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Abstract—This paper introduces the notions of variable-to-fixed
and fixed-to-variable channel capacity, without feedback. For
channels that satisfy the strong converse, these notions coincide
with the conventional Shannon capacity. For channels that do not
behave ergodically, the conventional fixed-rate Shannon capacity
only depends on least-favorable channel conditions, while the
variable-rate capacity notions are able to capture the whole range
of channel states and their likelihood, even in the absence of any
side information about channel state at the transmitter. Particular
emphasis is placed on memoryless channels that are governed by
finitely valued states. We show that (single-user) variable-to-fixed
channel capacity is intimately connected to the capacity region of
broadcast channels with degraded message sets, and we give an
expression for the fixed-to-variable capacity.

Index Terms—Bayesian modeling, broadcast channels with de-
graded message sets, channel capacity, fixed-to-variable coding,
fountain codes, nonergodic channels, Shannon theory, state-depen-
dent channels, variable-to-fixed coding.

I. INTRODUCTION

T HE notion of variable-rate channel coding where the
encoder adjusts its rate (and/or other resources such as

power and bandwidth) to the actual channel condition (or state)
is well established in both the research literature and current
technology. When the channel state is known at the transmitter,
the average of the capacities achievable for the individual
channel states is an important fundamental limit. Furthermore,
the benefits of variable-length channel coding are well known
when feedback is available (e.g., [4], [28], [32], and [22]).

In this paper, we study a different setup: neither feedback
nor side information about the channel conditions (other than
its statistical description) is available at the encoder. In such a
scenario, we develop the notion of “variable-rate” not from the
adaptation of the encoding strategy to channel conditions, which
is no longer possible, but from the adaptation of the decoder.
For channels that behave ergodically (nothing can be learned
beyond the already available statistical description), the new no-
tions coincide with the conventional Shannon capacity.

It is interesting to contrast the channel coding setup with
lossless data compression where the almost-lossless fixed-rate
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and the lossless variable-rate approach are well-known. For
stationary ergodic sources, the Shannon–MacMillan the-
orem shows that the entropy rate is the minimum achievable
almost-lossless fixed rate. For stationary (not necessarily er-
godic) sources, the minimum average rate achievable with
lossless fixed-to-variable (or variable-to-fixed) codes is also the
entropy rate. For general sources, the almost-lossless minimum
achievable fixed rate is the sup-entropy rate1 while the lossless
minimum average rate is [13, Theorems
1 and 2]. For example, if with probability the source is equal
to a stationary ergodic source whose entropy rate is , then the
almost-lossless minimum fixed-rate is , while the loss-
less minimum average rate is . In such a nonergodic
case, allowing variable rate has the obvious advantage of letting
the code adapt to the actual ergodic mode in effect. Extending
this parallel to channels is fairly straightforward if the channel
state is known at the encoder; otherwise, it is not at all obvious.

To motivate the new notions of variable-rate channel capacity,
consider a binary-input binary-output channel that:

• with probability reproduces the input sequence error-
free;

• with probability introduces errors independently with
probability , where is the binary en-
tropy function in bits.2

If the encoder knew which of the two states is in effect (through,
for example, a feedback link from the decoder, which can learn
the channel state with negligible overhead asymptotically), it
could adapt its rate and transmission strategy (uncoded for the
error-free channel, and rate- code otherwise) resulting in an
average rate of reliable information transmission of . But
if the encoder does not know the channel state, no code with
rate greater than can lead to vanishing block error probability,
and the Shannon capacity is equal to , as if the channel were
in the error-free state with zero probability. A finer measure of
the channel transmission capability is the -capacity (e.g., [8]
and [13]) which gives the maximum rate compatible with block
error probability not larger than . In the current example

(1)

Although traditionally the terms outage capacity and -capacity
are used interchangeably, a different notion of outage capacity is
introduced in [11]: the outage- capacity is the maximum value
of for which there exist codes with rate , vanishing
undetected error probability, and detected error probability not
larger than . It easy to see that in the foregoing example, the

1The fundamental limit is potentially higher in an arbitrarily varying setup
where reliability is required in the worst case among a collection of source dis-
tributions. For the memoryless arbitrarily varying source the minimum achiev-
able rate is the entropy of the least-favorable mixture of sources [30].

2 , for .
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Fig. 1. Comparison of capacities for a binary symmetric channel whose crossover probability is 0.11 with probability and 0 with probability .

outage- capacity is if , and the outage-
capacity is .

The result in (1) seems to indicate that there are only two
reasonable coding strategies: send the information uncoded if
block error probability is acceptable; otherwise, code at
rate . But this is only within the paradigm of the following.

• Fixed-to-fixed coding: the number of transmitted infor-
mation bits and the number of observed channel symbols
(blocklength) are prespecified. This is the conventional
setup.

There are, in fact, other possible channel coding strategies,
whose fundamental limits are the object of this paper; the first
“variable/fixed” refers to the length of the reliably decoded
message, while the second “fixed/variable” refers to the length
of the observed channel outputs.

• Variable-to-fixed coding: the number of observed channel
symbols (blocklength) is prespecified, but the number of
reliably recovered information bits depends on channel
conditions.

• Fixed-to-variable coding: the number of transmitted in-
formation bits is prespecified but the number of channel
observations required to recover them depends on channel
conditions. This is the setup of rateless fountain codes [16],
[29].

• Variable-blocklength encoding: the number of trans-
mitted information bits is prespecified while the block-
length is allowed to the depend on those information bits,
but not on channel conditions (unknown at the encoder).
The decoder is assumed to able to obtain the blocklength
chosen by the encoder noiselessly.

The organization of the remainder of this paper is the following.
Section II gives the definitions of:

• : conventional Shannon channel capacity;
• : variable-to-fixed channel capacity;
• : fixed-to-variable channel capacity;
• : upper fixed-to-variable channel capacity;
• : variable-blocklength channel capacity.

The difference between and resides in that the average
is with respect to the variable number of observations for ,

and with respect to the ensuing rate for . General relations
between and are shown in Sections III and
IV. For state-dependent channels, the variable-to-fixed channel
capacity is shown to be intimately related to the capacity re-
gion of broadcast channels with degraded message sets; and the
upper fixed-to-variable capacity can be obtained as the maximal
average mutual information, which often coincides with the av-
erage capacity obtained when the encoder knows the channel
state. In Section V, we show that , for any nonantic-
ipatory channel and, therefore, allowing the blocklength to de-
pend on the message is not advantageous. Section VI applies
the concepts introduced in the paper to a number of illustrative
examples, one of which is the example above whose various ca-
pacities are shown in Fig. 1.

II. DEFINITIONS

Denote the input and output alphabets of the channel by
and , respectively. The channel is a sequence of conditional
probabilities

(2)

A. : Fixed-Blocklength Channel Capacity

Definition 1: The conventional Shannon capacity, , (in bits/
channel use) is the largest for which there exists a se-
quence of encoders/decoders:3

(3)

(4)

whose (average) block error probability and rate satisfy

(5)

(6)

3It will become evident that the punctilious notation for various forms of en-
coders/decoders is called for despite its cumbersomeness.
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Fig. 2. Example where and .

respectively. If (5) is replaced by

(7)

then, we obtain the notion of -capacity, .

B. : Variable-to-Fixed Channel Capacity

As a shorthand, we denote

(8)

Definition 2: For an encoder-decoder pair

(9)

(10)

with message , let denote the
channel response to the input

(11)

The number of (consecutively) recovered bits is defined as
the largest integer such that

(12)

where denotes bits in . Note that
is a random variable that depends on encoder, decoder, mes-

sage and channel realization. An illustration of is provided
in Fig. 2.

Remark 1: When the input alphabet has infinite cardinality,
can be substituted by in Definition 2. However, ordi-

narily, there is an upper bound to the maximum rate that can
be achieved in the most optimistic case. Then, we can safely
take .

Definition 3: (bits/channel use) is a variable-to-fixed
achievable rate if there exists a sequence of codes
whose expected number of recovered bits satisfies

(13)

where the expectation is over the channel random transforma-
tion and fair bits . The maximum variable-to-
fixed achievable rate is the variable-to-fixed capacity .

Remark 2: Note that the notion of block error probability
does not play any role in the definition of . In the definition
of the conventional fixed-to-fixed capacity , one erroneous bit
is as bad as many erroneous bits. In the definition of variable-to-
fixed capacity, reliability is gauged by the average length of the

initial run of correctly decoded bits. The idea is that we can
protect the initial bits in the message with the most redundancy
so that they can be correctly decoded regardless of the channel
state. As we show below, if the channel has only one state (more
precisely, if it satisfies the strong converse) then, there is nothing
to be gained by unequal error protection and .

Remark 3: Error-correcting code technology is easy to adapt
so that the decoder can get a fairly reliable estimate of the
number of consecutively correctly decoded bits , based on
the observation of . Alternatively, once the decoder learns
the state, it can compute an estimate of (or more precisely
of ).

C. : Fixed-to-Variable Channel Capacity

As a shorthand, a sequence of decoder mappings

(14)

is denoted by . Moreover, a rateless encoder is a mapping

(15)

Definition 4: For a pair, define the number of
channel symbols required to recover the transmitted bits as
the smallest integer such that

(16)

where are symbols in the response of the channel
to the semi-infinite input sequence . Note that

is a function of the encoder, decoder, message and channel
noise.

Definition 5: (bits/channel use) is a fixed-to-variable
achievable rate if there is a sequence of pairs such
that

(17)

(18)

where the expectation is over the channel random transforma-
tion and fair bits . The maximum fixed-to-variable
achievable rate is the fixed-to-variable capacity .

Remark 4: Definition 5 gives the fundamental limit of rate-
less codes [16], [29], where the reliably decoded message has a
fixed number of bits and the number of channel uses is channel
dependent. Note that the definition of fountain capacity given in
[24] refers to a different setup where the decoder only observes
the output of the channel at times that are unknown to the en-
coder. The application of rateless codes to arbitrarily-varying
channels (where no distribution is placed on the sate of states)
is explored in [9].

Remark 5: Variable-to-fixed channel coding is dual to foun-
tain rateless coding: the blocklength (number of channel uses) is
fixed, while the number of successfully decoded bits is channel
dependent. Note that in contrast to fixed-to-variable coding, in
variable-to-fixed coding, the transmitter does not actually know
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in general which fraction of the transmitted information is de-
livered reliably.

Remark 6: Similarly to Remark 3, the decoder can gain a very
reliable estimate of at the expense of minimal loss in effi-
ciency (if is sufficiently high) through, for example, hashing.

D. : Upper Fixed-to-Variable Channel Capacity

Definition 6: (bits/channel use) is an upper fixed-to-vari-
able achievable rate if there is a sequence of pairs such
that

(19)

where the expectation is over the channel random transforma-
tion and fair bits . The maximum upper fixed-to-
variable achievable rate is the upper fixed-to-variable capacity

.

Remark 7: According to Jensen’s inequality

(20)

Definition 6 is useful for example, when a population of
receivers retrieves the same message through statistically dif-
ferent channels. Definition 5 is geared to gauging the expected
delay to reliably recover the information, and to the common
setting where consecutive equal-size blocks of information are
transmitted.4

E. : Variable-Blocklength Channel Capacity

The set of all nonempty strings drawn from is denoted by
. The length of is denoted by .

Definition 7: The variable-blocklength channel capacity, ,
(cf. [8, Problem 2.1.25]) is the largest such that there
exists a sequence of encoders/decoders

(21)

(22)

with vanishing error probability and

(23)

where the expectation is over independent equiprobable bits
.

III. VARIABLE-TO-FIXED CAPACITY

A. Relationship to Fixed-to-Fixed Capacity

In this subsection we investigate the relationship be-
tween variable-to-fixed capacity and conventional (fixed-rate)
Shannon capacity and -capacity. These notions turn out to be
identical for channels that behave ergodically.

Theorem 1: For any channel , the Shannon ca-
pacity and the variable-to-fixed capacity , satisfy

(24)

4See [19] for a similar receiver-centric notion in a broadcast setting.

Proof: To show that the Shannon capacity, , is an achiev-
able variable-to-fixed achievable rate, take a sequence of (con-
ventional) -to- codes with block
error probability such that

(25)

(26)

Let

(27)

(28)

where the number of 0s is equal to . The expected
length of the number of consecutive correctly decoded bits can
be lower bounded by (if the conventional code re-
covers the message, the first bits in are correctly de-
coded). Therefore

(29)

(30)

where (30) follows from (25)–(26).

Theorem 2: Suppose that the channel input alphabet is finite.
Then

(31)

where is the -capacity.
Proof: We will argue by contradiction. Let us assume that

(31) is false and, therefore

(32)

where

(33)

By definition of , since , there must exist
and a sequence of variable-to-fixed encoders/de-

coders such that

(34)

for . We now construct conventional -to- codes with

(35)

(36)

(37)

where are deterministic symbols
(known to the decoder) chosen to maximize the conditional
probability of given those symbols for the particular
variable-to-fixed code that has been chosen. The asymptotic
rate of this sequence of codes is equal to . The conventional

-to- code makes an error if and only if , but the
probability of that event is upper bounded by according to
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(34) (where the probability is taken with respect to a larger and
less favorable set of messages). Thus

(38)

where we assumed the strict inequality in (32). But (38) is im-
possible since is monotone nondecreasing.

Remark 8: Theorems 1 and 2 imply that for channels that
satisfy the strong converse, i.e.,

(39)

the conventional capacity is equal to the variable-to-fixed ca-
pacity. More generally, suppose that conditioned on a random
parameter known to both receiver and transmitter, the channel
satisfies the strong converse

(40)

Then, the variable-to-fixed capacity is equal to the average ca-
pacity when is known at both encoder and decoder.

A simple example for which Theorems 1 and 2 are not tight,
but for which it is nevertheless straightforward to compute the
variable-to-fixed channel capacity is the case when the channel
is useless with some probability (Example 1 in Section VI).

B. State-Dependent Channels

In this section we consider channels that can be expressed as

(41)

for all . These channels are also called “averaged” [14]
and “mixed” [12]. The important subclass of state-dependent
discrete memoryless channels, considered in more detail in
Section IV.C, is such that the alphabets are finite and

(42)

where for all , and all .
A related, but different, class of channels are the “composite”

channels considered in [10], [11] where the receiver observes
in addition to . Most of our results in this section do not

require (42) but they do require that behaves ergodi-
cally under each of the states. Under that condition we have the
simple upper bound:

Theorem 3: Suppose that for each state in (41), the channel
satisfies the strong converse and has capacity

. Then

(43)

Proof: The upper bound in (43) would be tight were the
encoder to know the state before the start of transmission (recall
Remark 8). Indeed, we can view the channel as having an initial
condition with distribution ; If is revealed

to both encoder and decoder, then for any , the number of
bits that can be reliably transmitted with blocklength is upper
bounded by . Averaging over we get the desired
result.

The variable-rate capacity of state-dependent channels (41) is
intimately connected with the capacity region of a certain broad-
cast channel. Cover [6], in his seminal paper on broadcast chan-
nels, suggested to deal with “compound channels with a prior
distribution” [i.e., (41)] by maximizing the average rate achiev-
able for a broadcast channel, where each state is associated with
one of the users. This notion has been pursued for various chan-
nels such as fading [25], MIMO [26], multiple-access [18], [27]
and binary-symmetric channels [11]. The broadcast approach
has also been used in lossy source-channel coding in combi-
nation with successive refinement [21], [33]. When the state is
known at the receiver, the broadcast approach has been shown
to provide an achievable expected rate [11] in a setup where the
error probability averaged with respect to the state is forced to
vanish.

In our context, of particular interest are the special case of
broadcast channels with degraded message sets. Consider the
following generalization of the 2-user definition in [15].5

Definition 8: -user broadcast channel with degraded mes-
sage sets. Consider an ordered collection of single-user chan-
nels with input alphabet and output alphabet

A -tuple is achievable if there exists a sequence
of codewords

and disjoint decoding sets6 such that

(44)

for all and

(45)

for all . Note that (44) implies that the th user re-
quires reliable reception of the messages reliably received by
users . The closure of the set of achievable -tu-
ples is the capacity region of the -user broadcast channel with
degraded message sets. Since the ordering of the users matters,
it is convenient to specify the ordering in the notation for ca-
pacity region: is the capacity region of the -user broadcast
channel with degraded message sets

(46)

where is a -vector obtained as a permutation of .

5Definition 8 adopts the special case in which the output alphabets of the
channels seen by all the users are identical. Dropping this restriction from the
definition is straightforward but unduly general for our purposes.

6 if , and, thus, is well defined.
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Theorem 4: [15], [20]. The capacity region of the two-user
discrete memoryless broadcast channel with degraded message
sets (where any information destined for user 1 is also destined
for user 2) is given by (47), shown at the bottom of the page,
where and are independent conditioned on , and
the cardinality of is upperbounded by [23].

Theorem 5: The variable-to-fixed channel capacity of (41)
satisfies

(48)

where is the capacity region of the broadcast channel with
degraded message sets (46) obtained from (41).

Proof: Fix an arbitrary permutation , choose an arbitrary
point in the capacity region , and a broadcast
code sequence that achieves that point. To simplify notation, we
assume in the remainder of the proof that is the identity. Thus,
the goal is to show that

(49)

Without loss of generality we consider code sizes that are
powers of 2 for each user and denote

(50)

(51)

where are the information bits available at
the decoder. Note that , and we only need
to specify the action of the encoder for bits. The
single-user variable-to-fixed encoder/decoder is

(52)

(53)

where the tail consists of repetitions of an ar-
bitrary symbol . Since we are not assuming side infor-
mation at the receiver, the index is the decoder’s best guess of
the channel state on the basis of . Since there are only a finite
number of states, with a negligible loss in rate it is possible to
send a training sequence that will render the probability of erro-
neous state detection a fraction of the probability of message de-
coding error. Therefore, the construction inherits the vanishing
error probability of the broadcast code sequence. To evaluate the
achieved variable-to-fixed rate, note that

(54)

which goes to 1 by construction. Therefore

(55)

(56)

(57)

where (56) follows from (45).

It is easy to see that (48) is not necessarily tight in the absence
of any restrictions on the constituent channels in (41): just take

and the channel in Example 1. The left side of (48) is 0,
while the right side is . For this reason, the “expected ca-
pacity” of [11] differs from the variable-to-fixed capacity when-
ever there is a state under which the channel does not behave
ergodically.

Theorem 6: Suppose that the -user broadcast channels de-
rived from (41) satisfy the strong converse. Then, (48) holds
with equality.

Proof: Suppose that is an achievable variable-to-fixed
rate, and choose a sequence of variable-to-fixed codes
that satisfies (19). Now number the channel states in order of
increasing expected number of recovered bits

(58)

where

(59)

and denote for an arbitrarily small

(60)

(61)

Consider the broadcast channel code

(62)

for , and

(63)

For each state
is bounded away from zero, as oth-

erwise it would be impossible to achieve the average lengths
in (59). This means that for some sufficiently close to 1,

is an -achievable -tuple for the broadcast

(47)
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channel with degraded message sets (defined as in Definition
8 except that the liminf of the left side of (44) exceeds .
Finally, under the assumption of the theorem, the broadcast
channel satisfies the strong converse; therefore,
is an achievable -tuple for the broadcast channel, such that

(64)

(65)

(66)

where (65) follows from (58)–(61). But since is arbitrarily
small we conclude that that there exists a permutation of the
users of the broadcast channel such that

(67)

Theorem 7: Suppose that the channel has finite input/output
alphabets and and

(68)

where and
for all . The variable-to-fixed capacity of the channel is

equal to7

(69)

where the cardinality of does not exceed , and conditioned
on the outputs are independent of .

Proof: It is shown in [15] that when the constituent chan-
nels are discrete memoryless, the broadcast channel with de-
graded message sets satisfies the strong converse. Thus, (69)
follows from Theorems 4 and 6.

In the most important special case, the constituent channels
are memoryless and degraded versions of each other, i.e., with
probability the receiver observes , where

form a Markov chain. Then, (48) is satisfied
with equality and

(70)

7As in [8], where .

where the optimization is with respect to such that
and

IV. FIXED-TO-VARIABLE CAPACITY

A. Relationship to Fixed-to-Fixed Capacity

For the rateless setup of fixed-to-variable capacity it makes
sense to restrict attention to nonanticipatory channels defined
by a sequence of conditional probability distributions

(71)

This is the most general class of channels considered when dy-
namical issues such as feedback are considered (e.g., [31]).

Theorem 8: The Shannon capacity and the upper fixed-to-
variable capacity , satisfy

(72)

Proof: Suppose is a sequence of -to-
codes with error probability such that

(73)

(74)

We will now show that is an upper fixed-to-variable achiev-
able rate. To that end, define a fixed-to-variable code such that
for each

(75)

where , and is such that

(76)

and is immaterial how is defined for . The nonan-
ticipatory assumption ensures that inputs beyond do not af-
fect the conditional probabilities of . If the
code succeeds in recovering the message, then the random vari-
able is lower bounded by ; otherwise we simply
lower bound by 0. Thus

(77)

(78)

where (78) follows from (73) and (74). Thus, is an upper
fixed-to-variable achievable rate.

Under a mild technical assumption, we can also prove that
the fixed-to-variable capacity is lower bounded by Shannon
capacity.

Authorized licensed use limited to: Princeton University. Downloaded on May 26,2010 at 15:09:41 UTC from IEEE Xplore.  Restrictions apply. 



2658 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010

Theorem 9: Suppose that the channel has finite memory in the
sense that there is an integer such that given and

is independent of and . Then

(79)

Proof: The proof of Theorem 8 is modified so that is
finite with probability 1. Now, the rateless encoder sends repeat-
edly the same codeword interspersed with dummy symbols
which ensure that previous codewords do not affect the recep-
tion of future codewords

(80)

If the decoder is successful in decoding for the first
time at the th attempt, then

(81)

But this happens with probability . Therefore

(82)

(83)

and the of (83) is because of (73) and (74).

The counterpart of Theorem 2 for fixed-to-variable capacity
is

Theorem 10: Assume that either the input or output alphabets
are finite. Then

(84)

Proof: The left inequality in (84) was given in (20).
For convenience, we prevent the decoder from starting to

make guesses about the transmitted bits until channel
symbols have been received. In view of the assumption of fi-
nite input or output alphabet, this entails no loss of asymp-
totic fixed-to-variable rate provided sufficiently large
is chosen. This is because when only a tiny fraction of channel
symbols have been observed, the decoder is forced to make es-
sentially uninformed guesses about the transmitted information.
The beneficial effect of such crippling is purely technical: it en-
ables the upper bound

(85)

The goal is to show that for some , we can construct
a conventional code sequence whose error probability is not
worse that , and whose rate is , regardless how small

is selected. To that end, select a fixed-to-variable en-
coder/decoder sequence that achieves . Denote the
channel blocklength

(86)

and select the fixed-to-fixed encoder/decoder

(87)

(88)

Arguing by contradiction, assume that there is a subsequence
of , along which the error probability of is
not bounded away from 1. Then, along that subsequence

(89)

(90)

where (89) follows because

(91)

and (85). But (90) contradicts the assumption that

(92)

Remark 9: As in Remark 8, if the channel satisfies the strong
converse (40) for all known to both receiver and transmitter,
then

(93)

when is known at both encoder and decoder.

B. Relationship to Variable-to-Fixed Capacity

For channels that satisfy the strong converse, Theorems 1, 2,
8, 10 imply that

(94)

Under a very mild assumption we have the following result.

Theorem 11: Suppose the channel is such that the upper
fixed-to-variable capacity in Definition 6 coincides with the
same concept defined with in lieu of in (19).
Then

(95)

Proof: Suppose that , and we are given
a sequence of rate- variable-to-fixed codes
(Section II.B). In the sequential nonanticipatory setting (71) of
this section, it makes sense to focus attention without loss of
generality on compatible variable-to-fixed encoder sequences
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where consists of all but the last component
in .

We construct a sequence of rateless encoders (15) by let-
ting the th component of be equal to the th
component of for sufficiently large (well
defined because of the compatibility assumption). Moreover,

is equal to the first bits in the variable-to-fixed de-
coder . To relate the performance of the constructed
fixed-to-variable code to that of the original variable-to-fixed
code, note that according to Definitions 2 and 4

(96)

for every positive integer . Therefore

(97)

but since grows without bound we must have

(98)

(99)

and we conclude that according to the assumption of Theorem
11, is shown to be an achievable fixed-to-variable rate.

Remark 10: The proof actually shows more than the state-
ment of Theorem 11 since in those rare cases that do not satisfy
the assumption, is still upper bounded by the “optimistic”
definition of fixed-to-variable capacity. See [5] (and [35]) re-
garding the contrast between “optimistic” and conventional def-
initions.

Remark 11: It is easy to find channels for which : if
with nonnegligible probability the channel conditions are very
bad, then the expectation in (18) is dominated by very large
values. (See Examples 1, 4, and 5.)

C. State-Dependent Discrete Memoryless Channels

As mentioned in Section I, the conventional fixed-to-fixed
setting is unable to capitalize on the prior distribution
and the capacity is equal to that found in [1] for the compound
channel :

Theorem 12: The conventional capacity of (41) is

(100)

Proof: It follows specializing the general formula in [35].

Theorem 13: The fixed-to-variable capacity of the channel in
(41) satisfies

(101)

Proof: With negligible loss of efficiency we can send a
training sequence that will enable the decoder to identify

, the actual channel in effect with vanishing probability
of error. Thus, for simplicity we assume that the decoder knows

. Fix an input distribution and . For convenience
assume that the channels are labeled such that

(102)

Using a random coding argument where symbols are chosen
independently with distribution , we can a find a code that
maps information symbols to channel symbols
such that for all , if then after

(103)

channel symbols a decoder (that has side information about
) outputs the information bits with probability of error not

greater than , where . After the transmission of this
code, the encoder transmits repeatedly a code with blocklength

where is given in (100). Since this code operates at a frac-
tion of the compound capacity there exists such that we
can find a code with error probability lower than for suffi-
ciently large [8, p. 173]. We proceed to upper bound
for this code construction. For every

(104)

Using (104), we get

(105)

(106)

(107)

(108)

which implies that

(109)

Finally, since and were chosen arbitrarily, (109) in-
dicates that holds in (101).

The bound in Theorem 13 is not tight for some channels of
the form (41) as illustrated in Example 3. However, it is indeed
tight for a sub-class of those channels as the following result
shows.

Theorem 14: Suppose that in (41), the constituent channels
are such that there is an input distribution that

maximizes mutual information simultaneously, i.e.,

(110)
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Then, (101) holds with equality and the fixed-to-variable ca-
pacity is equal to the harmonic mean of the capacities

(111)

Proof: To prove this converse result, we assume that the
decoder knows the channel state , fix , and fix an arbitrary

encoder/decoder pair. As in Definition 4, the message
is denoted by . The data processing theorem im-
plies that for any of the possible channel states

(112)

(113)

(114)

(115)

(116)

where (113) follows from the memorylessness of channel ;
the empirical marginal distribution of the first channel input
symbols is denoted by

(117)

and again (114) follows from the memorylessness of channel
and the concavity of mutual information in the input distri-

bution. We now proceed to average both sides of (112)–(116)

(118)

(119)

(120)

(121)

(122)

where (119) follows from (112)–(116) and (122) follows from
the definition of (Definition 4). Therefore

(123)

(124)

and the result follows from the definition of and Theorem
13.

Theorem 15: The upper fixed-to-variable capacity of (41) is
equal to

(125)

Proof: Achievability: The proof of achievability is easier
than the achievability proof in Theorem 13 since atypically large
values of do not pose a challenge in this case. Again, we
sidestep the analysis of the negligible loss incurred by using a
training sequence and we assume the decoder has knowledge of
the ergodic mode in effect. A standard random coding argument
together with the type of bounding of the ratio we used in
the proof of Theorem 8 yields that is an asymptoti-
cally achievable .

Converse: Fix and a rateless encoder . Suppose that the
decoder is informed by a genie that the DMC actually in effect
is . If the decoder outputs upon examination of
the first channel outputs

(126)

(127)

where the mutual informations assume that the channel is ,
(126) follows from the data processing theorem and (127) fol-
lows from the memorylessness of the channel where is the
mixture of the first marginals of . The ratio in
the left side of (126) is such that when , the numerator
is equal to . Therefore

(128)

Averaging with respect to the state of the channel, and further
upper bounding the expression by choosing the best possible
input distribution, we obtain the right side of (101).

Another conclusion from (20), and Theorems 13 and 15 is that
whenever (125) equals the right side of (101), then
(e.g., Example 7).

We omit the straightforward technicalities required for the
generalization of the results in this subsection to the case of
countably or uncountably infinite channels.

V. VARIABLE-BLOCKLENGTH CAPACITY

In this section we consider the variable-blocklength capacity
(Definition 7) where the encoder chooses the blocklength as
a function of the message, and the decoder is able to obtain
the value of the blocklength noiselessly. This is an idealization
of, for example, a channel where the presence of a transmitted
signal is detected by the presence of a carrier at a certain fre-
quency. The rate is gauged by the ratio of transmitted bits to
average blocklength.
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Theorem 16: For any nonanticipatory channel (71)

(129)

Proof: By definition, . The essence of the idea
why is impossible can be best appreciated in the sim-
plest channel: a binary noiseless channel with bit. The
codebook consists of binary strings, each chosen equiprob-
ably. It is wasteful to include a string of length unless all the
binary strings of length have been used. Therefore8

(130)

or

(131)

The rate (bits to average blocklength) is

(132)

(133)

If , the average rate is 1.58. However, if we are forced,
as we are in the definition of both and , to let ,
the asymptotic rate . Even though we can communicate
the length for free, the amount of information that it provides
pales in comparison with that provided by the payload in the
asymptotic regime. It is easy to extend this analysis to any noisy
nonanticipatory channel. We can take the optimistic view that if
there are codewords of length , they can be decoded noise-
lessly by the decoder, and since we are interested in vanishing
error probability, it is futile to use codewords of length

with nonnegligible probability. While this must hold only for
asymptotically long blocklength, it is safe to assume it for all
blocklengths since in the limit, short blocklengths do not con-
tribute to the variable-length rate because of the nonanticipatory
assumption. Following the same steps above, now

(134)

and the variable-length rate of the idealized error-free scheme is

(135)

(136)

as (and, thus, ) goes to .

8At the expense of some cumbersomeness, we can deal with any integer
by taking only a subset of the longest strings.

Note that in the general setup of (2), if the input/output alpha-
bets are infinite, we can have and without the
sufficient condition in Theorem 16: consider a channel with al-
phabets , such that if a string of length 1
is sent, the output is equal to the input, while for any other string
length, the output is equal to . As it depends only on
the tail conditional probabilities in (2), the capacity is zero, but
the message (regardless of how many bits it contains) can be de-
livered noiselessly with a unit-length string.

The nonvanishing error probability version of variable-length
channel capacity is more interesting: it is equal to the
Shannon capacity divided by as long as the channel
satisfies the strong converse and is nonanticipatory [22], a result
which was shown in the discrete memoryless case in [2] (see
[8, Problem 2.1.25]).

VI. EXAMPLES

Example 1: Suppose that with probability the channel is a
discrete memoryless channel with capacity , and with prob-
ability , the output is independent of the input. Then, it
follows easily from the various definitions that

(137)

(138)

(139)

Example 2: For the whole duration of the codeword, the
channel is:

• with probability : a binary symmetric channel
with crossover probability ;

• with probability : a binary symmetric channel
with crossover probability .

Therefore

(140)

where is the Hamming distance between and .
While the conventional fixed-to-fixed capacity is

(141)

Theorem 7 specializes to

(142)

where

(143)

Theorem 14 yields

(144)

while Theorem 15 yields

(145)
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Fig. 1 compares (141), (142), (144), and (145), for
and .

Example 3: Consider a channel with input/output alphabet
equal to . With probability 0.9 the output is always
equal to the input; with probability 0.1 the channel is such that
all input symbols different from 0 are mapped to 1, and 0 is
mapped to 0. The right side of (101) is equal to

(146)

However, consider the following suboptimal scheme: The in-
formation bits are grouped in blocks of 10 bits which address
the inputs of the channel; then, the raw bits are sent through the
channel. Therefore, with probability 0.9, while

with probability 0.1. Accordingly, this scheme achieves

(147)

and, consequently, .

Example 4: Binary erasure channel. We now consider a bi-
nary erasure channel whose erasure probability
stays constant during the duration of the codeword and is a
random variable with

(148)

Note that if the erasure probability were known at the trans-
mitter, the variable-rate capacity would equal

(149)

Since equiprobable inputs achieve the maximal mutual informa-
tion regardless of the erasure probability

(150)

(151)

(152)

(153)

To find note that the capacity region of the degraded era-
sure broadcast channel is achieved by TDMA (see, e.g., [3]);
we apportion a fraction of the blocklength equal to de-
voted to a channel whose capacity is (and consequently has
erasure probability . Thus, the actual rate achievable when
the channel has capacity is

(154)

Therefore, the goal is to choose the function to maximize
the expected rate

(155)

(156)

(157)

subject to

(158)

Therefore, the solution is

(159)

If the erasure probability is uniformly distributed between 0 and
1, then

(160)

(161)

(162)

The TDMA-based approach used above can be applied to any
state dependent channel. However, as we illustrate in Examples
5 and 6, the TDMA approach is, in general, suboptimal.

Example 5: Binary Symmetric Channel. We treat here a gen-
eralization of Example 2 where the crossover probability is a
random variable with cumulative distribution func-
tion . If were known at the transmitter, the variable-rate
capacities would coincide with the average capacity

(163)

Since, equiprobable inputs maximize mutual information, we
have

(164)

(165)

which for crossover probability uniformly distributed on
becomes

(166)

(167)

According to Theorem 6, solving for , entails finding the
average rate achieved in a degraded broadcast BSC-channel.9

9An equivalent optimization following the approach of [26], [27] is solved in
[11].
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If the encoder were to assume that there are BSCs with
crossover probabilities , the average
rate would be according to (70)

(168)

(169)

where is the response to of a BSC with crossover prob-
ability is the response to of a BSC with crossover
probability and

(170)

In the continuous limit, with and , (169)
becomes

(171)

where the maximization is over the function , which plays
the role of for the channel with crossover probability

. Therefore

(172)

is monotonically nondecreasing. A feasible choice is
, for which we can optimize (171) to yield

(173)

which is what we would obtain by simply coding for a single
BSC. To maximize the integral in (171) for a given choice of
the extreme points we apply the Euler–Lagrange
formula (e.g., [17])

(174)

to the functional

(175)

with

(176)

(177)

(178)

Assembling (176)–(178), (174) becomes

(179)

Particularized to the uniform case ,
the right side of (179) is equal to . The left side of (179)
is monotonically increasing with with a limit of as

. Therefore, the maximum value of for which
we can find a valid solution is , since at that point

. Furthermore, the solution of (179) satisfies for
. Differentiating (179), we obtain the differential

equation

(180)

with initial condition . The integrand in
(171) is positive for all . Therefore, we let

, and . Optimizing (171), we obtain
and

(181)

achieved with a “last” layer which sends no information since
. The lower bound in (173) is achieved with

a simple fixed-length coding scheme tuned to a BSC with
crossover probability 0.1545, yielding an average rate equal
to 0.117. Therefore, in practice, the additional complexity
required to obtain (181) would hardly be justified.

Example 6: Z-channel. In this example, we consider a
Z-channel where 1 is received error-free and 0 is received as 1
with probability . Conditioned on the channel is
memoryless, and has cumulative distribution function . If

were known at the transmitter, the variable-to-fixed capacity
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and the fixed-to-variable capacity would equal the expected
value of the capacity [36]

(182)

which is equal to 0.368 if is uniformly distributed on .
Denote the mutual information achieved by the input distri-

bution when by

(183)

(184)

Following the lower bound on given in Theorem 13, we
obtain

(185)

while Theorem 15 gives

(186)

If is uniformly distributed between 0 and 1, we get and

(187)

In order to find , we note that the Z-channel with crossover
probability is the cascade of two Z-channels with
crossover probabilities and (see also [37]). According
to Theorem 6, we need to analyze the average rate achieved
in a degraded broadcast Z-channel. For ease of exposition, we
analyze first a suboptimal strategy where encoder and decoder
postulate different values for the channel
crossover probability. The maximum average variable-to-fixed
rate achieved by such a scheme is [via (70)]

(188)

(189)

(190)

where is the response to of a Z-channel with crossover
probability is the response to of a Z-channel with

crossover probability and if ,
then

(191)

Then, for each value of , one can proceed to optimize the
parameters . A more general approach
is to set up the continuous optimization version of (190), where a
monotone nonincreasing function plays the role
that (191) plays with . Letting and
be parameters to be optimized, the summation in (190) becomes

(192)

(193)

In order to optimize the functional in (193) with respect to the
function we again appeal to the
Euler–Lagrange formalism [17] which requires the optimum

to satisfy

(194)

where

(195)

Letting the density function of be , we have

(196)

(197)

(198)
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Then, the Euler–Lagrange condition (194) becomes

(199)

Taking the derivative of (199) leads to an ordinary differential
equation

(200)

where we have particularized the solution to uniformly dis-
tributed on , i.e., . According to
(199), is the only possible solution for .
Furthermore, . Therefore, the optimal
since smaller values would lead to for and
larger values can only lead to a lower value of (193). Then, using
(190), is obtained by optimizing

(201)

where stands for (193) evaluated with the op-
timal obtained as the solution of the differential equation
(200), or equivalently, (199). The optimal value in (201) is

(202)

and is attained at and . So, again, the
“last” layer is silent. As a point of comparison, a fixed-rate code
designed for a Z-channel with crossover probability 0.43543
achieves average rate 0.1635 when the crossover probability is,
in fact, uniformly distributed between 0 and 1.

Example 7: Symmetric Z-channel (known crossover proba-
bility). In this case, we have a two-state binary-input binary-
output channel (42), where

(203)

(204)

(205)

(206)

and both states are equiprobable. It is easy to see that if error
probability is tolerated, the encoder/decoder can
agree on pretending that state 0 is in effect and

(207)

Particularizing Theorems 12 and 15, we obtain

(208)

Furthermore, the lower bound in the right side of (101) is also
equal to the right side of (208); therefore, . Particular-
izing, Theorem 7 we obtain that is also equal to (208). The

conclusion is that for this channel, variable-rate does not help
in any of its guises even though the channel does not satisfy the
strong converse.

Example 8: Symmetric Z-channel (unknown crossover prob-
ability). We now generalize Example 7, replacing the determin-
istic parameter by a random variable. Suppose we have
Z-channels where

(209)

(210)

(211)

(212)

for where and have probability
each and

(213)

Due to the concavity of mutual information, it is optimal to as-
sign equiprobable input distributions. In principle, it is not nec-
essarily optimal to assign a layer for each possible channel state.
If a layer is associated with channel realization , we let ;
otherwise . Furthermore, denote the number of active
layers up to and including state

(214)

Let stand for the effective crossover probability of
a Z-channel with crossover and all undetected layers

(215)

The incremental rate decoded at level is [37]

(216)

where

(217)

with is the binary entropy function. The expected rate
achieved with a given choice of active layers is

(218)

Optimizing over the binary parameters , we obtain
.

Even if we have an uncountable number of crossover proba-
bilities governed by a continuous distribution , the number
of active layers is finite as otherwise would become infinite
and in (216) would be zero. Now, to obtain , we max-
imize (218) with respect to both and the collection of
satisfying (213), with and

(219)
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Example 9: Gaussian channel with nonergodic fading. Con-
sider the complex-valued channel

(220)

where is a Gaussian memoryless random process with zero
mean and is independent of

and , and has cumulative distribution function such
that and

. The encoder is constrained to satisfy a power constraint

(221)

It is straightforward to extend the foregoing results to channels
with input constraints to show the following formulas:

(222)

(223)

(224)

(225)

(226)

where and the integration interval is defined by
(see [26] for details)

(227)

(228)

Further elaboration of (226) can be found in the case of Rayleigh
fading in [26]. In that case, , while coincides
with the capacity had the fading been ergodic and known to the
receiver. A fading distribution for which is the

-distribution rising from two-antenna diversity.

VII. SUMMARY AND CONCLUSIONS

We have defined several new variable-rate notions of channel
capacity, and proved various expressions and relationships
among them. The setup of fixed-to-variable channel coding is
inspired by current fountain coding technology, while the setup
of variable-to-fixed channel coding is reminiscent of unequal
protection coding technology where the fidelity with which a
source is decoded depends on channel conditions (e.g., [21],
[33], and [34]). Motivated by [6], the literature has followed
the “broadcast approach” in a pragmatic way for scalarly
parametrized single-user channels that can be viewed as de-
graded versions of the same channel. In contrast, thanks to our
definition of variable-to-fixed capacity, the relationship with
broadcast channels with degraded message sets is essential,
rather than ad-hoc.

An interesting feature of our variable-rate capacity defini-
tions is that they do not involve the notion of probability of de-
coding the wrong codeword, unlike the conventional definition

of channel capacity. Instead, the new notions rely on the expec-
tation of random variables such as the number of consecutive
bits correctly decoded and the number of observations required
to select the correct message. A pleasing feature of the var-
ious notions of variable-rate channel capacity is that they equal
the conventional channel capacity for channels that satisfy the
strong converse.

Summarizing the relationships that hold in wide generality

(229)

(230)

(231)

(232)

(233)

while we have shown simple examples where , and
others for which .

We have also found several formulas and bounds for vari-
able-to-fixed and fixed-to-variable capacity for state-dependent
channels. Those formulas enable the analysis of various
Bayesian setups. For example (all values in bits):

• a BEC with erasure probability uniformly distributed on
has ;

• a BSC with crossover probability uniformly distributed on
has ;

• a Gaussian-noise channel with Rayleigh fading (constant
throughout the codeword duration) and dB has

.
In those cases, is equal to the average capacity that would be
obtained if the transmitter knew the channel (but in the case of
the fading channel would not be allowed to control the output
power). Those examples illustrate the shortcomings of the con-
ventional fixed-rate setup in the absence of channel state infor-
mation at the transmitter.

While it is fairly straightforward to incorporate cost con-
straints, other generalizations such as source-channel coding,
feedback and multiuser channels are interesting and not neces-
sarily easy.
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