as the existing
domain artifacts are adapted [46] for satisfying the application-
specific requirements (P5: Application-specific tests in Figure 1).

For assessing maturity of approaches three perspectives are
employed. Because SPL testing deals with multiple products, its
complexity is very high and tool support is essential (P6: SPL test
tool support). In many cases, the number of variations can be large,
often hundreds or more, so the scalability is an important aspect
(P7: Scalability), and the evidence on the feasibility of an
approach is also important (P8: Evidence).

32

Domain
Test Case
Creation

Test
Execution for

Absent
Variants

Test
Execution

(Domain test model)Domain Artifacts

Application Artifacts

Application
Engineering

Domain
Engineering

Test cases
without
variability

Application
Test Case
Creation

(Application test model)

Test Case
Selection

Test data

Test data

Test code for absent variants added

Variants
available

Application-specific test cases

Test cases
with

variability

Binding

(B)

(A)

(C)

(D)

(E)

(F)

(G)

(H)

Figure 2. Relationships of the perspectives P1-P5 in SPL testing process

As the result, five research perspectives are:
P1: Test case creation;
P2: Test case selection;
P3: Test execution for absent variants;
P4: Variability binding in testing;
P5: Application-specific tests.

Three research perspectives defined for assessing the maturity of
approaches are:

P6: Tool support;
P7: Scalability of the approach;
P8: Evidences of the approach.

The survey framework also includes observations and assumptions
for the first five perspectives, which are the starting point of our
comparison and analysis. For deriving observations to be used as
the basis for comparison and analysis, we analyze P1 through P5
based on McGregor [8, 9] and Pohl et al. [3, 7] that provide
general insights on SPL testing. Domain test cases can be
generated in a form that includes variation points, which have to
be resolved later [7], or can be separately generated for each set of
variants for the variability [8]. Meanwhile, testing in application
engineering reuses domain test cases across different products in
the product line. In the case that domain test cases include variants,
domain test cases are transformed into application test cases
through variability binding and in other cases a mechanism for
selecting test cases related to a specific application is necessary.

Domain test cases may be incomplete due to the variants that will
be realized during application engineering. Even when test cases
are complete, they may not be fully executable because they
interact with variable parts [7]. Moreover, because binding times
can vary widely spread across different testing phases, their
executable phases can be diverse [6, 7]. From these considerations,
we can make the following observations on the aforementioned
five perspectives (P1 through P5):

O1. Domain test cases can be created either (O1-1) directly from
domain artifacts (A in Figure 2) [8] or (O1-2) through
domain test models derived from the domain artifacts (B-C in

Figure 2) [7]. A domain test model is a test model that
preserves variability while an application test model only
preserves the values of variability.

O2. Test data is one of categories of test cases. A partial data set
is associated with either commonalities or variabilities [8, 9].

O3. A domain test case may (O3-1) include or may (O3-2) not
include variability [7, 8].

O4. Application test cases may be created directly from domain
test cases by using binding information of application
artifacts (C in Figure 2) [7].

O5. Test execution for absent variants can be performed (O5-1)
during domain engineering by adding test code for absent
variants or may be performed (O5-2) during application
engineering when variants are available [7].

O6. A test case can be executed before or after variability
binding in products (in an extreme case it can be executed
after all variabilities are resolved), and the bindings can
occur during development, compiling, linking, or run time
[7].

We also make the following assumptions based on the
observations and use them as the basis for comparison and analysis
together with O1-O6:

A1. Application test cases may be created from application
artifacts (F in Figure 2) or through application test models
(derived either from H-G or from G in Figure 2).

A2. During application engineering test case selection may be
conducted for selecting test cases to execute (D-E in Figure
2). A proper selection mechanism would allow a high
degree of reuse of domain test cases.

A3. Application-specific test cases are created and executed
during application engineering.

The eight perspectives cover research challenges that O. Edwin [1]
proposes through a systematic review of the existing literature
except for test process challenge reviewed and determined as an

33

open research challenge by Lamancha et al. [2] and E. Engström
[33]. In addition, Neto et al. [34] and Engström et al. [45]
conducted a systematic mapping study and their aspects such as
variant binding time, commonality and variability testing are
similar. However, our observations and assumptions for
comparison and analysis are quite different.

This survey compares and analyzes existing approaches in the
literature on the basis of the defined survey framework. Literatures
including those screened in the two mapping studies [34, 45] have
also been reviewed. We selected approaches to be surveyed based
on the following criteria:

y Literature that proposes specific SPL testing approaches
related to the five research perspectives with evidence <or>

y Literature that proposes SPL testing tools with well-defined
approaches

As analyzed in [48], a few literatures describe experience from the
real-world software environments. Among the researches screened
in [45], most of the researches published in SPLiT Workshops
were not selected because they only provide initial ideas rather
than solutions with evidence. The following are the approaches
selected for this survey:

y Bertolino et al. [20] – Scenario-based specification and testing
of requirements.

y Cohen et al. [17, 18, 26] – Combinatorial interaction testing by
considering constraints among features (Lamancha et al. [39]
is an approach of the same type).

y Feng et al. [15] – Process-based unit testing.
y Ganesan et al. [16] – Architecture-based unit testing.
y Kakarontzas et al. [13] – Test-driven development.
y Lamancha et al. [32] – Model-driven test generation.
y Mallett et al. [23] – System testing using model-based and

variant-management concepts.
y Nebut et al. [21] – System testing using functional variation

points at requirements level.
y Neto et al. [11] – Use of regression testing in SPL.
y Olimpiew et al. [35, 36] – Model-based functional test design.
y Reis et al. [19, 31] – Interaction-based integration testing.
y Reuys and Kamsties et al. [3, 14, 22, 27, 30] – Scenario-based test

case generation for domain and application system/integration
testing.

y Stricker et al. [37] – Data flow based test generation.
y Tevalinna et al. [4, 28] – Framework and framelet-based

application testing.
y Uzuncaova et al. [25] – Incremental testing for the possible

configuration of a product line.

3. THE STATUS OF SPL TESTING
RESEARCH
This section describes the results of comparing and analyzing the
selected approaches based on the survey framework.

3.1 Test case creation
Existing surveys by O. Edwin [1] and Lamancha et al. [2] deal
with the test case creation approaches. And Neto et al. [34]
analyzes test case creation from regression testing and reusability.
But those surveys do not differentiate the contributions of the test
creation approaches in the surveyed references. Thus, this paper
analyzes differences among test case creation methods presented
in the literature based on the observation O1 and the assumption
A1. We exclude Ganesan et al. [16] and Tevanlinna et al. [28]
from analysis because they respectively focus solely on test

execution and on SPL testing tool capability. Feng et al. [15] is
also excluded because it starts from the assumption that there is a
unit test case repository which includes reusable unit test cases
defined at different abstraction levels.

Approaches to test case creation that use domain artifacts (O1-1)
have been proposed in [18, 20, 23, 26]. Combinatorial approaches
based on feature models, which are major domain artifacts of
SPLE, are relevant to this classification [8]. The pair-wise
combination method, which greatly reduces the number of
combinations necessary for testing, has been presented in [17, 18,
26, 39, 40]. However, this method also has a disadvantage in that it
considers interactions that do not exist between variabilities with
the result that unnecessary test cases can be generated. The other
approaches create generic test cases from domain artifacts that
include variation points [20, 23]. These test cases contain a
parameter for each variation point that is encountered in the
scenario. These approaches define specific notations for modeling
requirements such as PLUCs of the PLUTO approach [20] and
generic requirements specifications [23], from which test cases can
be created. They embed test data in the form of parameter values.
However, the category partition method used in PLUCs does not
consider the testing order because it just creates test cases through
the combination of chosen categories.

Another possible classification of test case creation approaches is
one that uses domain test models that include variability [19, 22,
32, 37]. These studies use an extended activity diagram [19, 22] or
sequence diagram [32] developed from domain requirements
artifacts as domain test models. However, the difficulty that arises
because use case dependency is not considered has been observed
in [24]. It is also difficult to assure that test models created from
domain artifacts by a test engineer are consistent with domain
requirements. Moreover, though these approaches should maintain
a large number of test models for deriving test cases as mentioned
in [8], they do not devise any solutions for this problem. Because
the test cases of the approaches include variability, their reuse is
complicated due to their management and binding problems. To
resolve this, Siemens [27], who adopts the ScenTED approach [14,
19, 22], saves test fragments for all activities to a library before
assembling them to automatically generate a test scenario in
accordance with the chosen activity. ScenTED-DF (Data Flow)
[37] extends ScenTED and considers data dependency together
with control flows. However, this approach has high complexity
and requires additional efforts for adding data flow attributes to
domain test models.

The last classification of test case creation approach is one that
uses application artifacts or application test models. An
incremental method proposed by Uzuncaova et al. [25] and
Kakarontzas et al. [13] creates new test cases based on the
differences between the existing products/ components and their
test cases. These approaches refine test cases by computing
differences reflected in specifications due to the added features
after test case generation for the base product (a desired set of
features). Regression testing methods have been recommended for
these approaches [10, 11] to reduce retesting. There is an approach
that uses SPL architecture and code for regression testing in
accordance with SPL evolution [11]. It considers critical
variability with common parts with high priorities. Application
testing modifies or re-generates test cases by analyzing the
differences of graphs that are generated for catching code
behaviors before and after the modification. However, it ignores
that the initiative of SPL architecture evolution is on domain
engineering not on application engineering. Nebut et al. [21]

34

presents an approach that creates test scenarios including test
oracles from domain use cases, but it does not reach to test case
creation and its reuse. Table 1 describes the contributions made by
the approaches by the classification of their references.

Table 1. Contributions with respect to the reference of test case creation

References Contributions
Domain
artifacts
(O1-1)

y Defining SPL-specific notations for a
reference such as Tabular forms or Product
line use case (Bertolino et al., Mallett et al.)

y Providing algorithm for constructing valid
combination of features (Cohen et al.)

Domain test
models (O1-2)

y Deriving test models by extension of existing
models for accepting variability (Lamancha
et al., Reis et al., Reuys and Kamsties et al.,
Olimpiew et al.)

y Creating annotated data flow test models
(Stricker et al.)

Application
artifacts (A1)

y Creating generic or specific test scenarios
including test oracles (Nebut et al.)

y Using differences between applications
(Neto et al., Uzuncaova et al.)

y Using differences between components
according to the component evolution for
introducing variability (Kakarontzas et al.)

Table 2. Contributions with respect to test case creation for variability

Test case creation
for variability Contributions

Variability-
included test cases
(O3-1)

y Abstracting variabilities for enhancing
reusability (Bertolino et al., Feng et al.)

y Representing domain test cases with
variation points (Mallett et al., Lamancha
et al., Reuys and Kamsties et al.)

y Considering nonfunctional requirements
(Feng et al.)

y Test inputs in the form of possible
parameter values (Bertolino et al., Mallett
et al.)

Separate test cases
for variants (O3-2)

y Reducing test cases related to variability
(Cohen et al, Reis et al.)

y Analyzing data dependency with variants
(Stricker et al.)

y Automatic test cases creation including
test oracle (Nebut et al.)

y Considering nonfunctional requirements
(Kakarontzas et al.)

Table 2 presents analysis results of the selected approaches on how
they address variability in their test cases (O3). The ‘Test case
creation for variability’ column in Table 2 is the summary results
of the presented solutions that the selected works provide. The first
group consists of the approaches that produce variability-included
test cases. Most approaches present test cases including variation
points. Among them Feng et al. [15] and Reis et al. [31] address
test case creation for nonfunctional requirements. Feng et al. [15]
proposes creation of hierarchical test cases for the specific

nonfunctional requirements. ScenTED-PT proposed in [31] is, an
extension of ScenTED to map the variability in the performance
requirements to test cases that preserve variability. And there are
researches that deal with the verification of nonfunctional aspects
[42, 43, 44]. Model-based integration test case scenarios (ITCS)
[19] is an approach to reducing test efforts in domain engineering
by abstracting variability that does not interact. The focus of ITCS
is on the optimization of interactions between integrated
components and it does not present concrete test cases. The
variability and its relevant parts are considered as a placeholder
that is replaced by a variant later. As for test data (O2), only
Lamancha et al. [32] mentions test data with test cases, but it does
not present any mechanism to inform the relation of test data with
products.

The second group consists of the approaches that produce separate
test cases for variants. Most of the system testing approaches
create separate test cases for each possible variant by considering
all possible combinations of variabilities [17, 18] or all
combinations of member product relevant variabilities [20, 21, 32].
There is an approach that reuses the test cases derived from the
different products [25]. Neto et al. [4] is excluded from analysis of
test case creation for variability because it deals with regression
test selection technique for SPL. There is an approach to reuse test
cases of the different products [25]. However, no approaches in
this class consider test data creation.

3.2 Test case selection
Existing surveys did not address the test case selection perspective.
They focused on whether test cases realize reuse opportunity, but
overlooked test case selection that considers reusability together
with effectiveness. Accordingly, this paper analyzes SPL testing
approaches from the test case selection perspective for realizing
effective reuse, rather than just reuse of test cases.

As discussed in O4 and A2, test case selection can be conducted in
application testing (D-E in Figure 2) or for reducing retests. For
reusing domain test cases, a proper selection mechanism should be
provided. After test case creation, test case selection can also be
done with respect to test cases and test data. Among the selected
approaches Neto et al. [15] and Striker et al. [37] deal with test
case selection. Neto et al. [15] selects test cases through a graph
comparison, but the selection is in regression testing in accordance
with the SPL evolution. In contrast, Stricker et al. [37] provides a
concrete test case selection method and considers data-flow with
control flow to avoid omission of necessary testing in an
application. Feng et al. [15] mentions test case selection from a
unit test case repository but it does not provide an explicit
mechanism for test case selection. Ensan et al. [44] proposes test
case prioritization methods for selection focusing on prioritization
of features in domain engineering. So it does not address test case
selection for reducing redundant testing in application testing. As
for test data, Lamancha et al. [32] provides a DataSelector for
selecting test data from a test data pool. Mallett et al. [23] and
Bertolino et al. [20] deal with test data selection by using
parameterization, but they do not address it in a systematic way.

Therefore, a test case selection approach that includes test data
selection is necessary for describing explicitly which domain test
cases and variants are related to a specific product. For resolving
the issue of reducing redundant testing by test case selection test
case creation approaches must give careful consideration to
increasing the reusability of test cases and minimizing redundant
testing.

35

3.3 Test execution for absent variants
In the middle of domain engineering, components are loosely
coupled with each other and there may be no executable products
yet. Test execution must be conducted for the parts that include
such variants. As mentioned in O5, the first group consists of the
approaches that perform additional implementation for executing
test cases for the non-executable parts, including absent variants.
The Core Flight Software (CFS) product line [16] adapts the
approach of additional implementation, adding test code for testing
absent variants. It implements a mock or stub for the undeveloped
modules (i.e. modules relevant to absent variants) for executing
unit testing for the common modules. A mock or stub is replaced
by a real one after the module is implemented. CFS performs
integration testing incrementally by implementing a mock module
when a module being tested includes variability or has an absent
variant. The fRamework Integration and Testing Application
(RITA) [28] also supports test execution for variability through a
virtual binding that involves the use of drivers and stubs.

The second group consists of the approaches that delay test
execution until binding. Feng et al. [15] adopts the approach of
delaying test execution, testing a component after generating a
executable test case that is specific to a AOP platform. While the
method in the study does not explicitly refer to test execution for
absent variants, we can guess that test execution is delayed until
the variants are available. In the case of integration testing it
basically executes only the test cases for common interactions and
test cases that contain few variable interactions with components
that are already realized are executed [7]. As a similar case an
incremental combination approach executes all test cases (test
cases for commonality and variability) that are created during
domain engineering after a product has been implemented, i.e.
they are executed at run time [17, 18]. The incremental test
generation approach [25] assumes that all products are built by a
combination of features. So the approach does not consider absent
variants separately. It executes system testing after all features of a
product have been combined. None of the integration testing
approaches [19, 31] and system testing approaches [3, 14, 20, 21,
22, 23, 27, 30, 32] in the literature mention test execution for
absent variants, but they consider that all test scenarios can be
executed after a product is fully integrated.

In the regression testing approach [11], tests with absent variants
are executed only for the critical variability. Table 3 describes the
results for test execution for absent variants. The approaches that
do not mention test execution are excluded from analysis.

Table 3. Contributions with respect to test execution for absent variants

Test execution Contributions
Adding test code for
absent variants (O5-
1)

y Providing experience based principles in
unit testing (Ganesan et al.)

y Visualizing bound relations for variation
points (Tevanlinna et al.)

Delaying until when
all variants are
available (O5-2)

y Incremental combination of available
variants (Cohen et al., Uzuncaova et al.)

y Narrowing down abstraction level from
functional to source code level to test
nonfunctional concerns (Feng et al.)

When adding test code, the test time can be long and the cost can
be high. However, when testing for an absent variant is delayed
until it is available, correction cost may be high because the faults

in a platform have an influence on all products within a product
line. Thus, it is necessary to optimize these approaches. Analysis
indicates that most approaches except for Neto et al. [11] focus on
how to test parts including absent variants or those related to
variability without considering the significance level of variability.
In the case of Neto et al. [11], possible cases of maintenance or
evolution are assumed and SPL regression testing approaches are
presented. Neto et al. [11] also offers analysis of the efficiency of
each approach, but it mainly deals with regression testing in
accordance with SPL evolution.

3.4 Variability binding in testing
As discussed in O6 in Section 2, variability binding has a
considerable influence on testability because binding can occur at
development time, at compiling time, at linking time, at loading
time, or at run time. This sub-section deals with test execution in
terms of binding decisions. In the case that binding occur at the
development time, unit and integration testing can be executed in
all application testing phases after implementation, even though all
variants are not bound, but system testing cannot [29]. Namely,
unit testing and integration testing are possible because we can
know a variant to be selected. Approaches that insert test code [16,
28] are relevant to this case. The combinatorial integration
approach [18] assumes all variation points are bound at runtime.
However, this is only a special case because bindings are possible
at all development phases.

There is a research [29] on how variability binding time affects
SPL testability, and Neto et al. [34] also points out the lack of
evidences on variability binding regarding strategy for handling
variability within test assets, effort reduction, and traceability.
From test execution aspect, most works consider bindings that
occur at development time or runtime. However, they do not
mention explicitly how to deal with variabilities that have different
binding times. Moreover, no works address the cases in which
binding occurs at compiling, linking, or loading time. Therefore,
researches considering these binding times that span from
development time through to run time are necessary.

3.5 Application-specific test
Application engineering is directly relevant to customer products
and often needs to deal with changes in customer needs. Domain
artifacts may not satisfy the specific product’s needs completely.
Thus, there are gaps between what is available and what is
required. Unsatisfied needs may be met by implementing
application-specific artifacts or by adapting domain artifacts to fill
the gaps. After application-specific artifacts are developed, they
must be tested with each application (A3 in Section 2).

There are few approaches that mention about application-specific
test. Regression testing [10, 11] approach, the Test Driven
Development (TDD) approach [13], and ScenTED approach [22]
deal with testing for application-specifically modified or added
requirements. Currently proposed regression testing approaches
simply apply regression testing used in the single system. The
TDD approach, ScenTED approach, and an approach using the
Alloy formula [25] generate application-specific test cases by
modifying the existing domain test cases or by adding new test
cases. However, they provide test case creation for application–
specific requirements, but they did not deal with how to reuse
domain test artifacts and how to avoid redundant testing with
domain testing.

36

3.6 SPL test tool support
Tool support in SPL testing is essential in reducing test efforts and
effective/efficient testing for multiple products. However,
variability included in test objects requires extensions of the
existing testing tools that have supported the single system testing.
Thus far, there are no dominant testing tools for product lines. As
for unit testing, the Generative Aspect-oriented Testing
framEwork (GATE) tool [15], a prototype tool, has been proposed
to generate test cases automatically from the unit test case
repository according to the process-based unit test plan (PUPT). In
the case of integration testing and system testing, there are tools
such as Kesit [25] that generate test cases for products by using
SAT-base analysis for the incremental test generation approaches
and a tool [26] for creating test cases for all possible products by
transforming SPL feature diagrams to Alloy specifications.
However, they were developed just for laboratory experiments.
Philips developed a tool for deriving system test cases from
activity diagrams [30], but this tool does not support
transformation from use case document to use case models so the
transformation should be performed manually beforehand. As for
the ScenTED-DTCD tool [22], in order to use the tool a test
engineer should manually create an activity diagram and test
scenarios for a product from use cases in advance. As evaluated in
the Siemens medical case [27], a shortcoming of the ScenTED
technique is the lack of integrated tool support. RITA was
introduced in [28], but it was not evaluated through industry
application and has a scalability problem.

3.7 Assessing the scalability problem
Perrouin et al. [26] demonstrates Binary Split and Incremental
Growth strategies by using AspectOPTIMA, a product that has 20
features, and then compares their efficiency. AspectOPTIMA is a
real-world feature model, but it is hard to consider it as having a
real scalability. The approach proposed by Cohen et al. [18]
provides an example where all bindings occur at runtime, so it is
only applicable to one special case of product line development.
The ScenTED approach was adapted or automated in the SIENET
COSMOS product line [27] of Siemens and Philips [30]. ScenTED
provides a tool and a technique that make it possible to
automatically generate domain test cases and application test cases
from a sequence diagram or an activity diagram. However, it is
hard to regard ScenTED as a scalable method because ScenTED
requires all the requirements of a large-scale system to be
described in sequence diagrams or activity diagrams, include
variability. There is a web browser case in Nokia [12] that is not
included in the selected approaches because it does not explain the
detailed testing approach in its description of the reuse of test
suites by applying the regression testing approach.

3.8 Assessing the evidences
We analyzed the maturity of SPL testing approaches in terms of
the evidence they provide. We classify the justification and
validation types by using the classification of empirical studies as
used in Zannier et al. [38]. Most approaches only provide an
example or lab experiment results. Except for the ScenTED
approach, which has been tailored and validated in several fields
[27, 30, 31], most approaches do not provide any reproducible
validation results. Table 4 describes the evidence level of each
approach.

Table 4. Summary with respect to the level of validation

Study type [35] Approaches
Controlled experiment Reis et al., Stricker et al.
Quasi experiment Cohen et al., Neto et al.
Case Study No selected literatures
Exploratory case study Reuys and Kamsties et al.

Example application

Bertolino et al., Feng et al., Kakarontzas
et al., Lamancha et al., Mallett et al.,
Nebut et al., Olimpiew et al., Tevanlinna
et al., Uzuncaova et al.

Experience report No selected literatures
Meta-analysis Ganesan et al.
Survey No selected literatures
Discussion No selected literatures

4. RESEARCH OPPORTUNITIES
The existing surveys [2, 34] have already pointed out that there are
very few researches on testing of non-functional aspects and test
levels other than system testing. To provide further insights this
paper derived observations and assumptions for the defined
perspectives in Section 2 and described contributions of the
selected approaches from Sections 3. Table 5 summarizes the
current status of the SPL testing research.

Table 5. Assessment of the overall status of SPL testing research

Perspectives Not Marginally Partially Fully

P1.Test case creation

P2.Test case selection
P3.Test execution for absent
variants

P4.Variability binding in testing
P5.Application-specific tests
P6.Tool support
P7.Scalability of the approach
P8.Evidences of the approach

Research opportunities implied by our survey of the SPL testing
research can be summarized as follows:

1. Comparison and analysis results from P1: (1) Construction of
test references should be more systematic. Most approaches
prepare manually test references that are the bases for deriving
test cases or deal only with test cases creation without test
references description or do not mention about them at all. And
compatibility problem of test references with existing
modeling notations should be solved; (2) Test coverage of
domain and application testing should be clearly defined. Most
approaches are described without distinguishing domain and
application testing activities. Thus, it is difficult to catch the
scope of domain and application testing; (3) A standard test
case specification template should be defined for both domain
testing and application testing. Details describe complete test
case context such as inputs, pre- and post- conditions, expected
results and variability specific details. Compared with the test

37

specification for a single system [41], existing SPL testing
approaches missed many elements of test case specification
such as inputs, expected results, and execution conditions.
Moreover, the forms of test cases as in Cohen et al., Reis et al.,
Kakarontzas et al., etc., are not clearly presented. Their
approaches do not derive concrete test cases; (4) Research on
systematic test data derivation is needed. Stricker et al. [37]
points out that the concrete test data derivation is a general
research topic, but test data derivation considering variability is
a SPL testing specific topic so it should be conducted.

2. Comparison and analysis results from P2: (1) Test case
selection criteria that reflect variability resolution decisions
and application-specific variability should be provided. For
avoiding redundant testing in application testing test case
selection criteria for choosing test cases to be executed should
be determined. No approaches except for Stricker et al. [37]
explicitly consider test case selection in application testing. (2)
Research on regression testing due to the different selections of
variants among applications is needed. In SPL testing,
regression testing approaches can be conducted to test a
member application that uses platforms already tested in
domain testing and whose selected variants are a little different
with those of already tested member application. There are
regression testing approaches for supporting incremental
integration of features or evolution of SPL architecture.
However, no approaches address them. (3) Trade-off analysis
should be done for test case selection or test-all alternatives in
application testing. As Neto et al. [15] pointed out, test case
selection can be justified when its effort is sufficiently less than
executing the entire test cases. Pohl et al. [7] provides overall
evaluation results for SPL test strategies, but its focus is not on
test case selection and its results are subjective. Thus,
researches on objective evaluation for test case selection
efforts in application testing are necessary.

3. Comparison and analysis results from P3: (1) Approaches
should support test code creation and their reuse. SPL testing,
especially unit and integration testing might require a large
amount of test codes for the absent variants. In SPL, test code
may be reusable and their production is not the only
responsibility of application testing. Because the behaviors of
variabilities are determined in domain engineering many parts
of test code should be generated in domain testing and most of
them should be reused in application testing. Thus, test
execution for absent variants should also be dealt from domain
testing with reuse perspective. (2) Glue code that connects
unmatched interfaces should be included in both domain and
application testing. In SPL glue code for accepting variability
is an important test item, but no approaches consider it.

4. Comparison and analysis results from P4: (1) Binding
mechanisms are an important factor to determine test
approaches, details thus are described in the test case creation,
selection, and execution approaches. Binding mechanisms that
provide the means to locate variants and to determine which
variants have to be bound [7] may have influence on testing
because such mechanisms determine the way of structuring
modules, coding, or execution. However, most approaches do
not consider this aspect for test case creation and execution. (2)
Binding times should be associated with the relevant domain
test assets. During domain engineering, when binding
mechanisms as well as binding time are defined, the domain
engineers together with test engineers are responsible for
associating binding time with domain test assets so as to let

application testing know the binding application times for the
test assets.

5. Comparison and analysis results from P5: (1) Research on
reusing or modifying test assets for application-specific testing
should be strengthened. To some extent, testing application-
specific parts is similar to the testing in single software
development [7]. However, it should not be considered in
isolation from domain testing (creation, selection and
execution) because commonalities and selected variability
should be integrated with application-specific requirements.
Thus, the domain or application test assets must be reused or
modified for testing application-specific requirements.
Regression testing in SPL should also be improved for that. (2)
More research on test generation for application-specific
nonfunctional aspects is needed. In the case that application-
specific nonfunctional requirements are newly added it is not
easy to decide wether we can reuse exisiting test cases or we
have to develop new test cases for them.

6. Comparison and analysis results from the maturity of the
selected approaches (from P6 through P8): (1) Approaches
should be applied more actively and validated thoroughly in a
reproducible form. Most of the existing approaches were
experimental researches that proposed ideas. There are few
validated researches except for the ScenTED approach. (2)
Scalability of approaches should be demonstrated. In the real
world product lines the number of variabilities might be huge,
but the existing approaches have been validated by using
product lines that have a small number of variabilities. (3)
More realistic case studies should be conducted. Most of the
reported case studies are exploratory ones or example
applications according to the classification of study types of
[38].

5. CONCLUSIONS
This paper defined a survey framework that consists of eight SPL-
specific testing perspectives and compared and analyzed the
contributions of selected works. It also suggested further research
opportunities that have been identified through the comparison and
analysis.

As the survey in this paper indicates, most of the original
researches on SPL testing focused on solving narrow research
challenges. Thus, they presented the problems at the detailed level
of techniques but could not provide them from the perspective of
the whole SPL testing process from initiation through completion.
By defining the SPL testing framework and analyzing the
contributions of the existing researches this paper suggested as
research opportunities those that are not covered in the existing
researches such as domain test reference, domain test specification,
test data derivation and selection in SPL testing, test selection in
application testing, test code reuse, glue code testing, binding
mechanism, and application-specific testing.

6. ACKNOWLEDGMENT
This research was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded
by the Ministry of Education, Science and Technology
(20110025946) and by the KAIST High Risk High Return Project
(HRHRP).

38

7. REFERENCES
[1] Edwin, O. 2007. Testing in Software Product Lines, Master

Dissertation. School of Engineering, Blekinge Institute
ofTechnology, Sweden.

[2] Lamancha, B. P. 2009. Software Product Line Testing - A
Systemtic Review. In Proceedings of the 7th International
Conference on Software Paradigm Trends (ICSOFT 2009),
23-30.

[3] Pohl, K. and Metzger, A. 2006. Software Product Line
Testing. Communications of the ACM, 49, 12 (December.
2006).

[4] Tevanlinna, A., Taina, J., and Kauppinen, R. 2004. Product
Family Testing – a Survey. ACM SIGSOFT Software
Engineering Notes, 29, 2, 12–17.

[5] Li, J.H., Li Q., and Li, J. 2008. The W-Model for Testing
Software Product Lines. In Proceedings of International
Symposium on Computer Science and Computaitonal
Technology, 690-693.

[6] Muccini, H. and van der Hoek, A. 2003. Towards Testing
Product Line Architectures. Electronic Notes in Theoretical
Computer Science 82, 6.

[7] Pohl, K., Böckle, G., and van der Linden, F. 2005. Software
Product Line Engineering: Foundations, Principles, and
Techniques, Springer, Chaps. 8, 11, and. 18.

[8] McGregor, J. D. 2001. Testing a Software Product Line.
CMU/SEI-2001-TR-022.

[9] McGregor, J. D. 2002. Building Reusable Test Assets for a
Product Line. In Proceedings of 7th International Conference
on Software Reuse (ICSR), LNCS 2319, 345-346.

[10] Engström, E. 2010. Regression Test Selection and Product
Line SystemTesting. In Proceedings of the 3rd International
Conference on Software Testing, Verification and Validation
(ICST), 512-515.

[11] Neto, P., Macado, I., Cavalcanti, Y., Almeida, E., Garcia, V.,
and Meira, S. 2010. A Regression Testing Approach for
Software Product Lines Architectures. In Proceedings of 4th
Brazilian Symposium on Software Components, Architectures
and Reuse, 41-50.

[12] Jaaksi, A. 2002. Developing Mobile Browsers in a Product
line. IEEE Software, July/August, 73-80.

[13] Kakarontzas, G., Stamelos, I., and Katsaros, P. 2008. Product
Line Variability with Elastic Components and Test-Driven
Development. In Proceedings of International Conference on
Computational Intelligence for Modelling, Contro and
Automation (CIMCA).

[14] Kamsties, E., Pohl, K., Reis, S., and Reuys, A. 2004. Testing
Variabilities in Use Case Models. In Proceedings of 5th
International Workshop on Software Product-Family
Engineering (PFE 2003), LNCS 3014, 6-18.

[15] Feng, Y., Liu, X., and Kerridge, J. 2007. A Product Line
Based Aspect-Oriented Generative Unit Testing Approach to
Building Quality Components. In Proceedings of 31st
Annual International Computer Software and Applications
Conference (COMPSAC 2007), 24-27.

[16] Ganesan, D., Lindvall, M., McComas, David, D.,
Bartholomew, M., Slegel, S., and Medina, B. 2010.
Architecture-based Unit Testing of the Flight software
Product Line. In Proceedings of the 14th International
Software Product Line Conference (SPLC2010).

[17] Cohen, M. B., Dwyer, M. B., and Shi, J. 2006. Coverage and
Adequacy in Software Product Line Testing. In Proceedings
of the Role of Software Architecture for Testing and Analysis
(ROSATEA).

[18] Cohen, M. B., Dwyer, M. B., and Shi, J. 2008. Constructing
Interaction Test Suites for Highly-Configurable Systems in

thePresence of Constraints: A Greedy Approach. IEEE
Transactions On Software Engineering, 34, 5,
(September/October, 2008), 633-650.

[19] Reis, S., Metzger, A., and Pohl, K. 2007. Integration Testing
in Software Product Line Engineering: A Model-Based
Technique. In Proceedings of the 10th International
Conference on Fundamental Approaches to Software
Engineering (FASE 2007), LNCS 4422 , 321-335.

[20] Bertolino, A., Fantechi, A., Gnesi, S., and Lami, G. 2006.
Product Line Use Cases: Scenario-Based Specification and
Testing of Requirements. Chap. 11 of Software Product Lines:
Research Issues in Engineering and Management, (Eds.) T.
Käkölä and J. C. Duenas, Springer.

[21] Nebut, C., Le Traon, T., and Jézéquel, J.-M. 2006. System
Testing of Product Lines: From Requirements to Test Cases.
Software Product Lines: Research Issues in Engineering and
Management, (Eds.) T. Käkölä et al., Chap. 12, Springer.

[22] Reuys, A., Reis, S., Kamsties, E., and Pohl, K. 2006. The
ScenTED Method for Testing of Software Product Lines.
Software Product Lines: Research Issues in Engineering and
Management, (Eds.) T. Käkölä et al., Chap. 13, Springer.

[23] Robinson-Mallett, Grochtmann, C., M., Wegener, J.,
Kohnlein, J., and Kuhn, S. 2010. Modelling Requirements to
Support Testing of Product Lines. In Proceedings of the 3rd
International Conference on Software Testing, Verification
and Validation(ICST) Workshop.

[24] Mohamed Ali, M. and Ramadan, M. 2010. An Approach for
Requirements BasedSoftware Product Line Testing. In
Proceeding of the 7th International Conference on Infomatics
and Systems (INFOS).

[25] Uzuncaova, E., Khurshid, S., and Batory, D. 2010.
Incremental Test Generation for Software Product Lines.
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
36, 3, 309-322.

[26] Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., and le Traon, Y.
2011. Pairwise Testing for Software Product Lines-A
Comparison of Two Approaches. Software Quality Journal,
Springer, DOI 10.1007/s11219-011-9160-9.

[27] Reuys, A., Pohl, K., Weingartner, J. 2007. Siemens Medical
Solutions. Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering, F. van der
Linden, K. Schmid, E. Rommes, Springer.

[28] Tevanlinna, A. 2004. Product Family Testing with RITA. In
Proceedings of the 11th Nordic Workshop on Programming and
Software Development Tools and Techniques (NWPER'2004),
251-265.

[29] Jaring, M., Krikhaar R.L., and Bosch, J. 2008. Modeling
Variability and Testability Interaction in Software Product
Line Engineering. In Proceedings of the 7th International
Conference on Composition-Based Software Systems, 120-
129.

[30] “Need Fulfillment Qualities”, http://www.esi.es/Families/
docum/results/Need Fulfillment Qualities.pdf, 2006.

[31] Reis, S., Metzger, A., and Pohl, K. 2006. A Reuse Technique
for Performance Testing of Software Product Lines. In
Proccedings of International Workshop on Software Product
Line Testing(SPLiT).

[32] Lamancha, B.P., Usaola, M.P., and de Guzmán, I.G.R. 2009.
Model-Driven Testing in Software Product Lines. In
Proceeding of the 25th IEEE International Conference on
Software Maintenance(ICSM2009).

[33] Engström, E. 2010. Exlopring Regression Testing and
Software Product Line Testing – Researh and State of
Practice. Licentiate Thesis, Department of Computer Science,
Lund Univ., 11.

39

[34] Neto, P., Macado, I., MacGregor, J.D., Almeida, E., and
Meira, S. 2011. A Systematic Mapping Study of Software
Product Line Testing. Information Software Technology,
doi:10.1016/j.infsof.2010.12.003.

[35] Olimpiew, E. and Gomaa, H. 2005. Model-based Testing for
Applications Derived from Software Product Lines. In
Proceedings of the Workshop on Advances in Model-based
Testing.

[36] Olimpiew, E. and Gomaa, H. 2009. Reusable Model-Based
Testing. In Proceedings of 11the International Conference on
Software Reuse(ICSR 2009), LNCS 5791, 76 85.

[37] Stricker, V., Metzger, A., and Pohl, K. 2010. Avoiding
Redundant Testing in Application Engineering. In
Proceedings of Software Product Ling Conference (Software
Product Lines: Going Beyond, SPLC2010), LNCS 6287, 226-
240.

[38] Zannier, C., Melnik, G., Maurer, F. 2006. On the success of
empirical studies. In Proceedings of the International
Conference on Software Engineering(ICSE2006), 341-350.

[39] Lamancha, B.P. and Usaola, M.P. 2010. Testing Product
Generation in Software Product Lines using Pairwise for
Features Coverage. In Proceedings of the 22nd International
Conference on Testing Software and Systems, 111-125.

[40] Hervieu, A., Baudry, B., and Gotlieb, A., “PACOGEN:
Automatic Generation of Pairwise Test Configurations from
Feature Models”, In Proceedings of 22nd IEEE International
Symposium on Software Reliability Engineering, pp.120-129,
2011.

[41] ISO/IEC 29119: Software and Systems Engineering –
Software Testing – Part 3: Test Documenation. Draft DIS,
2012.

[42] Ghezzi, C. and Sharifloo, A.M. 2011. Verifying Non-
Functional Properties of Software Product Lines: Towards
and Efficient Approach Using Parametric Model Checking. In
Proceedings of Software Product Ling
Conference(SPLC2011), 170-175.

[43] Sinha, S., Dasch, T., and Ruf, R. 2011. Governance and Cost
Reduction through Multi-tier Preventive Performance Tests in
a Large-scale Product Line Development. In Proceedings of
Software Product Ling Conference(SPLC2011), 295-302.

[44] Ensan, A., Bagheri, E., Asadi, M., Gasevic, D., and Biletskiy,
Y. 2011. Goal-Oriented Test Case Selection and Prioritization
for Product Line Feature Models. In Proceedings of 8th
International Conference on Information Technology: New
Generations, 291-298.

[45] Engström, E. and Runeson, P.. 2011. Software Product Line
Testing - A Systematic Mapping Study. Information and
Software Technology, 53, 1, 2-13.

[46] Dueñas, J.C., Mellado, J., Cerón, R., Arciniegas, J.L., Ruiz,
J.L., Capilla, R. 2004. Model Driven Testing in Product
Family Context. In Proceedings of the 1st European
Workshop on Model Driven Architecture with Emphasis on
Industrial Application, 91-96.

[47] Weingärtner, J. 2002. Product Family Engineering and
Testing in the Medical Domain—Validation Aspects, In
Proceedings of Product Family Engineering(PFE2001),
LNCS 2290, 383-387.

[48] Da Mota Silveira Neto, P. A., Runeson, P., do Carmo
Machado, I., de Almeida, E. S., de Lemos Meira, and S. R.,
Engstrom E. 2011. Testing Software Product Lines. IEEE
Software, 28, 5, 16-20.

40

