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Abstract

The report will show how process-oriented discrete event simulation can be performed

in the programming language Erlang. A small introduction to simulation and Erlang

is given. The model used for discrete event simulation in Erlang and mechanisms for

interaction in-between simulation processes are described. The author also illustrates

how an extension to distributed simulation can be made. Descriptive examples and

larger applications are presented. In the last passage of the report function calls for

the simulator are given.
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1 Introduction

This project was made as a Master's Thesis in Computer Science. The project took

place at Ellemtel in �Alvsj�o in Sweden. The supervisor during the project was Robert

Virding.

Erlang

Erlang is a declarative language for programming concurrent systems which was de-

veloped by Joe Armstrong, Robert Virding, and Mike Williams, at the Ericsson and

Ellemtel Computer Science Laboratories.

Assignment

The assignment was:

� to examine the possibility to make discrete event simulation in Erlang.

� to develop and implement a model for simulation suited for Erlang.

� to show that the developed model can be used in one (or several) applications.

� to examine the possibility to create a distributed simulation model.

I think that all these task have been accomplished. The sections in the report will

follow the order of the tasks.

Notice that this document is intended both to be a master theses report and a

user manual. Therefore large program examples (for the user) and deep simulation

semantics (for the examiner) are both given in the report.

Background

Discrete event simulation has mostly been implemented on top of object oriented lan-

guages. By building the a discrete event package in Erlang, a language with a process-

based model of concurrency, it will be easy both to parallelize and distribute the sim-

ulation. When the package is written completely in Erlang it will be possible to run

the simulation on all platforms where Erlang is ported. The idea of using Erlang in

discrete event simulation can be traced back to Robert Virding and Mike Williams.

Outline

The report is divided into 20 chapters:

1. Introduction, this chapter, gives a short introduction of the assignment.

2. What is Erlang? gives the reader a short introduction to Erlang.

3. Simulation, an introduction to the ideas and concepts of simulation.
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4. Discrete Event Simulation models, discuss existing parallel and sequential sim-

ulation implementations.

5. Discrete event simulation in Erlang, explains how simulation can be performed

in Erlang.

6. The eventhandler, describes how the process that controls the simulation is con-

structed.

7. To steer the simulation, gives a description on how the simulation can be con-

trolled before and during run time.

8. Processes, describes how the simulation state is changed by the simulation pro-

cesses.

9. Resources, presents special processes used to collect data and synchronize the sim-

ulated processes.

10. Probability distributions, shows how di�erent probability distributions can be

generated.

11. A radio tra�c simulation application, describes the �rst large simulation ap-

plication I made.

12. A mining simulation application, describes the second large simulation appli-

cation I made.

13. Distributed simulation, a description of how the simulation model can be dis-

tributed.

14. Erlang as simulation glue, explains how Erlang can be used to parallelize and

distribute other simulation systems.

15. AppendixA, simulator and process commands.

16. AppendixB, resource commands.

17. AppendixC, probability distributions commands.

18. AppendixD, distributed simulation commands.

19. AppendixE, explanation of �gures.

Acknowledgments

I would like give acknowledgement to Robert Virding and the rest of the personnel at

the Ellemtel Computer Science Laboratory, it has been real fun working with you. The

personnel at ERA-t and �Angpannef�oreningen gave me big support and inspiration with

their simulation applications. I will also give Graham Birtwistle acknowledgement for

all the simulation papers that he sent to me, they became a great inuence.
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2 What is Erlang?

This section should give the reader enough knowledge in the programming language

Erlang to let him understand the code in this report. If the reader already is familiar

with Erlang he can skip this section. For deeper studies in Erlang, the reader is referred

to the book 'Concurrent Programming in ERLANG' [Armstrong, Virding, Williams -

93].

2.1 Erlang

Erlang is a programming language which was designed for programming concurrent,

real-time, distributed fault-tolerant systems. The Erlang programming language has

been developed at Ericsson and Ellemtel Computer Science Laboratories. Development

started in the early eighties with experiments of programming telecom applications

using di�erent languages. The experiments showed that no existing language had both

these following features:

� being a high level declarative language

� having primitives for concurrency and error recovery

Therefore, Erlang, a new language with these features, was developed. In the begin-

ning of the nineties the �rst implementation of Erlang was released. Today, Erlang is

available for most operating systems and platforms, and is developed, maintained and

marketed by Erlang Systems Division.

Ada, Chill, Modula...

Realtime languages

Lisp, Prolog, ML...

Declarative languages

ERLANG

High-level languages

Fortran, Pascal, C...

Assembler level

languages

Figure 2.1 The origin of Erlang

Erlang is a functional, concurrent language designed for implementing reliable real-time

systems. It is a small but powerful language which a person with some knowledge of

programming can learn in a few days.
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2.2 Modules, Functions and Clauses

An Erlang program is divided into modules. A module consists of one or more functions

which, in turn, consists of clauses. The functions are hidden inside the modules, except

for the exported functions which can be called from the outside.

-module(mathlib).

-export([factorial/1]).

factorial(0) ->

1;

factorial(N) ->

N * factorial(N-1).

The module mathlib above consists of one function, factorial/1, which means the

function has an arity (number of arguments) of 1. Factorial consists of two clauses

separated by a semicolon and ended by a full stop. The function factorial is exported

and can be called from outside the module. Functions that not are exported are local

and can only be called from inside the module.

An external call to factorial/1 may have the following syntax:

mathlib:factorial(3).

This call would result in the answer 6.

It is also possible to import functions so that they can be used as if they were local

functions. This is done by using import.

2.3 Data Types

Erlang provides the following data types:

� Constant data types. These are data types which cannot be split into more

primitive subtypes. These are:

1. Numbers: 125, -2.5, 7.8e2

2. Atoms: abc, "kossan mu"

� Compound data types. These are used to group together other data types. These

are:

1. Tuples: {},{5.3, 7, abc, -5}. Tuples are used for storing �xed number

of items and are similar to records or structures in conventional programming

languages.

2. Lists: [], [5.3, 7, abc, -5]. Lists are used for storing variable number of

items. Components of list and tuples can themselves be any Erlang data item -

arbritary complex structures can be created.
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2.4 Pattern Matching

The value of an Erlang data type can be stored in a variable. Variables always starts

with an upper case letter. A variable is assigned a value with the = operator.

Pattern matching is used for assigning values to variables and for controlling the

ow of a program.

> X = 1.

1

> Y= {a, b, c}.

{a, b, c}

> Z = [X, Y, foo].

[1, {a, b, c}, foo]

Erlang is a single assignment language. This means that once a variable have been

assigned a value, the value can never be changed.

> X = 1.

1

> X = 2.

error.

Pattern matching is used to match patterns with terms. If the term have the same

shape then the match will succeed and any variable occurring in the pattern will be

bound to the data structure. The match primitive can be used to unpack items from

complex structures.

> X = {4711, foobar}.

{4711, foobar}

> {A, B} = X.

{4711, foobar}

> A.

4711

> B.

foobar

Constructions for choosing between di�erent alternatives exists, for example the if and

case expressions. The syntax for the case expression is showed below.

case Expr of

Pat1 -> Seq1;

Pat2 -> Seq2;

...

PatN -> SeqN

end

In the case expression the Expr is �rst evaluated and then the pattern which �ts the

evaluation is selected and the corresponding sequence is run. If no match occurs an

error will be reported.

The pattern matching mechanisms are also used when a function is called and one of its

clauses shall be chosen. The �rst clause which matches the speci�c pattern will always

5



be selected and the corresponding body will be executed. If no match occurs an error

will be reported.

In the example function below factorial(0) will only be matched when the ar-

gument is 0, otherwise the second clause will be chosen. When a match occurs the

expression on the right-hand-side of the -> will be evaluated.

-module(mathlib).

-export([factorial/1]).

factorial(0) ->

1;

factorial(N) ->

N * factorial(N-1).

2.5 Concurrency

Erlang is a concurrent programming language. This means that parallel activities

(processes) can be programmed directly in Erlang and that the parallelism is provided

by Erlang and not the host operating system.

In order to control a set of concurrent activities Erlang has some primitives for

multiprocessing.

� spawn starts a parallel computation (called a process).

� send sends a message to a process.

� receive receives a message from a process.

spawn/3 starts execution of a parallel process and returns an process identi�er (pid)

which may be used to send messages to and receive messages from the process. Spawn

has the syntax:

Pid = spawn(Module, Function, [Arg1, Arg2, ...])

The syntax for sending a message to a process is:

Pid ! Message

Pid is an expression or constant which must evaluate to a process identi�er. Message

is the message which is to be sent to the process that corresponds to Pid. Message can

be any Erlang term.

The primitive receive is used to receive messages. Receive has the following syntax:

receive

Pattern1 -> Seq1;

Pattern2 -> Seq2;

...

PatternN -> SeqN

end

6



A receive expression will suspend the process until a message that will match any of

the patterns has arrived. If a match occurs the code after the -> is evaluated.

Message passing between processes is asynchronous. Send can be said to send

messages to the mailbox of a process and receive tries to remove a message from the

mailbox. The message in a process mailbox are matched in FIFO order, meaning that

receive is selective. If a message does not match it is left in the mailbox until a match

for that message is found. Instead the next message in the mailbox is checked.

The after Time expression can be used in receive expressions to time-out waiting

processes.

2.6 Error Handling

Erlang has been designed with mechanisms to handle errors and to help the programmer

write robust systems. These mechanisms are:

� Monitoring the evaluation of an expression.

� Monitoring the behaviour of other processes.

� Trapping calls to unde�ned functions.

Monitoring the evaluation of an expression is done by the primitive catch which will

"catch" a failure of the expression. The normal e�ect of a failure in the evaluation

of an expression is to cause the process evaluating the expression to terminate abnor-

mally. This default behaviour can be changed using catch. This is done by writing

catch Expression.

If failure does not occur in the evaluation of the expression catch Expression the

value of the expression will be returned.

If failure occur the tuple {'EXIT', Reason} will be returned. Reason will be an

atom indicating what went wrong. By examine the Reason di�erent actions can be

made.

case catch Expression of

{'EXIT', Reason} -> Seq1;

Other -> Seq2

end

Monitoring the behaviour of other processes is done by linking processes together. This

is done by the functions link or spawn_link which results in that when a process ter-

minates, an exit signal will be sent to all processes that are linked to that process.

Exit signals for processes have the format {'EXIT', Pid, Reason} when trapped. If

Reason is normal it means that the process has �nished its execution, otherwise it

has terminated abnormally. The default behaviour is that a linked process dies if it

receives an abnormal exit. If the process instead "traps exits" it can take measures

against abnormally terminating processes.

Trapping evaluation of an unde�ned function is taken care of by an error handler

process. The error handler will search for the module and function elsewhere and if the

7



module not is found the process will terminate and an error message will be returned.

If the module is found it will be loaded into the system and the function will be called.

The error handler can be rewritten by the user.

2.7 External Communication

Erlang communicates with the outside world through ports. A port in Erlang is treated

as a process (i.e. we can send messages, link and get exit signals from it) with which

bit streams are sent and received. A port can be used for interaction with hardware,

window systems or programs in other languages.

2.8 Code Management

In Erlang it is possible to load new code at runtime. This dynamic loading of code

uses multiple versions, meaning that all calls to the changed module will be to the

new version while all processes running on the old version will continue to do so. The

old version can be removed when no processes run that version. Erlang also provides

functions for killing all processes that runs the old version.

Code management is very useful when working with large applications which cannot

be shut down for software updates, for example a telephone system.

2.9 Distribution

Erlang was designed from the beginning with concurrency and distribution in mind.

This leads to language constructs for distribution and concurrency which are seamlessly

integrated with the language.

Distribution in Erlang builds on the node concept. A node is an executing Erlang

system which has told its nodename and network address to a network server. The

node where a process executes is given with the node() call. Processes can be spawned

on remote nodes as on local nodes.

Pid = spawn(Node, Module, Function, [Arg1, Arg2, ...])

Processes can send messages and create links to processes on remote nodes. The sending

of a message to a process on a remote node is syntactically and semantically identical

to sending to a process on a local node.

It is also possible to register a process globally so that all processes on the nodes in

the network can access the process.

At the language level there is no concept of a connection between Erlang nodes.

The programmer does not need to be concerned with details of the setup of connections

between nodes. Whenever one node needs to communicate with another node the

system takes care of setting up a connection.

The coupling of nodes in Erlang is extremely loose. Nodes may come and go dy-

namically in a manner similar to processes. For deeper studies in Erlangs distributions

mechanisms the reader is referred to the article [Wikstr�om -93].
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3 Simulation

This chapter gives the reader a short introduction to general simulation and a more

detailed description of the simulation form called discrete event simulation.

3.1 Introduction

Simulation is the process of modeling a proposed or real dynamic system and observing

its behavior over time. A simulation study is often constructed in order to understand

the behavior of a system, or to evaluate the e�ects of various parameters or operat-

ing policies. The simulation can be made to predict and understand the behavior of

everything from a nuclear power station, a chemical reaction to a computer operating

system. Simulation can be classi�ed into three basic types [Pollacia -88]: continu-

ous time, discrete time and discrete event. I have myself added a fourth competitor,

analytic modeling.

Continuous time simulation

Continuous time simulations arise from models described by ordinary di�erential

or partial di�erential equations. The state of the system is, in contrast with

discrete simulation, continuously evolving.

Discrete time simulation

Discrete time simulations arise from models which can be in the form of di�erence

equations. The state of the system may change through a countable sequence of

events, each equally spaced in time.

Discrete event simulation

Discrete event simulation arise from models describing physical systems that

changes their state at variable intervals. The system evolves through a count-

able sequence of events, each occurring at some point in time. The intervals

between events are variable and the system can therefore not be solved with a

standard di�erence or di�erential equation. Several events can occur at the same

point (simultaneous events). The occurrence of events can also spawn or cancel

other events.

The discrete event simulation is the type of simulation I have focused on and the

one that is most suited for computer applications.

Analytic modeling

Another competitor is analytic modeling, which simply consists in providing a

mathematical model of the physical system under study, and solving the model

equations.

3.2 Discrete event simulation

Discrete event simulation is a widely used modeling technique for studying the dynamic

behavior of many real-world systems. Generally these systems are to complex to be
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modeled using analytic methods. Examples of discrete event systems include queuing

systems and most manufacturing methods.

As previously stated, a discrete event simulation models a system whose state may

change only at discrete points in time. The system is composed of objects normally

called entities that have certain properties called attributes. The system state is the

collection of attributes or state variables that represent the entities of the system. An

event is an instantaneous occurrence in time that may alter the state of the system.

An event initiates an activity, which is a length of time during which entities engage

in some operation. A process is a sequence of events that may encompass several ac-

tivities. Entities, attributes, events, activities, and the interrelationship between these

components are de�ned in the model of the system.

Arrival event Start service event End event service

Process

Service activity

Figure 3.1 Relation between Process, Event and Activity

Fundamental to every simulation study is a mechanism to model the passage of time.

Thus every model contains a state variable called the event time. Simulated time is ad-

vanced using two approaches: �xed-increment time advance (discrete time simulation),

or next-event time advance (discrete event simulation).

In my simulator package it is, as I will later show, both before and during the

simulation, possible to switch between discrete time and discrete event simulation.

In the �xed-incremented time advance method, the clock is always updated by the

same time increment. After each clock update, all events that were scheduled to occur

during this interval are identi�ed. These events are considered as if they had occurred

at the end of the interval. This method is useful for a system in which events only

occur at intervals of some �xed time.

The next-time advance is the more commonly used approach. Time is advanced

from the time of the current event to the time of the next scheduled event. The simula-

tion thus skip periods of inactivity. There is a calendar of events that contains the time

and type of all scheduled events, usually arranged in chronological order. The simula-

tion program must contain an executive routine for management of the clock and the

calendar, eg. a routine responsible for sequencing events and driving the simulation

forward.

It is the behavior and construction of this 'executive routine' that has been the real

problem when the simulation package was constructed.
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4 Discrete event simulation models

The �rst task in my assignment was to investigate the possibility of doing discrete event

simulation in Erlang and to develop a model which could be implemented in Erlang. I

investigated both techniques for sequential and parallel discrete event simulation before

making a decision.

4.1 Parallel discrete event simulation

The di�erent parallel and distributed algorithms for discrete event simulation that

were examined all builds on the elimination of the globally shared eventlist used in

sequential (uniprocessor) simulation. Some algorithm is required to ensure that no

event e is simulated until all events that a�ect e have been simulated. Such algorithms

are frequently classi�ed as either conservative or optimistic algorithms. [Cota, Sargent

-88], [Madisetti, Walrand, Messer -89]

4.1.1 Conservative algorithms

Conservative algorithms block the simulation of an event until it is veri�ed that the

event is safe. The simulated process is only allowed to update its internal clock when

all the relevant information is available.

A conservative approach to simulation in Erlang can be made using Erlangs message

primitives. If a process P1 simulates an event that inuences P2, P1 is said to be the

predecessor of P2 and P2 will be said to be a successor of P1. By calculating, in

advance, which processes that will be predecessors and successors of which processes a

dependence graph can be constructed. When, in Erlang, a process P wants to perform

an event e, it must �rst receive messages from all the processes that runs events that

are predecessors of the event e. When all messages have arrived the process P is safe

to proceed with event e. When the process P is �nished with event e it must inform

all his successors (using messages) that it is ready.

%% Conservative parallel simulation in Erlang.

process_loop([{Event, Action, Predecessors, Successors} | EventList]) ->

wait_for_messages(Predecessors),

do_some_action(Action),

send_message_ready(Event, Successors),

process_loop(EventList).

The big problem is how to construct the dependence graph. These algorithms may be

very complicated and time consuming. It may not always be possible to predict, in

advance, every action and interference a process may take.

4.1.2 Optimistic algorithms

Optimistic algorithms allow events to be simulated without verifying that they are safe,

by frequently save the states of the participating processes. When an event is simulated

incorrectly, the error is hopefully discovered and the process is restored to the state
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before the error occurred. The internal clock is \rolled back" and antimessages are sent

to all process that have been a�ected by the process.

An optimistic approach to simulation can be made using Erlangs message primi-

tives. Every process have an internal clock which is updated by itself. and a set of

variables that it is currently aware of. A timestamp is added to every message a process

sends which indicates the current time of the sending process. Every action a process

performs, the state of the variables at the moment and every message that is sent are

saved in a internal list indexed on the current timestamp. When a message arrives with

a timestamp smaller than the own internal time of the process, the process must roll

back to the state it was in before the time of the timestamp. All messages that have

been sent to other processes must be unsent with antimessages that rolls back the state

of those processes.

%% Optimistic parallel simulation in Erlang.

process_loop(Event, Action, Variables, Performed) ->

{VariableChanges, Rollback} = receive_messages(),

case Rollback of

false ->

ChangedVariables =

perform_changes(VariableChanges, Variables),

{NewEvent, NewAction, NewVariables, Messages} =

do_some_action(Action, ChangedVariables),

process_loop(NewEvent, NewAction, NewVariables,

[{Event, Action, Variables, Messages} | Performed]);

{true, OldTime} ->

{OldEvent, OldAction, OldVariables, OldPerformed} =

roll_back_and_unsend_messages(OldTime, Performed),

ChangedVariables =

perform_changes(VariableChanges, OldVariables),

process_loop(OldEvent, OldAction, ChangedVariables,

OldPerformed)

end.

Two big problems are present: 1. The list of performed actions and sent messages

have a tendency to grow very fast. A mechanism for guaranteeing when a state is safe

must be added. The mechanism would tell the processes when it is safe to remove

old actions and messages from the list. 2. The fraction of time spent on rolling back

instead of simulation forward may be very large, some algorithm for minimizing the

risks for rollback must be used.

4.2 Sequential discrete event simulation

The work I studied for sequential discrete event simulation was made in Simula and

called Demos. The name convention in my demo simulation package follows the names

in the Demos package. Most of the ideas found in Demos can also be found in my

package.
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4.2.1 Simula

Simula was designed in 1967, under the name Simula 67, by Ole-Johan Dahl and

Krysten Nyygrad from the University of Oslo and the Norwegian Computing Center.

The name reects continuity with a previous simulation language, Simula 1. This is

however somewhat misleading since Simula 67 is really a general-purpose language, of

which simulation is just one application. The name was shortened to Simula in 1986.

Simula is an object-oriented extension of Algol 60. Most correct Algol 60 programs

are also correct Simula programs. The basic control structures, loop, conditional, switch

and the basic data types (integer, real etc.) are like in the most imperative languages.

Simula support the class concept of object-oriented languages.

As Algol 60, Simula is a classical language with a notion of main program. An

executable program is a main program containing a number of program units (routines

or classes).

In Simula, entities of non-basic types denotes references to class instances. Classes

inheritance is supported (not multiple inheritance). Information hiding in classes is

o�ered with protected and hidden declarations. Program units such as classes may

be nested.

A simple form of parallelism in Simula is supported with the coroutine concept. It

makes it possible to halt the execution of an object procedure and start a procedure

on another object instead. The �rst procedure can later be restarted from were it was

halted. The coroutine concept is used to schedule events between processes that are

participating in a simulation. [Meyer -88].

4.2.2 Simulation in Simula

Simula also includes a set of primitives for discrete event simulation. This is made

by letting all objects that participates in the simulation inherit from a class called

simulation. The simulation class contains among many things the declaration of

a class process, which describes processes of the physical system. Each object that

inherits from process has the attributes of a process and the individual own de�ned

attributes. Each process can be in one of four states: 1. Active, or currently executing.

2. Suspended, or waiting to be resumed. 3. Idle, or not part of the system. 4.

Terminated.

Each object that inherits from process has access to a list of event notices, an

eventlist. An eventnotice is a pair fprocess, activation timeg, where the activation time

indicates when the process must be activated. The eventlist is sorted by increasing

activation time; the �rst process is active and all the others are suspended. Non-

terminated processes which are not in the eventlist are idle.

It is important to notice that a process in Simula not is the same thing as a process

in Erlang. In Erlang a processes is a parallel activity that can execute at the same time

as other processes. In Simula a process is an object with some special attributes.
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P1 P4 P2 P3

Figure 4.1 The eventlist in Simula

There is only one real process executing in a Simula program. The control is moved from

one process to another. The main operation on processes is active, which schedules a

process to become active at a certain time by inserting a suitable event notice for the

process into a eventlist. The new event notice will be inserted after any other event

already present in the list with the same activation time, unless the priority attribute

for the process is speci�ed.

The basic form of the call, to schedule a process in the eventlist, is activate

process delay. This will schedule the process to be activated at the current eventtime

+ delay. This is a technique to represent a the duration of a task that takes some

system time. For example the fact that a process carries out a 180-second task, is

represented with a activate self 180 call. To avoid having explicit self-references the

procedure call hold(time) has exactly the same e�ect as above. Procedure hold is

part of the class simulation and uses the coroutine concept. The e�ect of a hold call

may approximately be described as:

hold(Time) :-

-- insert a new event notice into the eventlist at the

position determined by its time.

-- get the first element in the eventlist and remove it.

-- activate the chosen process, advancing eventtime if necessary.

The thread can be said to go from the process that holds, to the eventlist, to the process

that is scheduled at the next event.

%% An example program in Simula of a worker that may be asked

%% to do either one of two tasks. Both tasks may take a variable

%% amount of time; the second task requires that the worker switch

%% on a machine m, which takes 300 seconds, and wait for the

%% machine to have done its job.

PROCESS class WORKER

begin

while true do

begin

``get next task type i and taskduration d''

if i = 1 then

hold(d)

else

begin

activate m delay 300

reactivate this WORKER after m;

hold(d)

end

end while

end WORKER
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4.2.3 Demos

Demos is a simulation package built on Simula. Demos extend the prede�ned class

simulation by a few basic standardized approaches for solutions to a wide range of

discrete event problems. The process concept is extended to something called entities.

Datacollecting devices and synchronization mechanisms are added and eventtracing

mechanisms for debugging is introduced. The mechanisms in Demos became a great

inuence when I constructed my own simulation package, demo. Much of the names

and functionality can be derived from Demos.

The largest problem I found of the Simula approach was that parallelism were

nonexistent. Only one logical process can be executing at the same time even though

many processes are scheduled at the same event. My solution was to take the best

pieces from the Demos package, adapt it to Erlang and extend it with parallelism.
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5 Discrete event simulation in Erlang

After investigating the di�erent possibilities to make discrete event simulation, I was

ready to choose a simulation model for Erlang.

5.1 Simulation model

The model used for discrete event simulation in Erlang is the same model normally

used in sequential languages but extended with parallelism. Instead of using simulated

processes, as in Simula, a process is represented with a real Erlang process. By using

Erlangs light-weight processes several processes can execute in parallel at the same

time.

The processes interacts and are scheduled by using Erlangs message passing mech-

anisms. Instead of having a global eventlist that all simulation processes have access

to, as in Simula, a special process is created whose only purpose is to schedule the

simulation processes. This scheduler process will be called the eventhandler in the fol-

lowing pages. By letting the eventhandler be responsible for creating and scheduling

processes that shall participate in the simulation it is now, by investigating the state of

the eventhandler process, possible to get a compact view of the whole simulation. The

state of the eventhandler process will therefore be called the state of the simulation.

Notice that in ordinary discrete event simulation it is possible to have several events

at the same time, but processes that are scheduled at the events will only be able to

run one at a time. In my package it is possible to merge all events at the same time

into a single event. Depending on if several processes can be running in parallel at

the same event we will said that the simulation is running in sequential (only one)

respective parallel (many) mode. Large time gains can be made by letting several

processes execute in parallel, for example: one process can execute while another is

waiting for user input. But the parallelism also introduces, as we shall see, some new

problems.

The major problem with the eventhandler process solution is that every state trans-

formation must be handled by the eventhandler. This will lead to a bottleneck when

all simulation processes will communicate with the eventhandler. I thought that this

was a problem but not a insurmountable one, for several reasons: 1. Message passing

in Erlang is very fast. 2. In a normal application it is not probable that all processes

want to talk to the eventhandler at the same time. 3. By distributing the simulation

the burden for the eventhandler can be reduced.

Two were other reasons for using a simulation concept like Demos: 1. The tools

for synchronization and data collection that exists in Demos are desirable in most

simulation applications. 2. This was what my supervisor Robert had in mind when he

gave me the task :).

5.2 Semantics of the simulation

In a simulation model based on process interaction the state of the simulation is made

up of the states of all the interacting processes. A process is a set of statements

describing the operations in which an entity will engage during its lifetime.
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All the processes p1; p2; :::; pN that a simulation system consists of can be grouped

together in a set called E. Each state transformation pi! pi0 that occurs at an event

in a process pi that is included in E will also result in a state transformation E ! E0.

When the state of the simulation may only change at discrete points in time, the

current eventtime Time of the simulation can be introduced as a parameter that a�ects

the state of the simulation. The simulation model can now be expressed by the 2-tuple:

fE; Timeg

where E is the set of simulation processes and Time is the current eventtime in the

simulation.

By using Time and the fact that each process will be 1. active or 2. suspended

and rescheduled at the eventtime when it next shall be activated, E can be divided in

two sets: Current and EvTree. The simulation model can now be expressed by the

4-tuple:

fE;Current; EvTree; T imeg

where Current is the set of processes that are indexed on the current eventtime Time,

(active) and EvTree is the set of process that not are indexed on the current eventtime

(not active).

Finally, a set of processes, R, which not are scheduled by the eventhandler but still

can change the state of the simulation, are introduced. R processes are called resources

and are useful tools for the interaction between simulation processes. Resources will be

deeper explained in chapter 9. The state of a simulation can now be represented by a

5-tuple:

fE;Current; EvTree;R; Timeg

Each new event causes the simulation to change from one state to another:

fE;Current; EvTree;R; Timeg! fE0; Current0; EvTree0; R0; T ime0
g

Each time Current becomes empty, i.e. all active processes have been rescheduled or

terminated, the processes that are scheduled at the next event in EvTree are activated.

If P is the set of processes in EvTree that are scheduled next at the time Time0, then

the state transformation is:

fE; []; EvTree; R; Timeg! fE; P;EvTree� P;R; T ime0
g

If EvTree gets empty there are no more processes to activate and the simulation is

complete.

When a process moves to Current it will be active and start executing. An exe-

cuting process can perform actions that may change the state of the simulation. An

executing process p can be:

suspended on a resource:

fE;Current; EvTree; R; T imeg! fE;Current� p; EvTree; R+ p; T imeg
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suspended on another process:

fE;Current; EvTree; R; T imeg! fE + p; Current� p; EvTree; R; Timeg

rescheduled in the EvTree at a new Event:

fE;Current; EvTree; R; T imeg! fE;Current� p; EvTree+ p; R; T imeg

creating a new process p':

fE;Current; EvTree; R; T imeg! fE + p0; Current+ p0; EvTree; R; T imeg

creating a new resource r':

fE;Current; EvTree; R; T imeg! fE;Current; EvTree; R+ r0; T imeg

terminated, the process is removed from the simulation:

fE;Current; EvTree; R; T imeg! fE � p; Current� p; EvTree; R; Timeg

When all processes have been removed from Current the eventhandler will update the

state to the next eventtime, i.e. start all over again.

The simulation model in the demo package is a little bit more complicated than this,

but the basic principles are the same.
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6 The eventhandler

The eventhandler is the process that is responsible for maintaining the state of the

simulation. Each process that participates in the simulation must be scheduled by

the eventhandler. The eventhandler schedules and communicates with processes via

messages. By demanding a special message from a process each time a process makes

an action that shall change the state of the simulation, the eventhandler can hold the

correct simulation state.

6.1 Representation

Are all

active processes

ready ?

Shall next event

be started?

yesno yes no

The active loop The resume loop

Receive message from 

active process

Receive message  

that controls the execution 

of the simulation

Figure 6.1 The eventhandler process

6.1.1 Two loops

The eventhandler process can be said to consist of two large loops, see �gure 6.1. Each

loop is a large receive statement where the eventhandler can receive di�erent messages

from processes. As the mechanism for receiving messages in Erlang is selective, (you

can choose which messages you want to receive), it is possible to separate between two

kind of messages that the eventhandler will receive and manage.

The two di�erent kind of messages are:

� Messages made by an executing simulation process that may change the state of

the simulation. The process tells the eventhandler about its state change and

the eventhandler sends, if necessary, a con�rmation message back to the process.
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These are calls that only can be sent and received when there are processes

executing, ie. during an event.

� Messages that do not have to be sent by a registered process and that may change

the way that the simulation shall proceeds in the following events. For example:

stopping the simulation, change granularity etc. These calls can only be received

between events, ie. when no process is executing.

By demanding that the eventhandler only can change the simulation when an event

is �nished it is easier to keep control of the simulation. For example: Imagine that

the simulation is running in parallel mode (several processes are active at the same

event). If the user resets the simulation mode to sequential (only one process active at

the same event) there is no way that the eventhandler can force the processes to stop

executing. The only solution is to wait until all active processes are ready and then

change the mode from parallel to sequential. The next event in the simulation will then

be executed in sequential mode.

6.2 Extended semantics

The eventhandlers internal state (an representation of the simulation state) can be

described by a 7-tuple:

fEvTree; R;E;Current; RealT ime; SList; Traceg

Every action that is made in the simulation will change the states of one or more items in

the tuple. TheEvTree; R;E; Current and RealT ime functionality are almost as simple

as speci�ed in chapter 5. The SList variable is an attributelist for the eventhandler

that speci�es certain functionality of the simulation, for example if the simulation shall

run in sequential or parallel mode. The variable Trace tells the eventhandler if tracing

shall be on or o�.

The eventhandler keeps the representation of each process by the process identi�er

(pid) of the process. The following sections will give a deeper description of the physical

representation of the internal state variables of the eventhandler.

6.2.1 EvTree, the set of events

EvTree is the structure where all suspended (not executing) processes are placed. The

eventhandler inserts processes indexed on the eventtime that they shall be activated

again. It shall both be easy to insert a process in the structure and to retrieve and ac-

tivate the processes with the lowest eventtime when the simulation shall be updated to

the next event. EvTree can be represented in two di�erent ways, as a tree and as a list.
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Figure 6.2 The EvTree as a List and as a Tree

EvTree as a Tree

EvTree, when represented as a tree, is a tree structure of all the scheduled processes,

ranked according to the time of their next scheduled event. An event in the tree is rep-

resented with a fEventT ime; PidListg tuple. The EventT ime is the time the event

shall be scheduled and PidList is a list of pids belonging to processes that shall be

activated at the event. The tree is a leftist priority tree, making insertion and deletion

of items in the tree O(log n), where n = number of items in the tree.

Two conditions holds for the tree:

1. If a nodes left subtree is empty ! the nodes right subtree is also empty.

2. All nodes in the left subtree < all nodes in the right subtree < the node.

Traversion of the tree is made: Left, Right, Node. All operations that are de�ned on the

lptree structure are found in the module lptree2. The operations could be insertion

and deletion of objects in the tree, returning of the �rst element in the tree, traversing

the tree and �nd a certain pid in the tree.

EvTree as a List

As list operations in Erlang are very fast it is more e�ective to use a list structure when
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the number of scheduled items are small. The list will be a list of fEventT ime; PidListg

tuples, sorted on EventTime. The PidList is the list of processes that shall be activated

at the event EventTime. Insertion of items are O(n) but normal deletion is O(1), where

n = number of items in the tree. All operations that are de�ned on the lptree structure

are found in the module lptree. By default the listversion of the lptree is used in the

simulation, but this can be changed by exchanging names of the module �les.

6.2.2 Current, the set of active processes

Current is the set processes that are currently executing.

Current is implemented as a list of pids belonging to the processes that are active.

By receiving calls from the active processes the state transformations of the simulation

processes can be registered by the eventhandler process. For example, if a process

suspends on a resource, suspends on another process or is rescheduled in EvTree the

process is removed from Current. If an active process terminates this is reported to

the eventhandler and the process is removed from Current and also from the whole

simulation.

When Current gets empty all, at the event activated, processes are suspended or

terminated. The eventhandler will then proceed in the resume loop. When all messages

in the resume loop has been treated the simulation will start all over again. The

processes that are scheduled at the next event in EvTree are removed from EvTree,

activated and inserted in the Current set.

6.2.3 R, the set of resources

R is the set of resource processes that the eventhandler is aware of. R is represented

as a list of pids. Resources are participating in the simulation but are not scheduled

by the eventhandler. A process that is executing can be suspended on a resource and

will then be removed from Current (and not inserted in EvTree). The eventhandler

will then register that the process is suspended on the resource and will not let anyone

activate the process except the resource it is suspended on. More information about

resources can be found in chapter 9.

6.2.4 E, the set of registered processes

E is the set of processes that are participating in the simulation (except resources). E

is represented as a list of pids. If a process suspends itself on another process this is

registered both on the process that it gets suspended on and on itself. A suspended

process is removed from Current.

6.2.5 SList, the set of simulation variables

SList is the set of variables that decides how the simulation shall proceed. Slist is

implemented as a list of fAttribute; V alueg tuples. Things like if the simulation shall

be stopped, when it shall be stopped, the granularity size and if the simulation shall

run in sequential or parallel mode are stored in SList.
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6.2.6 RealTime, the eventtime variable

RealT ime is the variable that holds the current eventtime of the simulation. Once the

eventhandler process updates to a new event the variable RealT ime is updated to the

time of that event. A better name for RealT ime would maybe have been \EventTime".

When an event has been updated it is impossible to decrease the RealT ime variable,

this is because it shall not be possible to travel back in time.

6.2.7 Trace, the tracing variable

Trace is the variable that is set to on if the eventhandler shall trace all actions that

is made on the state of the simulation. If Trace is o� no tracing shall be made. The

Trace variable could have been placed in the Slist but when it will be tested at every

state transformaton it will be quicker to let it be a single item. See section 7.6 for more

information about tracing.
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7 To steer the simulation

All calls that changes the way the simulation proceeds can be made during runtime. The

calls will only be handled by the eventhandler between events, i.e. when no simulation

process is executing.

7.1 Representation

When the eventhandler may change the way the simulation proceeds it is said to be in

the resume loop.

Are all

active processes

ready ?

Shall next event

be started?

yesno yes no

The active loop The resume loop

Receive message from 

active process

Receive message that 

controls the execution of

the simulation

Figure 7.1 The eventhandler process is in the resume loop
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7.2 Start and stop simulation

The simulation is started with a demo:start call from a process or user. If no other

eventhandler process is running on the current node an eventhandler process will be

started. The eventhandler will be registered under the name demo server.

The simulation is stopped with a demo:stop call from a process or an user. This

will terminate all simulation processes, all resources, all opened �les and �nally the

eventhandler process. If demo:reset is called everything will be terminated as above

except the eventhandler process.

7.3 Resume and suspend simulation

The simulation can be suspended, i.e. stopped after an event, by a demo:suspend

call. Then the user has a possibility to investigate the state of the simulation. The

simulation can also be stopped at regular time intervals, at every new event or at a

certain eventtime.

When the simulation is suspended the only way to start executing the next events

is by a demo:resume call. This call will make the simulation running until the next

demo:suspend call is made or until all processes are terminated.

All suspend- and resume calls can be made during runtime.

The simulation will, by default, be in suspended mode when the simulation is

started. The reason for that is all initialization of processes must have a chance to

be made before the execution of the �rst event. To understand why this is a problem,

look at the example below:

-module(ex).

-export([p1/0, p2/0]).

p1() ->

demo:start(),

demo:new_P(ex, p2, []),

p3(),

demo:new_P(ex, p2, []).

p2() ->

hold(1).

p3() ->

receive

Something ->

true

after 100000 ->

true

end.

Depending on if the mailbox of the calling process is empty or not a ex:p1()

call may give two di�erent results. If the mailbox is empty it is possible that the
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eventhandler will update the eventtime to the next event before the second p2 process

is created. The problem arises from the fact that the �rst simulation process (and the

eventhandler process) must be created by a process that not are participating in the

simulation. Normally this will be made by a function call in the shell process. But

the shell process will not return a {'EXIT', Pid, Reason} signal when the execution

of the function is ready. Instead it will go back to handle inputs from the shell. The

eventhandler process have no way of telling when the shell process is �nished and no

more simulation processes will be created, i.e. the eventhandler is not able to start the

�rst event in the simulation.

To handle this synchronization problem you better:

� Only call demo:resume() when you are sure that all initializations have been

made.

� Only let simulation processes (processes created with a demo:new_P call) create

simulation processes. In the example above p1 shall be rewritten like:

p1() ->

demo:start(),

demo:new_P(ex, p1_1, []).

p1_1() ->

demo:new_P(ex, p2, []),

p3(),

demo:new_P(ex, p2, []).

7.4 Concurrency

The concurrency mode decides if there shall be any parallelism in the simulation. The

concurrency can be in one of two di�erent modes: parallel and sequential.

If the concurrency mode is sequential only one process can be active at the same

event. If two processes have the same eventtime one is �rst activated and the even-

thandler waits until it gets suspended or terminated before it activates the second

process. By giving the processes di�erent priority it is possible to steer which process

that shall be activated �rst. This sort of simulation corresponds to the simulation that

exists in Simula.

If the concurrency mode is parallel several processes can be active at the same event.

All events, with the same timestamp is merged together into a single event, resulting

in parallel execution of processes. My belief is that this is more like events in the real

life, when two things happens at the same time they are really happening in parallel.

The parallel mode is the default mode of the concurrency. By running the simulation

in parallel large time pro�ts can be made. For example, if two processes, P1 and P2,

are running in parallel and P1 stops waiting for a user input, P2 can still continue

executing. This would not automatically have been the case if P1 and P2 were running

sequentially after each other.

The concurrency of the simulation is changed with the demo:set_concurrency(Fo-

rm) call where Form can be sequential or parallel.
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The calls that changes the concurrency can all be made during runtime.

7.5 Granularity

The granularity is a way to change the granularity of the simulation by letting several

events, not equal in time, be merged together into one event. For example, if the

granularity is 10 and the current eventtime is 0 the eventhandler will the �rst time

start all processes that are scheduled from 0 to 10, the second time all events from 10

to 20, etc. Big granularity may give large parallel executions but also introduces some

new problems.

If the eventhandler starts all events between time T1 and time T2 (the granularity

is T2 - T1) two things can happen: 1. No events shall be activated between T1 and

T2: The eventhandler updates to eventtime to T2 and start all over again. 2. One or

more processes are activated at an event between T1 and T2: The eventtime is updated

to T2 and all processes are activated. If one of the processes gets suspended on the

eventhandler two things can happen: 2.1 The time the process wants to be passivated

to is > T2: Passivate the process on the eventhandler as normal. 2.2 The time the

process wants to be passivated to is <= T2. The process must be reactivated again. I

have solved this by letting each process have an internal time that it shall be scheduled

after.

The granularity of the simulation can be changed by a user or a process with the

demo:set_granularity command. The default value of the granularity is 0.

By changing the granularity of the simulation we are approaching the discrete time

approach of simulation; 'update the simulation at regularly intervals'. We are also

getting closer to the parallel approach to discrete event simulation, 'Let all the processes

proceed with an internal time but only proceed to a state when it is safe.' (see section

4.1.1). To achieve security between processes you can use Erlangs message passing

primitives. For example: The process P1 with internal time T1 and process P2 with

internal time T2 becomes activated at the same time T when T1 < T2 =< T. To be

sure that P2 not will proceed until P1 is ready put P2 in a receive statement. When P1

is �nished it will send a start message to P2, P2 receives the message and can thereafter

start executing.

%% P2 have to wait for P1 to be ready

p1() ->

do_something(),

P2 ! ready

do_something_else().

p2() ->

receive

ready ->

true

end,

do_something().
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The main reason for using granularity is to increase the parallelism and to test

what happens if the limits between the events becomes weaker. For example, test of

unexpected delays.

7.6 Tracing

Tracing is supported for getting a clearer view of the simulation By a demo:trace

respective demo:notrace call the user can turn on and o� the tracing before and during

the simulation. The tracing is also a way of detecting errors in the simulation process.

Every tracing comment is written as: pid of the simulation process and the action that

the process makes.

%% Tracing example. A bin resource is created, one process requests items

%% and have to wait on the resource for his request to be fulfilled.

10 -------------> Activates <0.17.1>

<0.17.1> Creates resource <0.13.1> with newR at time 0

<0.17.1> Calls resource <0.13.1> with call_R(<0.13.1>,

init, [800])

<0.17.1> Holds 14 until time 24

24 -------------> Activates <0.17.1> <0.21.1>

<0.17.1> Holds 76 until time 100

<0.21.1> Calls resource <0.13.1> with call_R(<0.13.1>,

take, [900])

100 -------------> Activates <0.17.1>

<0.17.1> Calls resource <0.13.1> with call_R(<0.13.1>,

give, [100])

<0.21.1> Activates from resource <0.13.1>

<0.21.1> Holds 10 until time 110

<0.17.1> Process closed

The trace is default switched o�.
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8 Processes

Three types of processes that are useful in a simulation can be distinguished:

� Simulation processes. This is processes that are created by a demo:new_P call and

are scheduled by the eventhandler. A simulation process is almost what normally

in discrete event simulation is called an entity.

� Resources. This is processes used to synchronize simulation processes and col-

lect data from the simulation. Resources are created with a demo:new_R call.

Resources will be treated in the next chapter.

� Normal processes. This is processes that have been created with a spawn call

(and not a demo:new_P call). These processes are not part of the simulation but

can still be very useful.

8.1 Simulation processes

Only a simulation process can be scheduled by the eventhandler, i.e. be part of the

simulation. A simulation process can compete with other simulation processes for

resources, cooperate over stretches of time, or even interrupt one another. A simulation

process can be in one of the following �ve states:

� Active, currently executing.

� Suspended, waiting for the eventhandler to reactive it.

� Passivated, on a resource or another process.

� Idle, not part of the simulation.

� Terminated.

The eventhandler can only receive calls from simulation processes when it is in the

active loop. A simulation process can only change the state of the simulation when it is

executing or terminates. Each state changing action in a simulation process will result

in that a message is sent to the eventhandler. The eventhandler will always receive the

messages from a process in the same order as they were sent.
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Figure 8.1 The eventhandler process is in the active loop

8.2 Process states

The di�erent actions a simulation process can make will here be reviewed.

8.2.1 Create a process

A simulation process is created with a demo:new_P call and can be created by a simula-

tion or normal process. The demo:new_P call returns the process identi�er (pid) of the

created process. The pid can be used by other processes who wants to communicate

with the process.

It is requested, before a simulation process can be created, that the eventhandler

process has been started (demo:start). A demo:new_P call will result in a message

sent to the eventhandler. The eventhandler makes a spawn_link call that creates the

wanted process and activates or schedules the process in the EvTree. By letting the
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eventhandler create the process and link to it, the eventhandler will get the necessary

information of the process that is needed for controlling and scheduling it. For example,

when a process terminates, a {'EXIT', Pid, Reason} call is made to the eventhandler

that will remove the process from the simulation.

%% An example that creates a ferry process:

Ferry = demo:new_P(ferry_module, ferry_function, [Cargo]).

%% Compare that with a normal spawn call:

Ferry = spawn(ferry_module, ferry_function, [Cargo]).

8.2.2 Suspend a process

The demo:hold(Time) is used to represent the duration of an activity. Seen from the

process itself it represents a period of time in the same state and holding of resources

until it take up its actions again. The Time parameter in the demo:hold(Time) call

represents the delay in events before the process will be activated again, i.e. the process

will be activated again at eventtime + Time.

A non active process is not really passive in terms of Erlang semantics, instead it is

waiting in a receive statement to be reactivated by the eventhandler. A demo:hold(

Time) call from a simulation process results in the following actions: 1. Send a message

to the eventhandler that informs the eventhandler that the process will wait Time events

before it gets activated again. 2. Wait in a receive statement for a message from the

eventhandler that will activate the process again.

%% How hold is implemented.

hold(Time) ->

eventhandler ! {hold, Time, self()},

receive

startagain ->

true

end.

When the eventhandler receives a demo:hold(Time) call from a simulation process

its actions are: Remove the processes from the list of current executing processes

(Current) and reschedule the process at time eventtime + Time in the EvTree.

All actions that handles suspension or passivation of processes works in the same

way. For example, if a process passivates on a resource, the resource will send a message

to the eventhandler that informs it that the process has been passivated on the resource.

The passivated process will wait in a receive statement to be activated from the re-

source. When the resource is able to reactivate the process it sends a message to the

eventhandler that tells it that the process has been released from the resource and can

be activated. The eventhandler will reactivate the process by sending a startmessage

to it.

8.2.3 Passivate a process on another process

A process that is active (executing) can be passivated on another process. This means

that the suspended process leaves all control to the process it is suspended on. The
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suspension is useful when two or more processes shall cooperate over a period of time.

Instead of having several processes moving down the event list together, it is simpler

to single out one process as the master and let it coopt the others for the period in

question.

A process can only be passivated on another process by a demo:passivate(Pid)

call from itself. The only one that can activate the suspended process again is the

process it is passivated on. Activation will be made with a demo:activate call.

A process P1 can not suspend another process P2 without P2 is agreeing. This

is because that if P2 is executing there is no way to stop his execution before it is

ready. When P2 is ready it may be passivated on another process, on a resource or

the eventhandler, terminated etc. The programmer have to deal with passivation of

processes himself with the help of Erlangs message passing primitives.

The reason why a process P1 not is able to activate a process PS that is suspended

on another process P2, is that we not are knowing if the process P2 currently is using

PS. For example, P2 �nds out that PS is suspended on itself and wants to activate PS.

The process P1 may be quicker than P2 and activates PS before P2. When P2 tries to

activate PS this may cause an error because PS no longer is passivated on P2.

For the same reason that it is forbidden, for a process to activate on another process

suspended process, it is also forbidden for a process, without using the calls that the

resource o�ers, to activate a process that is suspended on a resource.

8.2.4 Passivate a process on a resource

When a process gives a request call to a resource it is not certain that the resource

can ful�l the request right away. The process will then be suspended on the resource

waiting for the the resource to release it (when the request is ful�lled). This is an easy

way to achieve synchronization between processes. When a process suspends itself on

a resource it is only the resource that can reactivate the process. For deeper studies of

resources see chapter 9.

8.2.5 Make a process idle

If a process no longer wants to be part of the simulation the easiest thing is to let the

process terminate. But, if the process not wants to be scheduled by the eventhandler,

but still be alive, it can make a demo:cancel call. The process is then removed from the

simulation but not terminated. The process can be reactivated with a demo:interrupt

call from a simulation process.

Processes that from the beginning not shall be scheduled by the eventhandler are

created with a spawn call instead of a demo:new_P call.

8.2.6 Process termination

A simulation process terminates normally if it completes the evaluation of the expression

for which it was spawned or if it evaluates the built in function exit(Reason). The

eventhandler process is linked to all simulation processes and will therefore receive a

{'EXIT', Pid, Reason}. signal from each simulation process that terminates. The
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process with the pid Pid will be removed from Current and E by the eventhandler, i.e.

removed from the whole simulation. The eventhandler may also control if the process

terminated abnormally by investigating the Reason variable. If the termination reason

not where normal a warning message is written to the error log. The error log is

where all errors discovered by the eventhandler will be written . The default value is

standard_io for the error log but can be changed to a �le or a process instead.

The mechanism of catching run-time errors from executing processes makes the

simulation error secure. The whole simulation will not fail just because one process

causes an error. By setting the stop_when_error variable to true or false the user

can chose if the simulation shall stop when a process terminates due to an abnormal

error.

If a process terminates and still has processes suspended on itself, the suspended

processes are also terminated by the eventhandler. The reason for that is that a process

P1 that were suspended on the terminated process P2 was waiting for the process P2

to ful�l some task before it could get activated again. Now P1 can not be sure that the

task it was waiting for have been ful�lled and therefore it is not possible to restart P1

again. For example, let P1 represent a car and P2 represent a carferry and let the ferry

transport the car from a harbour A to another harbour B. If the ferry process terminates

before it has released the car it is not possible to know if the ferry has transported the car

to harbour B or still is out on the stormy sea. The information about the ferry location

is held by the ferry process internal state and is not accessible for the eventhandler.

The only way to accomplish security is by terminating the suspended processes too.

Observe that this can lead to chain reactions of terminated processes if a suspended

process had processes suspended on itself.

If a resource process terminates (God forbid) all processes that are suspended on

the resource will also be terminated.

8.3 More about processes

The following sections will give a deeper explanation of the di�erent attributes a sim-

ulation process has and the di�erent actions a simulation process can take.

8.3.1 Process priority

A way to decide which processes that shall be �rst activated from a queue, a resource

etc. is by the priority of the process. If a simulation executes in sequential mode the

priority is also a way to decide which process that shall execute �rst if several processes

are scheduled at the same event. If the simulation runs in parallel mode is this not the

case, this is because all processes with the same eventtime will be activated in parallel.

For processes that are suspended on resources the priority is much more important,

this is because a process with higher priority will be placed before a process with lower

priority in the queue (and be released much earlier).

Only the process itself can set its own priority. This is made with a demo:set_

priority (Priority) call from the process. The Priority is default 0 for all processes.

The priority of a process can be obtained by a demo:get_priority call.
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Observe that if the simulation runs in sequential mode and a process P1 activates

a process P2 that has a priority that is higher then P1s priority, P2 will not start

executing before P1 is �nished. A process can only be suspended if it explicitly desires

it.

8.3.2 Process interrupts

A process can only interrupt another process if the process is suspended on the even-

thandler or idle. The interruption of a process is made with the demo:interrupt(Pid,

Message) call. Pid is the process to be interrupted and Message is the interrupt mes-

sage that the interrupted process shall receive. If the interrupt succeeds is true returned,

else false.

When a process gets interrupted from the eventhandler it will start executing right

away (if the simulation is running in parallel mode, otherwize it will wait). The in-

terrupted process can check who interrupted it with a demo:get_interrupt call. If

the process was not interrupted unde�ned is returned, otherwise the interrupt message

Message from the process that interrupted is returned. The interrupt message must be

reset by the process himself with the demo:set_interrupt call. A process can turn on

or o� the possibility for another process to interrupt it with a demo:turn_interrupt

call.

All calls to interrupt a process goes via the eventhandler. The eventhandler checks

that the process that shall be interrupted is participating in the simulation and not

have turned o� the ability be interrupted. If a process is interrupted it will be activated

according to the concurrency mode.

%% An example of a program where two processes interrupt each other,

%% resulting in that 'Hello world!!' is written to the screen.

p1() ->

demo:hold(1),

Message = demo:get_interrupt(),

io:format('~w',[Message]),

demo:interrupt(P2, 'world!!').

p2() ->

demo:interrupt(P1, 'Hello '),

demo:hold(1),

Message = demo:get_interrupt(),

io:format('~w',[Message]).

8.3.3 Process attributes

One di�cult problem is how to transfer information about a process to another process.

In Simula this is simple, an object consist of attributes and be accessed by a <object

reference>.<attribute name> call (there is no information hiding within the objects).

For example, the cargo on an object ferry may be accessed by a ferry.cargo call.

In Erlang we have processes instead of objects. A process can normally only get

information about other processes through messages. I support two di�erent kind of

attribute exchanges between processes, message passing and demo:attribute calls.
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Message Passing

Message passing is the normal way to exchange information between processes in Er-

lang.

The messages can be used for synchronization between processes. For example: If

process P1 sends a message with a value of an attribute to process P2, then P2 can

be sure to get the value of the attribute that P1 wants it to have. If we look at the

ferry example again it is possible that the ferry process for a moment is loading cargo.

When the ferry process is ready it will update its cargo variable and send a message to

a requesting process about its new cargo. This would lead to that requesting process

gets the value of the cargo that the ferry process wants it to have. The solution is

preferable but have two serious draftbacks: 1. The requesting process is passivated in

a receive statement until it gets the message from the ferry, we loose some parallelism.

2. The ferry process must have information about all processes that wants to get the

cargo attribute from it, and this is not always the case.

%% Synchronized attribute exchange between two processes

p1() ->

do_something(),

P2 ! ready

p2() ->

receive

ready ->

true

end,

do_something().

Attribute calls

Because of the problems above with normal message passing one more way for processes

to exchange information is present, the demo:attribute calls. A process P1 can set

an attribute with a demo:set_attribute call. A process is only allowed to set its

own attributes. Another process P2 can get information about the attribute by an

demo:get_attribute call. The call returns the value of the attribute or undefined if

the attribute have not been set by the P1 process. This form of information exchange

is not synchronized and the process P2 can not be sure that it gets the value of the

attribute that P1 wants it to have. If we return to the ferry example, a process can get

the cargo value both before, during and after the cargo loading have been made.
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%% Nonsynchronized attribute exchange between two processes

p1() ->

do_something(),

demo:set_attribute(ready, true)

p2() ->

case demo:get_attribute(P1, ready) of

ready ->

do_something();

undefined ->

do_something_else()

end.

The demo:attribute calls is implemented using the process dictionary and the proc-

ess_info/2 call. This is a use of the process dictionary that is 'strongly discouraged'

by the writers of Erlang but I was not able to implement it so smoothly in any other

way, (sorry Robert).

One way to handle the problem of using the process dictionary would have been a

attribute server process. The simulation processes will set and get attributes by sending

messages to the attribute server. This can be a acceptable solution when the number

of simulation processes are small but will be a bottleneck when the number of processes

increases.

The problem of getting the right attribute from a process is a consequence of the

policy to let processes that has the same eventtime execute in parallel. If we only let the

simulation execute in sequentialmode and steer the process scheduling with the priority

parameter the problem will not occur. My suggestion to the application programmer

is to use normal message passing for synchronized 'want the process attribute when it

is ready' calls and normal messages and the demo:attribute calls for nonsynchronized

'want the process attribute immediately' calls.
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9 Resources

In the process oriented approach to discrete event simulation, programs are collections

of interacting processes which compete with other processes for resources before a task

can be undertaken.

9.1 What is a resource

Resources can be divided into two separate set:

� Datacollecting resources. These are devices used to collect data and statistics

from simulation processes during the simulation.

� Synchronization resources. These are processes that are used to synchronize sim-

ulation processes during the simulation.

9.1.1 Implementation

A resource is implemented as a separate process that not is scheduled by the event-

handler. A resource is created with a demo:new_R(Module, ArgList) call from a

process. The �rst argument shall be the module name of the resource, and the second,

if any, shall be a list of the initial arguments. The calls to a resource from a process

is made with demo:call_R or demo:report_R calls. By making all resources of the

same format and restricting the operations that can be made on them, the resources

are much more easier to control.

All function calls to resources are made with demo:call_R calls. For example a call

to a bin resource demo:take(BinPid, 5) is transformed to a call demo:call_R( Bin

Pid, take, [5], Priority). When a process calls a resource it will automatically be

passivated in a receive loop and leave the control to the resource. It is now up to the

resource to reactivate the process again. If the resource is a datacollecting resource it

will just return a value to the calling process and let it be released immediately. If the

resource is a synchronize resource it must also be able to passivate and later restart

processes.

A few prede�ned function calls, that every resource shall support, is made with the

function demo:report_R. Instead of using the resources Module variable (see below) a

prede�ned report module is used. All resources can now give a report of its internal

state in a similar manner.

9.2 Semantics of a resource

More speci�cally is a resource a looping process waiting for calls in a receive state-

ment. There are three parameters in the loop: AList, Trace and Module.

The state of a resource can abstractly be viewed as a 3-tuple:

fAList; Trace;Moduleg

Each time a process calls the resource a transformation is made on the resource state:
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A demo:call_R call:

fAList; Trace;Moduleg ! fAList0; Trace;Moduleg

A demo:report_R/3 call:

fAList; Trace;Moduleg ! fAList; Trace;Moduleg

A Trace call from the eventhandler:

fAList; Trace;Moduleg ! fAList; Trace0;Moduleg

%% A mutual exclusion example. A library has some books and readers want

%% to borrow them. The number of books are constant. The library is

%% represented by a Res resource. A reader process borrows some books,

%% reads them and returns them finally.

-module(res_ex).

-export([init/0, main/0, reader/2]).

%% init/0 starts the simulation, starts the tracer and activates the main

%% process.

init() ->

demo:start(), %% start simulation

demo:trace(), %% start tracer

demo:new_P(res_ex, main, []). %% create main process

%% main/0 creates the Res resource that representates the library, and three

%% reader processes. It lets the simulation proceed for 100 events and

%% turns then of the simulation.

main() ->

Library = demo:new_R(res, [10]), %% start the library res

demo:new_P(res_ex, reader, [Library]), %% create readers

demo:new_P(res_ex, reader, [Library]),

demo:new_P(res_ex, reader, [Library]),

demo:hold(100), %% wait 100 events

demo:stop(). %% stop simulation

%% reader/1 acquire a number of books of the library. It reads

%% one book per day and returns the books to the library.

reader(Library) ->

Number_Of_Books = random:uniform(10), %% how many books?

demo:acquire(Library, Number_Of_Books), %% aquire books from library

Days_To_Read = Number_Of_Books,

demo:hold(Days_To_Read), %% read the books

demo:release(Library, Number_Of_Books), %% return the books

reader(Library). %% loop

Below is each state variable explained in more detail.

9.2.1 AList, the attribute list

The AList is the resource attributelist, representing the state of the resource. All

relevant data about the resource are contained in the AList, for example, its pas-

sivated processes, length of the di�erent queues and number of made observations.

When a process makes a call that changes the resource state it is actually changing
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the AList. The AList is represented as a list of tuples consisting of fIndex; V alueg

pairs. For example: the tuple fresettime;Resettimeg holds the eventtime for the

last resetting of the resource. The AList is available for other processes with calls

like: demo:get_attributeR, demo:get_all_attributesR or demo:report_R. By us-

ing these commands it is possible to examine and gather information about resources.

9.2.2 Trace, the tracing variable

Trace is set by the eventhandler and speci�es if the resource shall trace its actions or

not. The trace can be turned on or o� by calls from to eventhandler process, i.e. with

demo:trace and demo:notrace calls.

9.2.3 Module, export functions

Module is the module name where all operations on the resource, (i.e. on the AList),

are de�ned. The functions exported from the module Module are the functions that

can be made, by an active process, to change the state of the resource. The module

limits the access to the resource by only allowing exported functions of Module to be

called. If a nonexported function call is made to the resource, no state transformation

is made, instead an error message is written and false is returned. A resource can only

have one module.

9.2.4 Why a process

By implementing the resource as a separate process, much of the responsibility of using

the modules is moved from the calling process to the implementator of the resource. If

a calling process had total control over the items that belongs to a resource it would

also have been much easier to do something wrong. The user can change the AList

with demo:set_attributesR calls, but that is not recommended.

It is not allowed for other processes to interrupt a process that is passivated on a

resource. The reasons for that are several:

� The interrupted process can not know if the goal it is waiting for in the resource

has been ful�lled.

� I have implemented waiting processes di�erent in di�erent resources and it is

therefore di�cult to write common release of processes primitives that suits each

resource.

� The resources were constructed in the beginning of my examwork before I inves-

tigated the idea of letting processes interrupt each other.

39



9.2.5 How to activate passivated processes

A special situation appears when a process makes a call to a resource that shall activate

a process that is passivated on the resource, which process shall be reactivated �rst?

If the simulation is in parallel mode this is not a problem, both processes will be

activated simultaneously. If the simulation is in sequential mode the situation is more

problematic.

I have solved this by always letting the process that called the resource continue

executing and let the released process be passivated in the eventhandler . It will the

compete with other processes of which one that shall be �rst started when the current

process is rescheduled or terminates. I tried to solve this problem by letting the process

with the highest priority be �rst scheduled but soon noticed that it made the scheduling

very complicated. I thought it would be better to have an easy and understandable

algorithm.

All process passivated on a resource are normally scheduled by priority, which let

a process with high priority be activated before a process with low priority. It is often

possible to set parameters in the resource that changes how passivated processes shall

be activated.

9.2.6 Resource reports

All resources has an extra prede�ned module that handles report generation from the

resource. When a demo:report_R(Resource, Operation, [Arg]) call is made the

Module module that belongs to the resource is not used, instead the demo_report

module is called. Every resource has in its AList a freport; ReportListg tuple. The

ReportList is a list of items that shall be included in the reports from the resource. A

process can reset, add and remove items from the ReportList.

The user can set the �le to write reports to with the demo:set_reportfileR com-

mand, the default value is standard_io.

9.2.7 Inuences

The di�erent resources constructed all corresponds against the prede�ned objects that

exists in the Demos simulation package, both by name and functionality.
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9.3 Datacollecting resources

Four data collecting devices for recording pro�les of input sequences are de�ned:

1. Count, for incidences

2. Tally, for timeindependent sequences.

3. Histogram, for timeindependent sequences.

4. Accumulate, for timedependent input sequences.

9.3.1 Count

A Count resource is used to record incidences. Given a input sequence of numbers N1,

N2, ..., Nm the Count resource records their sum N1 + N2 + ... + Nm.

Commands

The count resource is created with a demo:new_R(count, []) call from a process.

The function calls demo:update(Count) or demo:update(Count, N) updates the

Count.

The function call demo:reset(Count) resets the Count. Reports and facts from the

count resource can be achieved with demo:report_R or demo:get_attributeR calls.

See appendix B for more information about the resource.

9.3.2 Tally

A Tally resource is used to record a pro�le of values. Given the input sequence of

numbers N1, N2, ..., Nm the Tally resource records the number of observations (m),

their sum so far (N1 + N2 + ... + Nm), the sum of their squares so far (N1 * N1 +

N2 * N2 + ... + Nm * Nm), their range (the smallest and largest value so far), their

mean value, their variance and standard deviation. The Tally resource is an extension

of the Count resource.

Commands

The Tally resource is created with a demo:new_R(tally, []) call from a process.

The function calls demo:update(Tally) or demo:update(Tally, N) update the

Tally.

The function call demo:reset(Tally) resets the tally. Reports and facts from the

tally resource can be achieved with demo:report_R or demo:get_attributeR calls.

See appendix B for more information about the resource.
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%% A tally example. A program that records the average through

%% times of costumers in a supermarket.

-module(tally_ex).

-export([init/1, main/1, costumer/2]).

%% init/0 starts the simulation and activates the main process.

init(N) ->

demo:start(), %% start simulation

demo:new_P(tally_ex, main, [N]). %% create main process

%% main/1 creates a tally resource and some costumers. It lets the

%% simulation proceed for 100 events and asks the tally resource to

%% print its observations. Finally the simulation is stopped.

main(N) ->

Tally = demo:new_R(tally, []), %% create tally resource

create_costumers(Tally, N), %% create costumers

demo:hold(100), %% wait 100 events

demo:report_headingR(Tally), %% print tallys heading

demo:reportR(Tally), %% print tallys variables

demo:stop(). %% stop simulation

%% create_costumers/1 creates a number of costumer processes.

create_costumers(Tally, 0) ->

true;

create_costumers(Tally, N) ->

demo:new_P(tally_ex, costumer, [Tally, N]),

create_costumers(Tally, N - 1).

%% costumer/2 represent the behavior of a costumer in a supermarket.

costumer(Tally, N) ->

random:seed(N, N, N), %% initialize random func

ArrivalTime = demo:event_time(), %% costumer arrivaltime

demo:hold(random:uniform(100)), %% do some shopping

LeaveTime = demo:event_time(), %% costumer leaving time

ShoppingTime = LeaveTime - ArrivalTime, %% calculate shoppingtime

demo:update(Tally, ShoppingTime). %% update tally

9.3.3 Histogram

A Histogram resource is used to record a rough pro�le of a sequence of values, N1,

N2, ..., Nm by asking in advance for their (expected) lower and upper bound and the

number of recording cells. The range from lower to upper is then divided into a num-

ber of slots. Each slot has the width (upper - lower)/cells. When an input value Ni is

recorded, the appropriate slot incidence count is incremented with 1. Underow values,

Ni < lower, and overow values, Ni > upper, are recorded separately.

Commands

The Histogram resource is created with a demo:new_R(histogram, [Upper, Lower,

Cells]) call from a process.

The function call demo:update(Histogram, N) update the Histogram.

The function call demo:reset(Histogram) resets the Histogram. Reports and facts
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from the Histogram resource can be achieved with demo:report_R or demo:get_att-

ributeR calls.

See appendix B for more information about the resource.

9.3.4 Accumulate

An Accumulate resource is used to record a pro�le of a time dependent variables. The

object records the time integral of a sequence of values. Given a input sequence of

numbers N1, N2, ..., Nm with their input eventtimes T1, T2, .., Tm the Accumulate

resource is calculating the (T2 - T1) * N1 + (T3 - T2) * N2 + ... + (Tm - Tm-1) *

Nm-1 value. The resource builds a timeintegral under the assumption that the recorded

value is constant during a timeinterval until the next inputvalue arrives.

Commands

The Accumulate resource is created with a demo:new_R(accumulate, []) call from a

process.

The function calls demo:update(Accumulate) or demo:update(Accumulate, N)

updates the Accumulate resource.

The function call demo:reset(Accumulate) resets the Accumulate resource. Re-

ports and facts from the Accumulate resource can be achieved with demo:report_R or

demo:get_attributeR calls.

See appendix B for more information about the resource.
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9.4 Synchronization resources

Five synchronization resources to be used for synchronisation problems between simu-

lation processes are de�ned:

1. Bin, for producer/consumer problems.

2. Res, for mutual exclusion problems.

3. Condq, for wait until problems.

4. Waitq, for master/slave cooperation problems

5. Queue, for process synchronization.

9.4.1 Bin

Bin resources are used to model the producer/consumer synchronization between pro-

cesses. A producer process makes items which are to be used by consumer processes.

A consumer process is passivated on the Bin resource if no items are available when

requested.

Commands

The Bin resource is created with a demo:new_R(bin, [Avail]) call from a process.

Avail is the number of items that shall be available from the beginning.

The function call demo:give (Bin, Items) is made by a producer process that

gives away some items to the Bin resource. The resource seeks among the passivated

consumer processes and reactivates any processes if possible.

The function call demo:take(Bin, Items) is called by a consumerprocess that

wants some items. If the process demands more items than the Bin resource has

available or if any other process with higher priority is waiting in the list of passivated

processes the process is passivated on the Bin resource. If there are items available, and

no process with higher priority is waiting ,the items are released to the calling process.

The process has no indicator of the number of items it has been given, it will only know

that its demands have been ful�lled when it is released from the resource.

The demo:reset(Bin) resets the Bin resource. Reports and facts from the Bin

resource can be achieved with demo:report_R or demo:get_attributeR calls.

See appendix B for more information about the resource.

%% A producer-consumer example. A producer process produces items and a

%% consumer process consumes them. A consumer process is blocked if no

%% item is available. The pool of available items is represented by a Bin resource.

-module(bin_ex).

-export([init/0, main/0, producer/1, consumer/1]).

%% init/0 starts the simulation and the tracing and activates the main

%% process.

init() ->

demo:start(), %% start simulation

demo:trace(), %% start tracer
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demo:new_P(bin_ex, main, []), %% create main process

true.

%% main/0 creates a bin resource, one producer process and three consumer

%% processes. It lets the simulation proceed for 100 events and turns then

%% of the simulation.

main() ->

Bin = demo:new_R(bin, [0]), %% start the Bin resource

demo:new_P(bin_ex, producer, [Bin]), %% create the producer

demo:new_P(bin_ex, consumer, [Bin]), %% create consumers

demo:new_P(bin_ex, consumer, [Bin]),

demo:new_P(bin_ex, consumer, [Bin]),

demo:hold(100), %% wait 100 events

demo:stop(). %% stop simulation

%% producer/1 makes an item and gives it to the Bin resource, and

%% then restarts the production.

producer(Bin) ->

Time_To_Make_Item = random:uniform(4),

demo:hold(Time_To_Make_Item), %% create an item

demo:give(Bin, 1), %% give the item to bin

producer(Bin). %% loop

%% consumer/1 consumes items. If the Bin resource is empty when the

%% consumer wants an item the consumer suspended until an item appears.

consumer(Bin) ->

demo:take(Bin, 1), %% demand an item

Time_To_Consume_Item = random:uniform(10),

demo:hold(Time_To_Consume_Item), %% consume an item

consumer(Bin). %% loop

9.4.2 Res

Res resources are used to model the mutual exclusion synchronization between pro-

cesses. There are some items available from the beginning in the resource which pro-

cesses can acquire. In contrast with the Bin resource, the number of available items

are constant, i.e. no new items can be created. If a request from a process can be

ful�lled and no other process with higher priority is waiting for items, the process is

given the items and is released. Otherwize the requesting process will be passivated on

the Res resource until its request can be ful�lled. The Res resource keep tracks over

which processes that have achieved how many items. A process can not create new

items, only return items that it before has achieved from the resource. When a process

returns some taken items the passivated processes are tested to see whose request that

can be ful�lled.

Commands

The Res resource is created with a demo:new_R(res, [Capacity]) call from a process,

where Capacity is the number of items available from the beginning.

The function call demo:acquire(Res, Items) is called by a process that wants

some items. The process are not allowed to ask for more items than the Capacity of
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the Res resource. If the are less items available then the process demanded or if any

other process with higher priority is waiting for items the calling process is passivated

on the Res resource. If there are items available and no process with higher priority is

waiting, the items are released to the calling process.

The demo:release(Res, Items) call releases some items from the calling process

and returns them to the resource. A process can only release items if it before has

achieved more or equal number of items with a demo:acquire call. If any process

demand among the passivated processes can be ful�lled due to the new items, the

corresponding process is released.

The demo:reset(Res) call resets the Res resource. Reports and facts from the Res

resource can be achieved with demo:report_R or demo:get_attributeR calls.

See appendix B for more information about the resource.

%% A mutual exclusion example. A library has some books and readers want

%% to borrow them. The number of books are constant. The library is

%% represented by a Res resource. A reader process borrows some books,

%% reads them and returns them finally.

-module(res_ex).

-export([init/0, main/0, reader/2]).

%% init/0 starts the simulation, starts the tracer and activates the main

%% process.

init() ->

demo:start(), %% start simulation

demo:trace(), %% start tracer

demo:new_P(res_ex, main, []). %% create main process

%% main/0 creates the Res resource that representates the library, and three

%% reader processes. It lets the simulation proceed for 100 events and

%% turns then of the simulation.

main() ->

Library = demo:new_R(res, [10]), %% start the library res

demo:new_P(res_ex, reader, [Library]), %% create readers

demo:new_P(res_ex, reader, [Library]),

demo:new_P(res_ex, reader, [Library]),

demo:hold(100), %% wait 100 events

demo:stop(). %% stop simulation

%% reader/1 acquire a number of books of the library. It reads

%% one book per day and returns the books to the library.

reader(Library) ->

Number_Of_Books = random:uniform(10), %% how many books?

demo:acquire(Library, Number_Of_Books), %% aquire books from library

Days_To_Read = Number_Of_Books,

demo:hold(Days_To_Read), %% read the books

demo:release(Library, Number_Of_Books), %% return the books

reader(Library). %% loop
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9.4.3 Condq

Condqs are used to implement waits until in the simulation. When a process wants to

be passivated until a condition is true, it is passivated on a Condq. This is done by a

waituntil call that evaluates a function and tests if the result is equal to the wanted

result. If so, the process is activated right away, otherwize the process is passivated on

the Condq resource until the condition is ful�lled. The condition is tested each time a

process calls the Condq with a signal call. The condition test is made by the passivated

process itself.

Commands

The Condq is created with a demo:new_R(condq, []) call from a process.

The function calls demo:wait_ until (Condq, Module, Func, Arg) and demo:wait-

_until(Condq, Module, Func, Arg, Result) enters a process into the Condq. The

function Module: Func(Args) is evaluated to see if it evaluates to true or Result. If

so , the process is immediately released from the Condq. Otherwise the process is sus-

pended on the Condq until Module:Func(Args) is tested and evaluated to the wanted

result.

The functioncall demo:signal(Condq) let all,on the Condq passivated processes test

their conditions. If any of the conditions of the passivated processes, (Module:Func(

Args)) are evaluated to the wanted result the corresponding process is released from

the Condq.

The demo:reset(Condq) resets the Condq resource. Reports and facts from the

Condq resource can be achieved with demo:report_R or demo:get_attributeR calls.

It is worth noticing that if the simulation is running in parallel mode a condition can

be tested and evaluated to wanted result by a process, but before the process has made

some other actions another process can change the condition so that it no longer is

true. A Condq resource is therefore best suited for simulation in sequential mode. For

example, if the simulation is running in parallel mode it is not possible to implement

mutual exclusion with a Condq
See appendix B for more information about the resource.

%% A dining philosopher example. The philosophers are Number many and

%% sitting at a round table. A philosophers life consists of eating and thinking.

%% To be able to eat a philosopher must have access to two forks.

%% A fork is shared by two philosophers that sits next to each other at

%% the table. Eg. two neighbour philosophers can not eat at the same time.

%% A Condq is used for testing if both forks are available.

-module(condq_ex).

-export([init/1, main/1, philosopher/4, forks_available/2]).

%% init/1 starts the simulation, starts the tracer, set concurrency to

%% sequential and activates the main process. The argument to init is the

%% number of philosphers

init(Number) ->

demo:start(), %% start simulation

demo:trace(), %% start tracer

demo:set_concurrency(sequential), %% make simulation sequential
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demo:new_P(condq_ex, main, [Number]), %% create main process

true.

%% main/1 creates a condq, some forks and some philosphers. The number of

%% forks and philosphers are equal. It lets the simulation proceed for 100

%% events and turns then of the simulation.

main(Number) ->

Condq = demo:new_R(condq, []), %% create condq

demo:set_attributeR(Condq, test, all), %% test all philosophers

ForkList = create_forks(Number, []), %% create fork resources

create_philosophers(Number, Condq, ForkList), %% create philosophers

demo:hold(100), %% wait 100 events

demo:stop(). %% stop simulation

%% create_forks/2 creates a number of forks. Each fork is represented with

%% a Res resource. The available amount of items in each Res are 1.

create_forks(0, ForkList) ->

Fork = hd(ForkList), %% the first fork is

lists:append(ForkList, [Fork]); %% also the last fork

create_forks(N, ForkList) ->

Fork = demo:new_R(res, [1]), %% create a fork

create_forks(N - 1, [Fork | ForkList]).

%% create_philosophers/3 creates a number of philosophers. Each philosopher

%% is a simulation process that is created with a new_P call.

create_philosophers(Number, Condq, [Fork]) ->

true;

create_philosophers(Number, Condq, [Fork1, Fork2 | ForkList]) ->

demo:new_P(condq_ex, philosopher, [Condq, Fork1, Fork2]),

create_philosophers(Number - 1, Condq, [Fork2 | ForkList]).

%% philosopher/3 represents the behaviour of a philosopher. The

%% philosopher has a simple life, he first thinks, then eats and starts all

%% over again. In order to eat, a philosopher requires the fork on his left

%% and the fork on his right. When he has eaten both forks are released and can

%% be used by the neighbour philosophers. To test if a forks is free

%% the philosopher is placed in a Condq.

philosopher(Condq, Fork1, Fork2) ->

ThinkTime = dis:randint(10, 20), %% get time to think

demo:hold(ThinkTime), %% think

%% wait until forks are available

demo:wait_until(Condq, condq_ex, forks_available, [Fork1, Fork2]),

demo:acquire(Fork1, 1), %% get the forks

demo:acquire(Fork2, 1),

EatTime = dis:randint(5, 10), %% get time to eat

demo:hold(EatTime), %% eat

demo:release(Fork1, 1), %% release the forks

demo:release(Fork2, 1),

demo:signal(Condq), %% tell condq

philosopher(Condq, Fork1, Fork2).

%% forks_available/2 is called by a philosopher in a Condq to test if

%% his two forks are available.

forks_available(Fork1, Fork2) ->

Avail1 = demo:get_attributeR(Fork1, avail), %% is fork available
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Avail2 = demo:get_attributeR(Fork2, avail), %% is fork available

test_avail(Avail1, Avail2).

test_avail(1, 1) ->

true;

test_avail(_, _) ->

false

9.4.4 Waitq

Waitq resources are used in the master/slave synchronizations in which several pro-

cesses cooperate together over a period of time. Instead of having several processes

moving down the event list together, it is simplier to single out one process as the mas-

ter and let the other processes be passivated on the master for the time in question.

The master is responsible for releasing its passivated resources when it is ready. The

Waitq is responsible for passivating processes on master processes.

Commands

The Waitq resource is created with a demo:new_R(waitq, []) call from a process.

The functioncall demo:wait(Waitq) is made by a slaveprocess that wants to �nd

a masterprocess that can enslave it. If there are no masterprocesses available or if

the slave not can ful�l the masters demands of processes the slave passivated on the

Waitq resource. If there are masterprocesses available, that has a demand of processes

that would be ful�lled with the new process, the slave processes is passivated on the

masterprocess and the masterprocess is activated.

The functioncalls demo:coopt(Waitq) and demo:coopt(Waitq, N) is called by a

masterprocess that wants to enslave one respective N number of processes. If the

demanded slaveprocesses not are available or if a masterprocess with higher priority

is waiting on slaveprocesses the process is passivated on the Waitq resource. If the

masterprocess demand can be ful�lled the wanted number of passivated slaveprocesses

are moved from the resource to the masterprocess and the masterprocess is reactivated.

The masterprocess will release the passivated processes with demo:activate calls.

The demo:reset(Waitq) resets the Waitq resource. Reports and facts from the

Condq resource can be achieved with demo:report_R or demo:get_attributeR calls.

See appendix B for more information about the resource.

%% A car and carferry example. The ferry goes between two islands and can take

%% two cars across each travel. The ferry starts by waiting for some

%% cars, load them, cross the water with the cars and finally unload them.

%% The cars comes to the harbour and wait in a Waitq for the ferry to take

%% and transport the car over to the other island. When the car has arrived

%% it will tour the island for a while and then return to the harbour.

%% Each harbour is represented by a Waitq resource.

-module(waitq_ex).

-export([init/0, main/0, ferry/3, car/2]).
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%% init/0 starts the simulation, starts the tracer and activates the main

%% process.

init() ->

demo:start(), %% start simulation

demo:trace(), %% start tracer

demo:new_P(waitq_ex, main, []). %% creat main process

%% main/0 creates two waitq resources, one ferry process and seven car

%% processes. It lets the simulation proceed for 100 events and turns then

%% of the simulation.

main() ->

Harbour1 = demo:new_R(waitq, []), %% create wqueue

Harbour2 = demo:new_R(waitq, []),

%% create ferry process

Ferry = demo:new_P(waitq_ex, ferry, [2, Harbour1, Harbour2]),

%% create car processes

Car1 = demo:new_P(waitq_ex, car, [Harbour1, Harbour2]),

Car2 = demo:new_P(waitq_ex, car, [Harbour1, Harbour2]),

Car3 = demo:new_P(waitq_ex, car, [Harbour2, Harbour1]),

Car4 = demo:new_P(waitq_ex, car, [Harbour2, Harbour1]),

demo:hold(100), %% wait 100 events

demo:stop(). %% stop simulation

%% ferry_loop/3 is the function that represents the ferry. The ferry first

%% avaits cars. When the cars has arrived the ferry will start loading,

%% cross the water and unloading the cars. During the time the cars are

%% passivated on the ferry. Finally the cars are released from the ferry.

ferry(Capacity, CurrentHarbour, NextHarbour) ->

CarList = demo:coopt(CurrentHarbour, Capacity), %% Get a list of cars

Load = Capacity,

demo:hold(Load), %% Load for some time

Crossing = random:uniform(10),

demo:hold(Crossing), %% Cross the sea

Unload = Capacity,

demo:hold(Unload), %% Unload for some time

release_cars(CarList), %% Activate the cars

ferry(Capacity, NextHarbour, CurrentHarbour). %% Loop

%% release_cars/1 activates all cars that has been passivated on the

%% ferry. This could have been done with a demo:activate_all() call.

release_cars([]) ->

true;

release_cars([Pid | Rest]) ->

demo:activate(Pid), %% Activate the car

release_cars(Rest).

%% car_loop/2 is the function that represents a car. First the car arrive

%% to the harbour and waits for a ferry to take it to the other island.

%% When the crossing is made the car will be activated and doing some

%% sightseeing on the island. Finally the car will return back to the harbour.

car(CurrentHarbour, NextHarbour) ->

demo:wait(CurrentHarbour), %% Wait for ferry

Tour_Island = random:uniform(10),

demo:hold(Tour_Island), %% Do some sightseeing

car(NextHarbour, CurrentHarbour). %% Loop
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9.4.5 Queue

A Queue resource can be used to chain several processes. A Queue is a resource where

processes can passivate themselves with a push command. A passivated process is ac-

tivated with a pop command from another process. Depending on what sort of queue

the Queue is: FIFO, LIFO or PRIORITY the processes are released in di�erent ways.

Commands

The queue resource is created with a demo:new_R(queue, [Test]) call from a process.

Test is the way that the process shall passivate processes and could be fifo, lifo or

priority.

If a process makes a demo:push(Queue) call it will be passivated on the Queue

resource.

The functioncall demo:pop(Queue) tries to release a process from the Queue re-

source. If there is a passivated processes in the queue it is released and the calling

process receives the passivated process pid as return value. If there were no passivated

process on the queue false is returned to the calling process. Observe that the released

process will not be passivated on the calling process.

The demo:reset(Queue) call resets the queue resource. Reports and facts from the

Queue resource can be achieved with demo:report_R or demo:get_attributeR calls.

See appendix B for more information about the resource.
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%% Simulates a liftsystem with lifts, liftqueues, skiers and mountains.

%% There are two skilifts with different capacity and transport time and

%% two corresponding liftqueues where skiers have to wait. The input

%% argument is the number of skiers.

-module(queue_ex).

-export([init/1, main/1, skilift/4, skier/1]).

%% init/1 starts the simulation, and activates the main process.

init(Number) ->

demo:start(), %% start simulation

demo:new_P(queue_ex, main, [Number]), %% create main process

true.

%% main/1 starts two queue processes that represents liftqueues, two tallys

%% to record how many skiers each skilift has transported and two skilifts

%% that will transport the skiers. A number of processes representing skiers

%% are created. The simulation is allowed to proceed for 100 events and is

%% then turned off.

main(Number) ->

SkiQueue1 = demo:new_R(queue, [fifo]), %% create skiqueues

SkiQueue2 = demo:new_R(queue, [fifo]),

Tally1 = demo:new_R(tally, []), %% create tallys

Tally2 = demo:new_R(tally, []),

%% create skilifts

SkiLift1 = demo:new_P(queue_ex, skilift, [SkiQueue1, Tally1, 5, 10]),

SkiLift2 = demo:new_P(queue_ex, skilift, [SkiQueue2, Tally2, 2, 4]),

%% create skiers

create_skiers(Number, [{SkiQueue1, SkiLift1}, {SkiQueue2, SkiLift2}]),

demo:hold(100), %% wait 100 events

io:format('skilift 1 transported ~w skiers ~n', [demo:get_attributeR(Tally1, sum)]),

io:format('skilift 2 transported ~w skiers ~n', [demo:get_attributeR(Tally2, sum)]),

demo:stop(). %% stop simulation

%% skilift/4 is a process representing a skilift. The arguments to skilift/4 are

%% a skiqueue where the skiers shall be waiting, a tally resource to report

%% transports, the time to transport the lift and a capacity of the lift (the number

%% of skiers that can go with it). The process tries to release a number of skiers

%% that are waiting in the skiqueue and puts them in the skilift. The lift is

%% transported to the top, the skiers are relased and the skilift is transported

%% back down to the liftqueue.

skilift(SkiQueue, Tally, LiftTime, Capacity) ->

SkierList = get_skiers(Capacity, SkiQueue), %% load skiers to transport

demo:update(Tally, [length(SkierList)]). %% update tally with skiers

demo:hold(LiftTime), %% go to the top

demo:activate_all(). %% release all skiers

demo:hold(LiftTime), %% go down again

skilift(SkiQueue, Tally, LiftTime, Capacity).

%% get_skiers/2 releases the skiers that currently are passivated on the

%% current skiqueue. The skilift can not take more skiers than its capacity.

get_skiers(Capacity, SkiQueue) when Capacity =< 0 ->

[]; %% can not take more skiers

get_skiers(Capacity, SkiQueue) ->

case demo:pop(SkiQueue) of %% try to get one more

false -> %% failed
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[];

Pid -> %% succeeded

[Pid | get_skiers(Capacity - 1, SkiQueue)]

end.

%% create_skiers/2 creates a number of skiers. Each skier has knowledge of the

%% skilifts and skiqueues that exists.

create_skiers(0, _) ->

true;

create_skiers(Number, QueueLiftList) ->

demo:new_P(queue_ex, skier, [QueueLiftList]),

create_skiers(Number - 1, QueueLiftList).

%% skier_loop/1 represents the behaviour of a skier. The skier first selects

%% a skilift to go with and a skiqueue to wait in. When the skier has been

%% transported to the top it will take some time to get down the mountain

%% again.

skier(QueueList) ->

{SkiQueue, SkiLift} = %% select lift and queue

get_queue_and_lift(QueueList),

demo:push(SkiQueue). %% wait in skiqueue

demo:passivate(SkiLift). %% go with skilift

Time_DownHill = dis:randint(10, 20),

%% A skilift to go with and a skiqueue to wait in. When the skier has been

%% transported to the top will it take some time to get down the mountain

%% again.

skier(QueueList) ->

{SkiQueue, SkiLift} = %% select lift and queue

get_queue_and_lift(QueueList),

demo:push(SkiQueue). %% wait in skiqueue

demo:passivate(SkiLift). %% go with skilift

Time_DownHill = dis:randint(10, 20),

demo:hold(Time_DownHill), %% ski downhill

skier(QueueList).

%% get_queue_and_lift/1 selects which lift and queue the skier shall go with.

get_queue_and_lift(QueueLiftList) ->

Nr_Of_QLs = length(QueueLiftList), %% select a tuple at

QL_Number = (random:uniform(10000) rem Nr_Of_QLs) + 1, %% random

lists:nth(QL_Number, QueueLiftList).
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9.5 Construct own resources

The user is free to make resources on his own by using my concept or any other idea.

To help him there are some functions that the demo_resource module exports. The

user may use the same base functions that are used by my resources for synchronization

between processes and a resources. The functions that the resources uses are:

demo_resource:passivateR/1

which tells the eventhandler that a process has been passivated on the resource.

demo_resource:activateR/2

which tells the eventhandler that a process that is passivated on the resource shall

be activated. It is up to the eventhandler when the process shall be activated

again.

demo_resource:unpassivateR/2

which takes a process that is passivated on the resource and passivates it on a

process instead.

demo_resource:repassivateR/2

which passivates a process, that not yet has been passivated on the resource, on

another process.

The call to demo:new_R that creates the resource is not necessary, it just informs the

eventhandler about its existence and let the eventhandler link to it. The eventhandler

can also take calls from unregistered resources if they are made in the right order. For

example shall a resource passivate a process before it can release it.

An example of an ownde�ned resource is a selector resource. The resource gets

information by messages about attributes and demands from processes and singles

out the best combination of processes. For example: a marriage counsel process can

get demands from both men processes and women processes to put together the best

couples.
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10 Probability distributions

Figure 10.1 Di�erent normal distributions

Operations to generate probability distributions are also de�ned in the simulation pack-

age. The distributions can be used by processes, for example, to decide how long time

a work shall be take, the lifetime of a component, etc.

10.1 Module random

The basic random number generator used in my simulation package is built on the ran-

dommodule in Erlang. The random generator must be initialized with a random:seed()

or a random:seed(Nr1, Nr2, N3) call. A random:uniform() call returns a random

oat between 0 or 1 and a random:uniform(Nr) call returns a random integer between

1 and Nr.

All distributions that can be generated built on the random:uniform call and it is

therefore demanded that the a random:seed call has been made by the same process

that wants a value from a distribution. All calls are made in the module dis.

10.2 An example

Repeated calls to the function dis:normal(Nr1, Nr2) will return drawings from the

normal distribution, using the Box-M�uller method, with the mean = Nr1 and variance

= Nr2 * Nr2.

See appendixC for more information about probability distributions.
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11 A radio tra�c simulation application

When a working simulation package have been constructed the next step where to

test it with some applications. The applications should be able to detect missing

functionality, and to compare the performance of my simulation package with others.

Two di�erent companies that are working with simulation were contacted, ERA-t and
�Angpannef�oreningen. The results from the application made for �Angpannef�oreningen

will be given in the next chapter. The ERA application will be presented in this chapter.

11.1 Assignment

ERA-t is a department at Ericsson in Sweden that is working with radio tra�c simu-

lations. A working model called SIMON implemented in C++ were present at ERA-t.

A short description of SIMON can be found in the papers from ERA-t:

'The purpose of the SIMON simulator is to collect all that is common among mobile

telephony systems simulation in a category of classes. These classes describe basic

behaviors and features of all mobile telephony systems. These classes are then used

when writing an application for simulating a particular kind of system.'

My assignment bacame to implement a minor part of the SIMON model in Erlang,

using my simulation package.

Figure 11.1 Mobiles connected to a radio station

11.2 The radio tra�c model

The radio tra�c world consists of a moving mobiles that connects to antennas over an

area. Each place where an antenna is placed is called a site. The area that an antenna

covers (the area where a mobile can connect to the site) is called a cell. An antenna

and a mobile can connect on several special frequencies. Each frequency is diveded
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into a number of timeslices. When a mobile connects to a site it is made on a special

frequency and timeslice on that frequency. Many mobiles can therefore be connected to

one site at the same time. A mobile moves, connects and makes measurements towards

sites.

To generate mobile tra�c di�erent tra�c generators may be used. By having dif-

ferent tra�c generators that coveres di�erent areas and can be overlapping each other,

di�erent tra�c intensities can be achieved.

A mobile has a position, an antenna and a distance to a connected site. These

parameters decides the signal strength of the connection between a site and a mobile.

Values measured during a simulation are:

Signal strength (SS) value

Several sites (not neighbours) can send on the same frequncy. The SS value

is the sum of contributions in signal strength from all sites that sends on the

same frequency. To complicate the picture a neighbour frequency will also give a

smaller contribution to the SS value. When a mobile has calculated the SS values

on all di�erent possible frequencies it will try to make a connection to the closest

site that sends on the frequency with the best SS value. If all time slices on the

frequency are occupied by connections a mobile can be refused a connection.

Carrier over interference (C/I) value

The C/I value is the relation between the calculated SS value (C) and the sum

of the disturbing connections (I) on the same frequency and timeslice but on

di�erent sites.

Carrier over adjacent (C/A) value

The C/A value is the relation between the calculated SS value (C) and the sum

of the connections on neighbour frequencies on the same timeslice (A).

Up- and downlink

In reality the mobile and the site has two di�erent connections, one uplink- (mo-

bile to site) and one downlink- (site to mobile) connection. All values must be

therefore be calculated in both directions.

Handover

When a mobile moves across the site cell border the SS value toward the connected

site may become to low. The mobile will therefore try to connect to another site.

This is called a handover. When a mobile makes a handover it will �rst remove

the present connection and try to make a new connection to another site. If the

mobile fails to make the new connection it is called a handover fail.

11.3 The ERA-t model

In the ERA-t model only one mobile can be active at the same time. When the mobile

has moved and measurements have been made, the mobile will be rescheduled to a

later time (make a hold call) and placed at the end of the list of waiting mobiles.
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During each activation of a mobile it will calculate the SS, C/I and C/A values, make

handovers etc. The SS-value is calculated through a large two-dimensional radio path

matrix where mobiles are indexed on one side and site on the other. Each radio path

is calculated with help of a path loss value, L0 and a fading value, Lf.

The largest problem with the ERA-t model I found were that only one mobile can

be active and make measurements at the same time, only one mobile can use the array

at the same time and that only a few of the radiopath values in the array are used

when a mobile calaculates its current values.

Path Matrix

L0, Lf

L0, Lf

L0, Lf

L0, Lf

L0, Lf L0, Lf

Mobile Stations

Sites

Connection

Connection

Connection

Connection

Connection

Connection

Connection

Connection

Connection

Connection

Connection

Timeslot Timeslot Timeslot Timeslot Timeslot TimeslotTimeslot

Connection Connection Connection

Connection

Connection

Up Link List

Frequence 1 Frequence N Frequence N + 1 .   .   .   . Frequence 2 * N.   .   .   .

Down Link List

TDMA Radio Resource Manager

L0, Lf

L0, Lf

L0, Lf L0, Lf

L0, Lf

L0, Lf

Figure 11.2 The radio resource manager model in the ERA-t model

11.4 The Erlang model

The Erlang model uses the fact that all facts about a site are static. This means that

the sites position value and antenna value will be constant during the whole simulation.
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Figure 11.3 The path matrix are separated among the mobiles

11.4.1 Mobile

Each mobile is represented by two Erlang processes. One of the processes (the mover

process) is scheduled by the eventhandler and generates the moving pattern of the mo-

bile. The other process (themobile process) is the process that calculates the SS -values,

handles up-and down connections towards the sites and talks with radio resources (see

below). By separating a mobile in two processes it is possible to get information from

a mobile during the simulation even though it is suspended by the eventhandler. Each

mobile will have information about all the sites in the system, (called the path list). This

will lead to that the same information is duplicated among several mobile processes,

but will remove the bottleneck with one large radio path matrix.

It is not necessary to represent the mobile with two processes. To reduce the num-

ber of processes in the simulation is it easy to transform the mover and mobile process

to one process.
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Figure 11.4 The Erlang process oriented radio tra�c simulation model

11.4.2 Radio resource

Each frequency will be represented with a process and be called a radio resource pro-

cess. A radio resource will handle all connections between mobiles and sites on the its

corresponding frequency.

11.4.3 Manager

There are a few processes called managers that are used to start the simulation, creates

mobiles (tra�c generator manager, TGM) and radio resources (radio resource manager,

RRM). By giving the start manager di�erent input parameters the simulation can be

made in a certain direction.
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11.4.4 Action at an event

Several mover processes can be activated at the same time. When a mover process

gets activated it will calculate where to move and send the new position to the mobile

process. The mobile process uses the new position value and its radio path list to

calculate the new SS value to the connected site. The SS value will be sent to the

radio resource that manage the frequency. After that the mobile will check if it shall

do a handover to another site. If it shall is a 'remove connection' message sent to

the radio resource with the old frequency and a 'add connection' message sent to the

radio resource with the new frequency. When the mobile process is ready it will send a

'ready' message to the mover process. The moverprocess will then make a demo:hold

call that suspends the process on the eventhandler until it shall be activated again.

The radio resource process are not scheduled by the eventhandler. It can receive

messages from mobile processes telling it to 'add' or 'remove' connections and may also

receive SS values from mobiles that already are connected. The radio resource uses

the SS value to calculate the C/I and C/A values. The C/I value can be calculated

by the radio resource itself, but the C/A value must be calculated by cooperation of

radio resources. The adjacent values to a frequency is held by the radio resources that

represents the neighbour frequencies. The radio resource process will send a request

for the adjacent value and the neighbour radio resource process will answer with the

its calculated value.

11.5 Di�erences between the models

Di�erences between the Erlang model and ERA-t model are several. In the Elang

model several mobiles can be activated at the same event, the large radio path matrix

is eliminated and is instead spread out on the mobiles, the radio resource structure is

represented by several processes instead of one large structure, the calculations made

by a radio resource can be made during or after the calculations made by a mobile pro-

cess. By splitting the calculations made by mobiles and radio resources the simulation

becomes very suited for distribution.

Problems with the Erlang model are few but still important to notice. I can not

guarantee that cars activated at the same event will send their messages in a certain

order. This means that we can not be quite sure what values that the C/I and C/A

values are calculated from. If we only allow one mobile to be running at the same event

(sequential mode), like in the ERA-t model, this will not be a problem.

11.6 Conclusions

Conclusion and the thoughts of the radio tra�c simulation application are:

� Radio mobile telephony showed to be much more complicated than I �rst could

have guessed. This were the largest reason to that the radio tra�c model I build

had to be reconstructed from the beginning several times. My belief is that if I

had got all relevant facts in an understandable way from the beginning my upstart
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time would have been a little bit bigger, but the whole application construction

time smaller. The construction of the model took therefore too much time.

� The functionality of the ERA-t model is much larger than my model but my task

were just to make a minor part of their model and not a complete copy.

� I received much information about classes in SIMON but didn't get any wiser. If

this depends on C++ or on ERA-t is though hard to tell.

� The model only used the demo:hold call of the simulation primitives in my pack-

age. It would have been much more fun to test my simulation package more

throughout. The work became more a work in Erlang than a work in simulation.

� By distributing the simulation the radio resource processes can be placed on one

node and the mobiles be placed one or several other nodes. This distribution

model can though not be guaranteed to �t every radio tra�c application.
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12 A mining simulation application

A department at �AF-industriteknik AB in Sweden that is working with simulations

was contacted to give me the needed information for the second application. The

department implements their simulation applications mostly in Simula but also in C++.

It is mostly known for their train simulations made for SJ (Swedish railroads).

12.1 Assignment

It was decided that an application already made by the department should be remade,

in Erlang, by me. The �rst problem therefore became to choose an application that

were both interesting and small enough for the remaining time of the examwork. A

mining simulation application made in Simula for Boliden Mindeco were decided as test

application.

The application should simulate a mine with galleries, machines and mine workers.

When a gallery shall be extracted it is made through a number of recurrent stages.

Each stage consists of a number of working steps that must be performed in certain

order. For example, the steps to extract a stage in a gallery could be: 1. bore the

stage, 2. loaded the stage with explosive charges, 3. blow the stage into pieces, 4.

safety control the stage, 5. carry away the largest stones from the stage, 6. clear the

stage wall and ceiling, 7. remove the rest of the stones from the stage. For each step

special machines and competent personal must be present.

The model should be able to answer questions on how the mining will be inuenced

by changes in the simulation world parameters. For example, machines or personal can

be added or removed, personal can be further educated, personal working shift can be

changed or machines can break down.

The purpose of the application can be read in the papers from �Angpannef�oreningen:

'The purpose of the simulation model is to extract methods, under preserved or in-

creased production, to reduces the number of galleries and the total waiting- inclusive

transport time'.

My assignment became, by using the demo package, to implement the whole mining

simulation model in Erlang.

12.2 The Simula model

The already existing model was implemented in Simula by personnel from �Angpanne-

f�oreningen. The model consists of a two dimensional area were a mine with one or

several galleries are present. The �gure below shows a mine with four galleries, A, B,

C and D. Each gallery is divided into a number of stages, for example B is divided into

four stages. A gallery extracts its stages in the order of the numbers. Some galleries

has to wait for other galleries to be ready with their stages, for example gallery D can

not be extracted before gallery C is �nished with its third stage.
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Figure 12.1 A mine with four galleries

Each gallery and machine is represented as an object in the Simula model. The workers

are represented as one object that adds or deletes manpower depending on shift time

or sickness of the workers. There are also an separate object that keeps the distance

between the other objects in the simulation.

Every time a gallery shall begin the next step in the current stage a number of

machines and workers must be achieved. For each achievement the gallery must both

try to maximize the machine utilization and minimize the waiting- and transport time.

This means that the model must be able to plan for the future and to check when

machines and workers becomes available. For example it may be smarter to wait for

a machine to be free near a gallery, instead of having another, at the moment free

machine, be transported to the gallery from a distant place. A priority system is

able to give certain combinations of galleries, machines and workers larger weight than

others. The user is also able to stop the simulation to choose a certain combination. A

gallery is also able to interrupt another gallery if it wants machines or manpower that

the other gallery currently has taken.

The decision of which machines and workers that shall be given to a gallery is made

by the gallery itself. The decision is made by examine attributes of the other galleries,

machines, manpower object and distance object, and is a bit complicated. A gallery

shall also react in a prede�ned manner when it gets interrupted.

The user is able to steer the mining simulation by setting a large number of input

parameters.

12.3 The Erlang model

The Erlang mining simulation model should have the same functionality as the Simula

model. If you runs the di�erent applications with the same input parameters the

resulting simulation values shall be almost equal.

I choose to represent each gallery, each machine and each worker as a separate pro-

64



cess. The distance between the di�erent objects in the simulation (processes) are kept

by an separate distance process. Instead of letting each gallery processes decide which

machines and workers it shall achieve, the decision making to is moved to two separate

processes, a union- and a coordinator process. Each time a gallery wants a machine

or workers it will send requests to the decision processes. The decision processes keep

records of the machines and workers that are free or taken and are therefore able to

ful�l demands of di�erent processes according to the priority system.

process
Union Coordinator

process
Distance
process

Machine Front
processesprocesses

Worker
& dumper
processes

scheduled by the eventhandler process

Eventhandler
process

communicates with the
scheduled processes

coordinator processes

Figure 12.2 The mine simulation model
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12.4 Conclusions

Conclusion and the thoughts of the application are:

� The time needed to construct an application of this size were clearly underesti-

mated. Due to the fact that the ERA-t application took too much time, less time

where available for the mining application. The application and the model are

therefore just the guidelines of how I wanted to solve the di�erent problems.

� The application were clearly distinguished from the ERA-t application. The

ERA-t application only used demo:hold of all simulation package (demo) prim-

itives. The �Angpannef�oreningen application instead used almost everyone. The

problem didn't lie in the Erlang programming as in the ERA-t application but

were instead a simulation synchronization problem. A lot of missing functionality

where detected, and had to be added to the demo package. For example the abil-

ity to interrupt processes and the demo:attribute calls. The mining application

was not time critical, there was no need to distribute the simulation application.

� All the needed information for the simulation where given from the beginning.

The upstart time where therefore smaller than in the ERA-t application.

� The Erlang code for the application, as far as I was able to proceed, became much

simpler, shorter and survey able then the Simula code. This is a strong argument

for using Erlang in simulation applications instead of imperative languages.
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13 Distributed simulation

When the Erlang simulation package was ready the next task was to investigate the

possibility to distribute the simulation. The idea was to extend the simulation package

with distribution primitives that are built on the mechanisms for distribution that are

available in Erlang.

13.1 Distribution in Erlang

Fundamental for understanding distribution is to understand the node concept. A node

is an executing Erlang system which has told its nodename and network address to the

network nameserver. Processes can be spawned on remote as on local nodes. Processes

can send messages and create links to processes on remote nodes. The sending of a

message to a process on a remote node is syntactically and semantically identical to

sending a message to a process on a local node. It is also possible to register a process

globally so that all processes over the network can access the process.

The coupling of nodes in Erlang is extremely loose. Nodes may come and go dy-

namically in manner similar to processes.

The programmer does not need to be concerned with details of the set-up of con-

nections between nodes. All that has to be made is to use the node in a send expression

or any other expression involving a remote process. Whenever a node needs to com-

municate with another node the Erlang system takes care of setting up the connection.

By using the distribution mechanisms present in Erlang the task to distribute the

simulation did not became to hard to realize.

13.2 Why distribute the simulation?

When I looked at the possibility to distribute my simulation package, I looked at what

must be the possible bottleneck (not a big one), the large communication between the

simulation processes and the eventhandler. Some of the processes may also want to

do large and time consuming calculations that the rest of the processes must wait for,

which may slow down the simulation.

Two di�erent alternatives to distribute the simulation package were investigated:

� One eventhandler, processes on di�erent nodes.

� One global eventhandler, many servers and processes on di�erent nodes.

In the following sections both investigated methods are described in more detail.

13.3 One eventhandler, processes on di�erent nodes

The "one eventhandler process with processes located on di�erent nodes" -model can

be used when the number of processes are very large and wants to do time consum-

ing calculations. The large problem with the model is that communication between

processes not located on the same node increases. All operations, that inuences the

state of the simulation, must be made over the network. The nonlocal communication
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is much more time consuming then normal message passing. The model is therefore

most appropriate when processes not are using the prede�ned simulation primitives to

much when they interact with one another. Also, the model will not be able to solve

the bottleneck problem.

13.4 One global server, eventhandlers and processes on di�erent nodes

It is often possible, in a simulation model, to separate between two or more groups of

processes that will interact with one another much more than with the other processes

during the simulation.

The approach is to let the constructor separate these process groups by himself.

Each process group will be placed on a separate node and have an eventhandler on

their own. All eventhandlers will be scheduled by a global event handler that makes

sure that no eventhandler activates any process before the other eventhandlers allows

it. If each node is located on a separate machine it is possible to make the simulation

really distributed. The global eventhandler will not schedule any simulation processes

but only handle the di�erent eventhandlers.

A process can interact with a nonlocal process or resource in exactly the same way

as with a local process. Almost all things that are possible when the simulation is

running in non distributed mode is also possible when it runs in distributed mode.

Due to the fact that process communication over the network takes longer time than

normal communication, it is important to plan the processgroups so that nonlocal

communication is minimized.

13.4.1 Start the global server

The distribution is started by the creation of the process that will schedule all the

eventhandlers, this is done with the demo_global:start(NodeList) call. The created

process will be called the global eventhandler. The global eventhandler process will

be running at the node that is local to it (if the demo_global:start/1 call not is

spawned on a separate node). The input argument to the demo_global:start call is

a list of nodes where eventhandlers shall be started. It is not possible to create two

eventhandlers on the same node or to create an eventhandler on a node where a even-

thandler already is running. The global eventhandler process will be globally registered

by the name demo_global on all nodes where the eventhandlers are running.
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Figure 13.1 Distributed simulation model

13.4.2 Create a process on a nonlocal node

A process can be created on a remote node with a demo_global:new_PN call. The

demo_global:new_PN corresponds to the demo:new_P calls that is made on a local

node. The only di�erence is that the demo_global:new_PN call have the node where the

process shall be spawned on and scheduled by the eventhandler as an extra argument.

13.4.3 Global calls

There are some calls that can be made to the global server that a�ects all the exe-

cuting eventhandlers. For example it is possible to turn on or o� the tracing on all

eventhandlers. All these calls are made with the demo_global module. See appendixD

for more information about demo_global calls.
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13.4.4 Local calls

Almost all calls that can be made to steer the simulation on a local eventhandler when

a simulation is running in nondistributed mode can also be made when the simulation

is running in distributed mode. For example, it is possible to set the simulation to

sequential mode on one eventhandler and still have the simulation running in parallel

mode on the other eventhandlers.

All calls that handles interaction between processes can be made in exactly the

same way as they were made in the local simulation. Processes can communicate with

nonlocal processes, passivate on nonlocal processes and resources, get attributes from

nonlocal processes etc.

The only calls that not are permitted when the simulation are running in distributed

mode are local demo:suspend and demo:resume calls. The reason for that will be

explained in the following section.

13.4.5 Implementation

The global eventhandler uses the demo:suspend and demo:resume calls to schedule

all local eventhandlers. When an eventhandler has �nished an event (all simulation

processes are ready) it will examine at what event it shall stop the next time. The

stop time and the current time in the eventhandler is thereafter sent to the global

eventhandler. When the global eventhandler updates its time to the next event the

eventhandlers that are scheduled to execute its next action on that event are restarted.

You can compare this to the demo:hold() call that a process will do to an eventhandler

when it shall be suspended.

13.4.6 Problems with distribution

The extension from "one node simulation" to "distributed simulation" became very

simple. Though, some changes on the simulation package had to be made:

� To be sure that the demo:suspend or demo:resume calls only are made when

they are allowed, tests to check if the global eventhandler is running must be

implemented.

� All calls that involves interaction between two or more processes had to be remade

as several calls. The reason for that is that the processes can be scheduled by

di�erent eventhandlers that want one separate call to change their internal state.

� The eventhandler must send information to the global eventhandler every time it

is stopped or changes its next stoptime.

� Operations to create processes on nonlocal nodes had to be implemented.

� Operations that allows processes to migrate from one eventhandler to another

had to be implemented. (Not real process migration, just change of eventhandler

process).
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The global eventhandler and the calls to change its way to steer the simulation had to

be implemented.

13.4.7 Appropriate simulation applications

The distributed simulation model is best suited for large process simulations where

many processes are activated at the same event. It is also preferable if the simulation

processes can be separated in a number of process groups.

13.4.8 Even more distribution

If an application becomes very large it is fully possible to create an eventhandler that

schedules a couple of global eventhandlers. Or if it gets really huge, create a even-

thandler that schedules the eventhandlers that schedules the eventhandlers that sched-

ules the eventhandlers that schedules the processes, etc.

%% An example of a distributed simulation program where two processes

%% interrupt each other, resulting in that 'Hello world!!' is written

%% on the screen. The processes are scheduled by two separate event-

%% handlers that are located on two separate nodes.

-module(dist_test),

-export([p0/2, p1/0, p2/0]).

p0(Node1, Node2) -> %% start global server and eventservers

demo_global:start([Node1, Node2]), %% on the nodes Node1 and Node2.

demo_global:trace_g(), %% start trace on global server

%% create process on node Node1

P1 = demo_global:new_PN(Node1, dist_test, p1, []),

%% create process on node Node2

P2 = demo_global:new_PN(Node2, dist_test, p2, [P1]),

P1 ! P2,

demo_global:resume(). %% start simulation

p1() ->

receive

P2 -> %% receive the pid of P2

demo:interrupt(P2, 'Hello '),%% interrupt P2

demo:hold(1), %% wait to be interrupted

Message = demo:get_interrupt(), %% get interrupt message

io:format('~w',[Message]), %% print message

end.

p2(P1) ->

demo:hold(1), %% wait to be interrupted

Message = demo:get_interrupt(), %% get interrupt message

io:format('~w',[Message]), %% print message

demo:interrupt(P1, 'world!!'). %% interrupt P1
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14 Erlang as simulation glue

An interesting extension of Erlang's usefulness in simulation purposes is as a glue

between non parallel simulation systems. An Erlang process can be assigned the task

to coordinate the di�erent simulation systems. The scheduled systems can, for example,

be a couple of C++ or Simula systems or a mixture of both. If the di�erent systems are

located on remote nodes Erlang's distribution mechanisms can be used to distribute

the simulation.

As you can see, real parallel execution can be achieved in a non parallel simulation

language with the use of Erlang. Figure 14.1 shows a possible model for coordination

of several di�erent simulation systems.

Erlang 
process

Erlang 
process

Erlang 
process

communicates
via a port

communicates
via a port

communicates
via a port

simulation 
C++

system
simulation 
system

Simula 
simulation 
system

processes are scheduled by an eventhandler

Eventhandler
process

NODE 1

NODE 3NODE 2 NODE 4

Erlang

Figure 14.1 Di�erent simulation systems coordinated by Erlang

The distribution granularity and the use of Erlang depends on the speci�c simulation

application. It is therefore important that the di�erent systems can be scheduled in a

similar manner.
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15 Conclusions

The conclusions that can be drawn from using Erlang in simulations are:

� Erlang is a language that is easy to learn and program. The light-weight process

concept introduces the programmer to a new way of thinking, and the declarative

programming style makes the code shorter and more error secure. By using

Erlang the programmer doesn't have to handle hard programming problems (at

least I didn't), like pointers in outer space, instead he could concentrate on the

real simulation problems.

� The process oriented simulation model became a little more complicated then

the comparable object oriented simulation model (Simula). This is because the

simulation state is held by a single process in Erlang instead of several objects, as

in Simula, and that simulation processes are allowed to execute in parallel. It has

been my hope to hide as much as possible of the di�culties for the programmer,

and instead let him concentrate of the real simulation problems.

� The Erlang simulation model is very suitable to large simulations with big par-

allelism. The simple distribution mechanisms in Erlang makes the extension to

distributed simulation really easy.

� Both conservative and optimistic simulation models can easily be implemented

in Erlang. The light-weight processes and the simple message passing primitives

are very appropriate for these kind of simulations.

� Interesting e�ects are achieved by letting several simulation processes execute in

parallel. It is my belief that this is more like in real life where several things can

happen simultaneously. The

� By using Erlang's error handling mechanisms it is easy to achieve an error secure

simulation. The whole simulation will not be stopped if a process terminates

abnormally.

� The use of Erlang as simulation glue is an describing example of Erlang's many

program eventualities.
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16 AppendixA

Below is a list of the speci�c commands that the eventhandler can handle:

Start Commands

demo:start()

starts the eventhandler process. This must be made before any other call is made. If the
eventhandler already is started an error message is printed and false is returned. Otherwize the

eventhandler process is started and the �le descriptor (pid) of the created eventhandler process

is returned.

demo:start(Module, Func, Args)

starts the eventhandler process with an executing process. The arguments are module, function
and argumentlist of the function. The same result can be achieved by a demo:start() call

and demo:new_P(Mod, Func, Args) call. The �le descriptor (pid) of the created eventhandler

process is returned.

demo:start(Module, Func, Args, Time)

starts the eventhandler process with an executing process. The arguments are module, function,
argumentlist and the eventtime to start the function. The same result can be achieved by making

a demo:start() call and a demo:new_P(Mod, Func, Args, Time) call. The �le descriptor (pid)

of the created eventhandler process is returned.

demo:start(Module, Func, Args, Time, Priority)

starts the eventhandler process with an executing process. The arguments are module, func-
tion, argumentlist, time to start the function and priority of the process. The same result can be

achieved by making a demo:start()call and demo:new_P(Mod, Func, Args, Time, Priority)

call. The �le descriptor of the created eventhandler process is returned.

Termination Commands

demo:stop()

terminates all simulation processes, resources and the eventhandler process, i.e. ends the simu-

lation. Returns true.

demo:reset()

terminates all simulation processes and resources but not the eventhandler process. Returns

true.

demo:kill_current()

terminates all at the moment active simulation processes. This command is useful when one ore
more processes has deadlocked. Returns true.

demo:kill(Nr1, Nr2, Nr3)

Kills a process by sending it a exit message. The arguments are the process pidnumber (<Nr1, Nr2, Nr3>

= Pid). Returns true.

Suspend Commands

demo:suspend(Time)

suspends the eventhandler process. The argument to suspend can be next which means that
the simulation will stop at the next event, or a positive number which means that the simulation

will stop at the current time + Time. Returns true or false.

demo:suspend_at(Time)

suspends the eventhandler process at a speci�c time Time. The argument to demo:suspend_at

is a positive number and shall be larger than the current time. Returns true or false.
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demo:suspend_reg(Time)

suspends the eventhandler process at regular time intervals. The argument to suspend_reg can

be next which means that the eventhandler will stop regularly after each event, or a positive
number which means that the simulation will stop regularly with a time interval of the number.

Returns true or false.

demo:suspend_del()

removes all suspendpoints from the eventhandler process. Returns true.

Resume Commands

demo:resume()

restarts the eventhandler when it has been suspended. demo:resume() shall also be called to
start the simulation after all initializations have been made. Returns true.

demo:resume_del()

restarts the eventhandler when it has been suspended and removes all suspendpoints. Returns

true.

Time Commands

demo:event_time()

returns the current eventtime in the simulation.

Information Commands

demo:r()

returns all simulation resources, more for debugging reasons.

demo:p()

returns all simulation processes, more for debugging reasons.

demo:e()

returns the eventtree in the eventhandler, more for debugging reasons.

demo:s()

returns the attributelist in the eventhandler, more for debugging reasons.

demo:c()

returns a list of all active processes, more for debugging reasons.

Concurrency Commands

demo:set_concurrency(Mode)

sets how the eventhandler shall run processes scheduled at the same event. The Mode form can

be sequential or parallel. parallelmeans that all processes scheduled at the same time will

be merged together into a single event and be activated in parallel. sequential means that
only one process can be active at the same time. If two process are scheduled at the same time

one process will �rst execute, and when it is ready, the second process will be activated. In
sequential mode a process with higher priority will start before a process with lower if their

starttimes are equally. Default value is parallel. Returns true or false.

Granularity Commands

demo:set_granuality(Granularity)

sets the granularity in the eventhandler. The argument is a positive number which indicates

in how large timesteps the eventhandler shall step forward. For example, if Granuality is 50
and the current time is 30 the eventhandler will start all scheduled processes between 30 and

80 at the same time. If a process starts, stops and starts again in the same granularity interval
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this is done sequentially. An granularity larger then 0 implies that the concurrency mode will

automatically be parallel. Default value is 0. Returns true or false.

Trace Commands

demo:trace()

turns on the tracer for the simulation. Returns true.

demo:notrace()

turns o� the tracer for the simulation. Returns true.

Create Process Commands

demo:new_P(Mod, Func, Args)

creates a new process to be scheduled by the eventhandler at the current time and with priority

0. The arguments are module, function and argumentlist to the function. Returns the �le
descriptor (pid) of the created process.

demo:new_P(Mod, Func, Args, Time)

creates a new process to be scheduled by the eventhandler at the time speci�ed in the fourth

argument. The arguments are module, function, argumentlist and starttime. Returns the �le

descriptor (pid) of the created process.

demo:new_P(Mod, Func, Args, Time, Priority)

creates a new process to be scheduled by the eventhandler with the priority as speci�ed in

the �fth argument. The arguments are module, function, argumentlist, starttime and priority.
Returns the �le descriptor (pid) of the created process.

Filehandler Commands

demo:open_file(Filename, Mode)

opens a �le. The arguments are the name of the �le and Mode. The Mode can be read, write
or read_write. The command corresponds against the file:open/2 command in Erlang. To

make sure that the �le will exist during the whole simulation, (and not exit with the process

that creates it), the eventhandler will handle the opening of the �le. Returns {error, open} if
the opening failed or a �le descriptor (pid) if the opening succeeded.

Hold Commands

demo:hold(Time)

passivates the calling process and schedules it to be activated at the current time + Time. Time
shall be a positive number. Returns true or false.

Cancel Commands

demo:cancel()

removes the current process from the simulation. The only way the process can be reactivated
is with a demo:interrupt call from another process. Returns true or false.

Passivate Commands

demo:passivate(Pid)

suspends the calling process on another process. The argument is the corresponding process
descriptor (pid) of the process that the process shall be suspended on. The calling process is

suspended until it gets activated (demo:activate) or terminated by the eventhandler. Returns

true or false.

demo:passivated()

returns a list of processes that are passivated on the calling process.
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demo:passivated(Pid)

returns a list of processes that are passivated on the process Pid.

Repassivate Commands

demo:repassivate(PidOn, Pid)

repassivates a process Pid, that already is passivated on on the calling process, on the process
PidOn. Returns false if the process Pid not is passivated on it or if the PidOn not is registered,

otherwize true.

demo:repassivate_all(PidOn)

repassivates all process, that already are passivated on the own processes, on the process PidOn.

Returns false if the process PidOn not is registered, otherwize true.

Activate Commands

demo:activate(Pid)

Immediately activates a process that are passivated on the calling process. Takes the pid of
the process that shall be activated as argument. If the process not is passivated on the calling

process the process is not activated and false returned. Otherwise the process is activated and

true returned.

demo:activate(Pid, Time)

activates, at the speci�ed time, a process that are passivated on the calling process. Takes a

�le descriptor and a positive number as argument. If the process with the �le descriptor not

is passivated on the calling process no process is activated and false returned. Otherwise the
process is activated at the current time + Time, and true is returned.

demo:activate_all()

activates all processes that are passivated on the calling process. All passive processes are

actitivated immediately. Returns true.

demo:activate_all(Time)

activates, in time Time, all processes that are passivated on the calling process. Takes a positive

number as argument, and activates all its passivated processes at current time + Time. Returns
true.

Priority Commands

demo:get_priority()

returns the priority of the calling process. The default value is 0.

demo:get_priority(Pid)

returns the priority of the process Pid. Returns false if the process not is a simulation process.

demo:set_priority(Priority)

sets the priority of a process. A process can only set its own priority. Returns the old value of

the priority.

Interrupt Commands

demo:interrupt(Pid, Message)

interrupts a process if the process is suspended on the eventhandler. If the process not is

suspended in the eventhandler it can not be interrupted and false is returned. Otherwize the

process will be activated with the interrupt message Message.

demo:get_interrupt()

returns the message used to interrupt the calling process. If the calling process not were inter-
rupted undefined or the previous interrupt message is returned.
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demo:set_interrupt(Message)

sets the interrupt variable on the calling process to message Message. Is useful when the process

wants to reset its interrupt message to undefined after it has been interrupted. Returns the old
interrupt message.

demo:turn_interrupt(OnOff)

Turns o� or on the possibility for another process to interrupt the process. The argument can be

on (can be interrupted) or off (can not be interrupted). Returns the old value of the variable.

Attribute Commands

demo:set_attribute(Attribute, Value)

Sets the attribute Attribute to the value Value. Other processes can have access to the value
via demo:get_attribute calls. The attribute can only be set by the own process. This is

implemented by using the process dictionary.

demo:get_attribute(Pid, Attribute)

�nds the value of an attribute that belongs to another process. If the attribute not was found

undefined is returned. If the value was found it is returned.

demo:get_all_attributes(Pid)

returns all attributes that belongs to a process. The attributes are returned as a list of
{attribute, value} tuples.

Error Commands

demo:stop_when_error(TrueOrFalse)

sets if the simulation shall stop when the eventhandler discovers an error or when an a registered

process has exited abnormally. If the argument is true the simulation will stop. If the argument
is false the simulation will not stop. The default value is false.

demo:set_error_log(Arg)

sets where the eventhandler shall write generated error messages. The argument can be standard_io

(standard output) or a process identi�er (pid). The default value is standard_io.
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17 AppendixB

Below is alist of the speci�c resource commands that the simulator can handle:

General Resource Commands

demo:new_R(Module, List)

creates a new resource process and links it to the eventhandler. The arguments are module and
initialization list. The resource is initialized with the initialization list, (List). Returns the �le

descriptor (pid) of the created resource.

demo:call_R(Resource, Function, Args, Priority)

calls a resource. Every call to an object, that not is a report call, must be made with

call_R. The arguments are process descriptor (pid) of the called resource process, function, argu-

mentlist and priority. The module parameter were speci�ed in the creation of the resource.

Returns a value from the resource or passivates the calling process.

demo:report_R(Resource, Function, Args)

calls a resource with a report request. The arguments are �le descriptor of the resource process,
function and argumentlist. The resource writes the report to a speci�ed output. The module

used is the demo_resourcemodule. The report functions are common functions to all resources.

Returns a value from the function.

Reports Commands

demo:reportR(Resource)

tells the resource to write a report to the report�le.

demo:report_headingR(Resource)

tells the resource to write the indexes of the variables that shall be reported.

demo:set_reportfileR(Resource, File)

sets the �le that the resource shall write its reports to.

demo:reset_reportR(Resource, ReportFile)

resets the variables that the resource shall report.

demo:add_reportR(Resource, IndexVariable)

adds a indexvariable to the ReportList of the resource.

demo:del_reportR(Resource, IndexVariable)

deletes the indexvariable from the ReportList of the resource.

Information Commands

get_all_attributesR(Resource)

returns the AList of the resource.

get_attributeR(Resource, Attribute)

returns the value of the attribute thet corresponds to Attribute. If not found false is returned.

set_attributeR(Resource, Attribute, Value)

sets a value of an attribute in the AList of the Resource. To be used carefully.

Count

Variables

The count resource has �ve variables in the AList that represents the state of resource:

1. observations, the number of demo:update calls made to the count since the last call of demo:reset.

2. sum, the sum of input values since the last call of demo:reset.
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3. resettime, the last time the count were resetted.

4. report, the list of items that shall be reported.

5. �le, the �le to write reports to, default is standard io.

Commands

demo:new_R(count, [])

creates a count resource.

demo:update(Count) or demo:update(Count, N)

increments sum with 1 respective N and observations with 1.

demo:reset(Count)

sets sum and observations to 0 and resettime to the current eventtime.

Tally

Variables

The tally resource has eleven variables in the AList that represents the state of resource:

1. observations, the number of demo:update calls made to the tally since the last call of demo:reset.

2. sum, the sum of input values since the last call of demo:reset.
3. sumsQ, the square sum of input values since the last call of demo:reset.

4. min, the smallest value of the input values since the last call of demo:reset.

5. max, the largest value of the input values since the last call of demo:reset.
6. mean, the mean value of the input values since the last call of demo:reset.

7. variance, the variance of the input values since the last call of demo:reset.

8. devation, the devation of the input values since the last call of demo:reset.
9. resettime, the last time the tally were resetted.

10. report, the list of items that shall be reported.

11. �le, the �le to write reports to, default is standard io.

Commands

demo:new_R(tally, [])

create a tally resource.

demo:update(Tally) or demo:update(Tally, N)

increments observations with 1, sum with N, and sumsQ with N * N, sets min to the smallest

of N and the previous Min value, sets max to the largest of N and the previous Max value and
calculates the new mean, variance and devation for the input values.

demo:reset(Tally)

sets observations, sum, sumsQ to 0 and min, max, mean, variance and devation to no value and
resettime to the current eventtime.

Histogram

Variables

The histogram resource has eight variables in the AList that represents the state of resource:
1. observations, the number of demo:update calls made to the tally since the last call of demo:reset.

2. lower, the expected lower bound of the input variables.

3. upper, the expected upper bound of the input variables.

4. cells, the chosen number of recording cells.

5. table, the table where all input values are recorded. It consists of a list of tuples. Each tuple looks

like: fLowLimit, UpLimit, Itemsg where LowLimit is the lower limit of the cell, UpLimit is the upper

limit of the cell and Items are the number of input values between LowLimit and UpLimit since the

last call of demo:reset. Two separate cells for underow and overow values are also present.
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6. resettime, the last time the histogram were resetted.

7. report, the list of items that shall be reported.

8. �le, the �le to write reports to, default is standard io.

Commands

demo:new_R(histogram,[Upper, Lower, Cells])

creates a histogram resource.

demo:update(Histogram, N)

increments observations with 1, locates the appropriate cell in table and increments the cells
Items by 1.

demo:reset(Histogram)

sets all the Items in all cells in table to 0 and resettime to the current eventtime.

Accumulate

Variables

The accumulate has ten variables in the AList that representates the state of resource:

1. observations, the number of demo:update calls made to the tally since the last call of demo:reset.
2. sumT, the time integral of the input values since the last call of demo:reset.

3. sumsQT, the time integral of the squares of input values since the last call of demo:reset.

4. min, the smallest value of the input values since the last call of demo:reset.
5. max, the largest value of the input values since the last call of demo:reset.

6. lasttime, the time of the last demo:update call.

7. lastvalue, the last input value.
8. resettime, the last time the accumulate were resetted.

9. report, the list of items that shall be reported.

10. �le, the �le to write reports to, default is standard io.

Commands

demo:new_R(accumulate, [])

creates an accumulate resource.

demo:update(Accumulate) or demo:update(Accumulate, N)

increments observations with 1, sumT with lastvalue * (eventtime - resettime), sumsQT with

lastvalue * lastvalue * (eventtime - resettime), sets min to the smallest of N and the previous
Min value, max to the largest of N and the previous Max value, lastvalue to N and lasttime to

eventtime.

demo:reset(Accumulate)

sets observations, sumT, sumsQT to 0 and min, max to no value and resettime and lasttime to

the current eventtime.

Bin

Variables

The bin has 16 variables in the AList that representates the state of resource:

1. observations, the number of demo:take calls made to the bin since the last call of demo:reset.

2. wqueue, a list of passivated processes with their demands.
3. wlength, the length of the wqueue.

4. wlength max, the largest length of the wqueue since the last call of demo:reset.

5. wlength int, records the timeintegral for the length of the wqueue since the last call of demo:reset.
6. w lasttime, records the last time a process entered or left the wqueue since the last call of demo:reset.

7. avail, the currently available amount of the bin reseource.
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8. avail min, records the minimum value for avail since the last call of demo:reset.

9. avail int, records the timeintegral for avail since the last call of demo:reset.

10. a lasttime, the time when the last change to avail was made since the last call of demo:reset.
11. capacity, the amount available from the beginning.

12. concurrency, how the resource shall start passivated processes.

13. test. How the resource shall test passivated processes in the wqueue when a producer process gives
some items to the bin. If test == all shall we test all passivated processes in the wqueue, else if test

== priority shall we only test the �rst. Default priority.

14. resettime, the last time the bin were resetted.
15. report, the list of items that shall be reported.

16. �le, the �le to write reports to, default is standard io.

Commands

demo:new_R(bin, [Capacity])

creates a bin resource.

demo:give(Bin, Items)

increase the avail variable with Items and tries to start passivated processes in wqueue. After

that is the wqueue and avail variables updated.

demo:take(Bin, Items)

tries to give items to the calling process. If this not is possible is the calling process passivated on
the wqueue. Otherwize, if items are avaialable is the process started again and avail is updated.

The wqueue and the avail variables are updated.

demo:reset(Bin)

sets observations, wlength int, and wlength max to 0, resettime, w lasttime and a lasttime to the
current eventtime, wlength max to wlength and avail min to avail. The rest of the variables are

unchanged

Res

Variables

The res has 21 variables in the AList that representates the state of resource:

1. observations, the number of demo:acquire calls made to the res since the last call of demo:reset.

2. wqueue, a list of passivated processes with their demands.
3. wlength, the length of the wqueue.

4. wlength max, the largest length of the wqueue since the last call of demo:reset.

5. wlength int, records the timeintegral for the length of the wqueue since the last call of demo:reset.
6. w lasttime, records the last time a process entered or left the wqueue since the last call of demo:reset.

7. tqueue, a list of processes holding items. 8. tlength, the length of the tqueue.

9. tlength max, the largest length of the tqueue since the last call of demo:reset.
10. tlength int, records the timeintegral for the length of the tqueue since the last call of demo:reset.

11. t lasttime, records the last time a process entered or left the tqueue since the last call of demo:reset.

12. avail, the currently available amount of the res reseource.
13. avail min, records the minimum value for avail since the last call of demo:reset.

14. avail int, records the timeintegral for avail since the last call of demo:reset.

15. a lasttime, the time when the last change to avail was made since the last call of demo:reset.
16. capacity, the amount available from the beginning.

17. concurrency, how the resource shall start passivated processes.

18. test. How the resource shall test passivated processes in the wqueue when a producer process gives
some items to the rin. If test == all shall we test all passivated processes in the wqueue, else if test

== priority shall we only test the �rst. Default is priority.

19. resettime, the last time the res were resetted.
20. report, the list of items that shall be reported.

21. �le, the �le to write reports to, default is standard io.
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Commands

demo:new_R(res, [Capacity])

creates a res resource.

demo:acquire(Res, Items)

tries to give items to the calling process. If this not is possible is the calling process passivated
on the wqueue. Otherwize, if items are available is the process started again and avail and tqueue

is updated. A process can not ask for more items the it has taken before.

demo:release(Res, Items)

removes some items from the process back to the resource. The process can only release items

if it has taken more or equal items before with a demo:acquire/2 call. If any process demand in
the wqueue can be full�lled with help of the new items is the passivated process started. The

tqueue, wqueue and avail variables are updated.

demo:reset(Res)

sets observations,wlength int, wlength max, tlength int and tlength max to 0, resettime,w lasttime,

t lasttime and a lasttime sets to the current eventtime. wlength max sets to wlength, tlength max
sets to tlength, and avail min sets to avail. The rest of the variables are unchanged.

Condq

Variables

The condq has eleven variables in the AList that represents the state of resource:

1. observations, the number of demo:update calls made to the condq since the last call of demo:reset.
2. condq, a list of passivated processes with their condition demands.

3. clength, the length of the wqueue.

4. clength max, the largest length of the condq since the last call of demo:reset.
5. clength int, records the timeintegral for the length of the condq since the last call of demo:reset.

6. c lasttime, records the last time a process entered or left the condq since the last call of demo:reset.
7. concurrency, how the resource shall start passivated processes.

8. test, how the resource shall test passivated processes in the condq when a process does a demo:signal

call to the condq. If test == all shall we test all passivated processes in the wqueue, else if test ==
priority shall we only test the �rst. Default is priority.

9. resettime, the last time the condq were resetted.

10. report, the list of items that shall be reported.
11. �le, the �le to write reports to, default is standard io.

Commands

demo:new_R(condq, [])

creates a condq resource.

demo:wait_until(Condq, Module, Func, Arg) and demo:wait_until(Condq, Module, Func, Arg,

Result)

enters a process into the condq. The function Module:Func(Args) are evaluated to see if it

evaluates to true or Result. If so are the process immideatelly released from the condq. Otherwize
is the process suspended on the condq until Module:Func(Args) is tested and evaluated to the

wanted result. The observations and cqueue variables are updated.

demo:signal(Condq)

makes the condq let all his passivated processes test their condition. If the Module:Func(Args)

that belongs to a process is evaluated to the wanted result is the passivated process released.
Otherwize is the process repassivated on the condq. The observations and cqueue variables are

updated.

demo:reset(Condq)

sets observations and clength int to 0 and clength max to clength, resettime and c lasttime sets

to the current eventtime. clength max sets to clength. The rest of the variables are unchanged.
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Waitq

Variables

The waitq has 16 variables in the AList that represents the state of resource:
1. observations, the number of demo:update calls made to the condq since the last call of demo:reset.

2. squeue, a list of slave process waiting for their master. 3. slength, the length of the squeue.

4. slength max, the largest length of the squeue since the last call of demo:reset.
5. slength int, records the timeintegral for the length of the squeue since the last call of demo:reset.

6. s lasttime, records the last time a process entered or left the squeue since the last call of demo:reset.

7. mqueue, a list of master processes waiting for processes to enslave. 8. mlength, the length of the
mqueue.

9. mlength max, the largest length of the mqueue since the last call of demo:reset.

10. mlength int, records the timeintegral for the length of the mqueue since the last call of demo:reset.
11. m lasttime, records the last time a process entered or left the mqueue since the last call of

demo:reset.

12. concurrency, how the resource shall start passivated processes.
13. test, how the resource shall test passivated processes in the mqueue when a slave process passivates

on the waitq. If test == all shall we test all passivated processes in the mqueue, else if test == priority

shall we only test the �rst. Default is priority.
14. resettime, the last time the waitq were resetted.

15. report, the list of items that shall be reported.

16. �le, the �le to write reports to, default is standard io.

Commands

demo:new_R(waitq, [])

creates a waitq resource.

demo:wait(Waitq)

If there are no master available or if the slave cant full�ll the masters demand of processes is
the slave passivated in the squeue. If there are any masterprocess available thats demand of

processes would be full�lled with the new process is the demanded slave processes passivated

on the masterprocess and the masterprocess is activated. The squeue and wqueue variables are
updated.

demo:coopt(Waitq) and demo:coopt(Waitq, N)

is called by a masterprocess that wants to enslave 1 or N number of processes. If the demanded

slaveprocesses not are available or if a masterprocess with higher priority is waiting in themqueue

is the process passivated in the mqueue. If the masterprocess demand can be full�lled are the

wanted number of processes passivated on the masterprocess and the masterprocess is activated

again.

demo:reset(Waitq)

sets observations, mlength int, slength int to 0, resettime, m lasttime or s lasttime sets to the

current eventtime. mlength max sets to mlenght, slength max sets to slength. The rest of the

variables are unchanged.

Queue

Variables

The queue has eleven variables in the AList that represents the state of resource:

1. observations, the number of demo:pop calls made to the queue since the last call of demo:reset.
2. queue, a list of swaiting processes. 3. qlength, the length of the queue.

4. qlength max, the largest length of the queue since the last call of demo:reset.

5. qlength int, records the timeintegral for the length of the queue since the last call of demo:reset.
6. q lasttime, records the last time a process entered or left the queue since the last call of demo:reset.
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7. concurrency, how the resource shall start passivated processes.

8. test, how the resource shall passivate processes in the queue . If test == �fo are a �rst in �rst

out policy used. If test == lifo are a last in �rst out policy used. If test == priority shall start the
processes in priority order. 9. resettime, the last time the queue were resetted.

10. report, the list of items that shall be reported.

11. �le, the �le to write reports to, default is standard io.

Commands

demo:new_R(queue, [Test])

creates a queue resource.

demo:push(Queue)

puts the current process on the queue. The process are passivated until a process relaese it with
a demo:pop(Queue) call. The queue variables are updated.

demo:pop(Queue)

tries to release a process from a queue. If there was a passivated process in the queue is it

released and the calling process receives the passivated process id as a return value. If there

were no passivated process on the queue is false returned to the calling process. Observe that the
activated process not will be passivated on the calling process. The queue variables are updated.

demo:reset(Queue)

sets observations and qlength int to 0, resettime and q lasttime sets to the current eventtime.

qlength max sets to qlength, The rest of the variables are unchanged.
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18 AppendixC

Below is a list of the di�erent probability distributions that is supported in the Elang simulation

package.

Probability distributions

dis:constant(A)

always return the same sample value A. This function is perhaps most useful in the early stages

of the model building where a distribution can be replaced by its mean value.

Mean = A, Variance = 0.

dis:erlang(A, B)

returns a drawing from the erlang distribution. Sums B independent random variables, each
with a mean life of A / B. Demands that A > 0 and B > 0.

Mean = A, Variance = (A * A) / B.

dis:empirical(List)

takes a list of fX, Prob(X)g tuples. Prob(Xi) indicates the probability that the value is equal

or smaller than Xi. Prob(X1) must be and Prob(Xn) must be 1, if there are n tuples in the list.
This condition must be full�lled: Prob(Xi) < Prob(Xj) and Xi < Xj for i < j. The function

returns a drawing from the distribution speci�ed by X and Prob(X) values in the list.

dis:normal(A, B)

returns a drawing from the normal distribution, using the Box-Mller method, with the mean A

and the standard devation B. The formula is: X1 = sqrt(-2 * ln(U2)) * cos(2 * Pi * U1), X2
= sqrt(-2 * ln(U2)) * sin(2 * Pi * U1) where U1 and U2 is random variables, X1, X2 is the

returned values, every second time is X1 respectively X2 returned. Demands that B > 0.

Mean = A and Variance = B * B.

dis:binomial(N, P)

returns a drawing from the binomial distribution. The parameters indicates how many trails

that shall be done and the probability to succeed in each trail. Returns the number of trails

that succeeded. The formula used is: binomial(N, P) = sum(trunc(U[i] + P)) where 1 -> i ->
N. Demands that N >= 1 and 0 =< P =< 1.

Mean = N * P, Variance = N * P * (1 - P).

dis:negexp(A)

returns a drawing from a negative exponential distribution, with the speci�ed arrival rate of A.

The formula used is: negexp(A) = - (1 / A) * ln(U). Demands that A > 0.
Mean = 1 / A, Variance = 1 / (A * A).

dis:gamma(N, A)

returns a drawing from the gamma distribution. Distribution of the sum of N independent

random variables with an exponential distribution with parameter A. The formula used is:

gamma(N, A) = (1 / A) * sum(ln(U[i])) where 1 -> i -> N. Demands that A > O and N >= 0.
Mean = N / A, Variance = N / (A * A).

dis:weibull(A, B)

returns a drawing from the weibull distribution. The formula used is: weibull(A, B) = (1=A) �
(�ln(U))1=B. Demands that A > 0 and B > 0.

Mean = (1 / A) * gamma(1 + 1 / B), Variance = (1 / A2) * (gamma(1 + 2 / B) - (gamma(1 +
1=B)2)).

dis:draw(P)

returns a drawing from the probability distribution with chances P of returning true (1) and

chances (1 - P) of returning false (0). Returns 1 for true and 0 for false. Demands that 0 =< P

=< 1.

Mean = P, Variance = P * (1 - P).
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dis:uniform(A, B)

returns a drawing from the uniform (rectangular) distribution from a range with lower bound A

and upper bound B. Returns a oat. Demands that B >= A.
Mean = (A + B) / 2, Variance = (A - B) * (A - B) / 12.

dis:randint(A, B)

returns a drawing from the uniform (rectangular) distribution from a range with lower bound A

and upper bound B. Returns a integer. Demands that B >= A.
Mean = (A + B) / 2, Variance = ((A - B + 1) * (A - B + 1) - 1) / 12.

dis:poisson(C)

returns a drawing from the poisson distribution. Distribution of number of points in random

point process under certain simple assumptions. The functions uses the fact that in a poisson

process with intensity C the number of points in a unit length interval has a poisson distribution
with parameter C. Demands that C > 0.

Mean = C, Variance = C.

dis:psi_square(M)

returns a drawing from the psi square distribution with M number of degrees of freedom. The

function uses the fact that if: X1 = gamma(N1, A), X2 = gamma(N2, A) and Y = 2 * A * (X1
+ X2), then Y has the distribution: psi square(2 * N1 + 2 * N2). Demands that M >= 0.

Mean = M, Variance = 2 * M.

dis:t(R)

returns a drawing from the t distribution. The functions uses the fact that if: X1 = normal(0,

1), X2 = psi square(R) and Y = X1 / ((X2=R)0:5 then Y has the distribution: t(R). Demands
that R > 0.

Mean = 0 if R > 1, Variance = R / (R - 2) if R > 2.

dis:beta(R1, R2)

returns a drawing from the beta distribution. The function uses the fact that if: X1 =
gamma(R1, A), X2 = gamma(R2, A) and Y = X1 / (X1 + X2) then Y has the distribu-

tion: beta(R1, R2). Demands that R1 > 0 and R2 > 0.

Mean = R1 / (R1 + R2), Variance = (R1 * R2) / ((R1 +R2)2 * (R1 + R2 + 1)).

dis:f(R1, R2)

returns a drawing from the F distribution. The function uses the fact that if: X1 = psi square(R1),
X2 = psi square(R2) and Y = (X1 / R1) / (X2 / R2) then Y has the distribution: F(R1, R2).

Demands that R1 > 0 and R2 > 0.

Mean = R2 / (R2 - 2) if R2 > 2, Variance = (2 * (R22) * (R1 + R2 - 2)) / (R1 * ((R2� 2)2) *
(R2 - 4)).

dis:cauchy(A)

returns a drawing from the Cauchy distribution. The function uses the fact that if: U = uniform(-

Pi / 2, Pi / 2) and Y = A * tan(U) then Y has the distribution: cauchy(A).

Mean: does not exist, Variance: does not exist.
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19 AppendixD

Below is a list of the speci�c commands that the global eventhandler can handle:

Start Commands

demo_global:start(NodeList)

starts the global eventhandler and normal eventhandlers on the nodes given input argument
list, NodeList. It is assumed that the nodes are existing and up. The call spawns the global

eventhandler process on the current node and registers it as demo globalover the net

Stop Commands

demo_global:stop()

terminates all processes and eventservers and ends the simulation.

demo_global:reset()

terminates all processes in the eventservers but doesn't end the simulation.

Suspend Commands

demo_global:suspend(Time)

suspends the whole simulation. The argument to suspend can be next which means that the
simulation will stop at the next event, or a positive number which means that the simulation

will stop at the current time + Time. Returns true or false.

demo_global:suspend_at(Time)

suspends the whole simulation at a speci�c time Time. The argument to demo:suspend_at is a

positive number and shall be larger than the current event time. Returns true or false.

demo_global:suspend_reg(Time)

suspends the whole simulation at regulary time intervalls. The argument to suspend_reg can
be next which means that the simulation will stop regulary at each event, or a positive number

which means that the simulation will stop regulary with a timeintervall of the number. Returns

true or false.

demo_global:suspend_del()

removes all suspendpoints from the whole simulation. Returns true.

Resume Commands

demo_global:resume()

restarts the whole simulation when it has been suspended. Is also the command that starts the

simulation after all initializations have been made. Returns true.

demo_global:resume_del()

restarts the simulation when it has been suspended and removes all suspendpoints at the same

time. Returns true.

Time Commands

demo_global:event_time()

returns the current eventtime in the global simulation.
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Concurrency Commands

demo_global:set_concurrency(Form)

sets the way that the whole simulator shall start events with the same start time. The Form

can be sequential or parallel. sequentialmeans that processes with the same starttime will

start one at a time, only one process can be active at the same time. A process with higher

priority will start before a process with lower if their starttime is equal. parallel means that
all processes with the same starttime will be activated in parallel. Defaultvalue is parallel.

Returns true or false.

Granularity Commands

demo_global:set_granuality(Granularity)

sets the granularity in the whole simulation. The argument is a positive number which indicates

how large timesteps the eventhandler will step forward. For example, if Granularity is 50 and
the current time is 30 will the eventhandler starts all scheduled processes between 30 and 80 at

the same time. If a process starts, stops and starts again in the same granuality intervall is this

done sequentially. If granularity is larger then 0 does that imply that the concurrency mode is
parallel. Defaultvalue is 0. Returns true or false.

Trace Commands

demo_global:trace()

turns on the tracer for the whole simulation. Returns true.

demo_global:notrace()

turns o� the tracer for the whole simulation. Returns true.

demo_global:trace_g()

turns on the tracer for the global eventhandler process. Returns true.

demo_global:notrace_g()

turns o� the tracer for the global eventhandler process. Returns true.

Create Process Commands

demo_global:new_PN(Node, Mod, Func, Args)

creates a new process to be scheduled by the eventhandler located at the node at the current
time and with priority 0. The arguments are node, module, function and argumentlist of the

function. Returns the �le descriptor (pid) of the created process.

demo_global:new_PN(Node, Mod, Func, Args, Time)

creates a new process to be scheduled by the eventhandler located at the node at the time

speci�ed in the fourth argument. The arguments are node, module, function, argumentlist and
starttingtime. Returns the �le descriptor (pid) of the created process.

demo_global:new_PN(Node, Mod, Func, Args, Time, Priority)

creates a new process to be scheduled by the eventhandler located at node with the priority

as speci�ed in the �fth argument. The arguments are node, module, function, argumentlist,
starttime and priority. Returns the �le descriptor (pid) of the created process.
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20 AppendixE

Below is a description of the standard �gures in the report.

= an eventhandler process

= a group of processes

= communicates with (through messages)

= a process

= are scheduled or created by
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