
Optimization Flow Control with On{line Measurement or MultiplePaths �Steven LowDepartment of EEE, University of Melbourne, Australiafslow@ee.mu.oz.augFebruary 25, 1999AbstractWe proposed earlier an optimization approach to reactive 
ow control where the objectiveof the control is to maximize the total utility of all sources over their transmission rates. Thecontrol mechanism is derived as a gradient projection algorithm to solve the dual problem. Inthis paper we consider two extensions to the basic algorithm. First, the basic algorithm requirescommunication from sources of their rates to links in their paths in order to carry out thegradient projection algorithm. We prove that it is possible for the links to estimate the gradientusing only local information, thus eliminating the need for explicit communication. Second, thebasic algorithm assumes that each source is served by a single path. We generalize the modelto the case where there are multiple paths between a source{destination pair. This allows 
owcontrol and routing to be jointly optimized.1 IntroductionWe have proposed previously an optimization approach to 
ow control where the control mechanismis derived as a gradient projection algorithm to solve (the dual of) a global optimization problem[16, 15]. The purpose of this paper is to study two extensions to the basic algorithm.Speci�cally consider a network that consists of a set L of unidirectional links of capacities cl,l 2 L. The network is shared by a set S of sources, where source s is characterized by a utilityfunction Us(xs) that is concave increasing in its transmission rate xs. The goal is to calculate sourcerates that maximize the sum of the utilities Ps2S Us(xs) over xs subject to capacity constraints.Solving this problem centrally would require not only the knowledge of all utility functions, butworse still, complex coordination among potentially all sources due to coupling of sources throughshared links. The key is to consider the dual problem that decomposes the task into simple localcomputations to be executed at individual links and sources.�Partial and preliminary results will be presented at the 16th International Teletra�c Congress, Edinburgh, UK,June 1999 [18]. This research is partly supported by the Australian Research Council under grant S499705.1



The algorithm takes the familiar form of reactive 
ow control. Based on the local aggregatesource rate each link l 2 L calculates a `price' pl for a unit of bandwidth. A source s is fed back thescalar price ps =P pl, where the sum is taken over all links that s uses, and it chooses a transmissionrate xs that maximizes its own bene�t Us(xs) � psxs, utility minus the bandwidth cost. Theseindividually optimal rates (xs(ps); s 2 S) may not be socially optimal for a general price vector(pl; l 2 L), i.e., they may not maximize the total utility. The algorithm iteratively approachesa price vector (p�l ; l 2 L) that aligns individual and social optimality such that (xs(p�l ); s 2 S)indeed maximizes the total utility. In other words, the price p�s represents the complete congestioninformation source s needs for its control decision.The basic algorithm is presented in [16] and a preliminary prototype is brie
y discussed in [15].Its convergence is proved in [19] in both synchronous and asynchronous settings. We now motivateand summarize two extensions considered in this paper.First the basic algorithm requires communication of link prices to sources and source ratesto links. In [17], we describe a marking scheme, inspired by the work of [9], that achieves thecommunication from links to sources using only binary feedback. In this paper we eliminate theneed for explicit communication in the reverse direction: a link simply sets its price to a fraction ofits bu�er occupancy. This is equivalent to the links estimating the gradient using local informationin carrying out the gradient projection algorithm. We prove that descent direction is maintainedand hence the algorithm converges to yield optimal rate allocation. In [17] we combine these twosimpli�cations to the basic scheme to obtain a variant of Random Early Detection (RED) scheme[7], that not only stabilizes network queues, as RED does, but does so in a way that optimizes aglobal measure of network performance.Second the basic algorithm assumes that each source is served by a single path. However,source routing, where a source splits its tra�c among multiple paths, o�ers an important way toload balance in a service provider network (ISP), e.g., in of MultiProtocol Label Switching (MPLS)networks [12]. In this paper we extend the basic algorithm to a network with multiple pathsbetween a source and its destination, where 
ow control and routing can be jointly optimized. Theproblem turns out to be more di�cult as the dual problem with multiple paths is nondi�erentiable.We propose a direct extension of the basic algorithm. A source is fed back a price for each pathavailable to it, and it chooses a total transmission rate based on the minimum price exactly as itwould in the basic algorithm. Then it splits this rate evenly across all paths with the minimumprice. The latter step is similar to the minimum{�rst{derivative{path routing of [3, 418{419].Each link then adjusts its price in the same way as in the basic algorithm. We show that thisis equivalent to solving the dual problem using a subgradient method [2, Chapter 6.3] where thegradient is replaced by a subgradient. We illustrate its behavior with a simple example.We make three remarks. First under our scheme sources that share the same link do notnecessarily equally share the available bandwidth. Rather their shares re
ect how they value the2



resource as expressed by their utility functions and how their use of the resource implies a cost onothers. This could be a basis to provide di�erentiated services in terms of di�erent rate allocations.Second though network feedbacks are discussed in terms of bandwidth `prices' they may or maynot form a component of the monetary charge a user pays. Our primary goal is not the pricingof services, but the steering of network towards an e�cient operating point where the total sourceutility is maximized. The feedback a source receives is a measure of congestion speci�c to the sourceand is simply a control signal to guide its decision. If it further forms part of the service chargethen it provides an incentive for the source to choose a socially optimal rate. Finally though theoptimization problem is formulated as a static problem, the 
ow control algorithm itself naturallyextends to the time-varying case. The system tracks optimality if network or source conditionschange slowly compared with convergence time [15].There is a tremendous literature on 
ow control, including early schemes based on practicalexperience, e.g., [11, 7, 22], and recent schemes based on control theory, e.g., [1, 4, 23, 5]. Opti-mization based 
ow control have been proposed in [8, 10, 6, 13, 14, 16, 15, 18]. All these worksmotivate 
ow control by an optimization problem and derive their control mechanisms as solutionsto the optimization problem. They di�er in their choice of objective functions or their solution ap-proaches, and result in rather di�erent 
ow control mechanisms to be implemented at the sourcesand the network links. In [8, 10], the goal is to minimize a cost function of source rates usinggradient type algorithm. The cost function has two components, the �rst can be considered as the(minus of) total utility of our model and the second being the cost of link congestion. This secondcomponent serves a similar function as the capacity constraints in our model, but it can also beused to specify (model) the e�ect of link tra�cs on quality measures such as delay and loss. Incontrast the cost of congestion in our model, as measured by bandwidth prices, is determined bythe interaction of sources through the capacity constraints. Another important di�erence is oursolution of the optimization through the dual problem and the resulting simple switch algorithm.Though in di�erent form the social welfare function in [6] is actually a special case of our formula-tion here with a speci�c utility function. Their algorithm can also be considered as a scaled gradientprojection algorithm for the dual problem. Our model is closest to that in [13, 14]. There howeverthe overall objective of maximizing the total utility is decomposed into optimization subproblemsfor the network and the sources, and they propose a di�erent mechanism for its solution where eachsource chooses a willingness to pay and the network allocates rates to these sources in a way thatis proportionally fair. In [13] they prove the optimality of proportional fairness and in [14] theypropose simple iterative source and switch algorithms to approach it. An interesting feature of theapproach in [13] is that it allows the users to decide their payments and receive what the networkallocates, whereas in our approach, the users decides their rates and pay what the network charges.See a more detailed comparison in [19].The present paper is structured as follows. In Section 2 we review our optimization framework3



and the basic OFC (Optimization Flow Control) algorithm. In Section 3 we present OFC withon-line measurement and prove its convergence. In Section 4 we present OFC with multiple pathsand justify it with a numerical example.2 Model and basic algorithm2.1 ModelConsider a network that consists of a set L = f1; : : : ; Lg of unidirectional links of capacities cl,l 2 L. 1 The network is shared by a set S = f1; : : : ; Sg of sources. Source s is characterizedby four parameters (L(s); Us;ms;Ms). The path L(s) � L is a subset of links that source s uses,Us : <+ ! < is a utility function,ms � 0 andMs � 1 are the minimum and maximum transmissionrates, respectively, required by source s. Source s attains a utility Us(xs) when it transmits at ratexs that satis�es ms � xs � Ms. We assume Us is increasing and strictly concave in its argument.Let Is = [ms;Ms] denote the range in which source rate xs must lie and I = (Is; s 2 S) be thevector. For each link l let S(l) = fs 2 S j l 2 L(s)g be the set of sources that use link l. Note thatl 2 L(s) if and only if s 2 S(l).Our objective is to choose source rates x = (xs, s 2 S) so as to:P: maxxs2Is Xs Us(xs) (1)subject to Xs2S(l)xs � cl; l = 1; : : : ; L: (2)The constraint (2) says that the total source rate at any link l is less than the capacity. A uniquemaximizer, called the primal optimal solution, exists since the objective function is strictly concave,and hence continuous, and the feasible solution set is compact.Though the objective function is separable in xs, the source rates xs are coupled by theconstraint (2). Solving the primal problem (1{2) directly requires coordination among possibly allsources and is impractical in real networks. The key to a distributed and decentralized solution isto look at its dual, e.g., [3, Section 3.4.2], [20]:D: minp�0 D(p) = Xs Bs(ps) +Xl plcl (3)where Bs(ps) = maxxs2Is Us(xs)� xsps (4)ps = Xl2L(s) pl: (5)1We abuse notation and use the same symbol to denote both a set and its cardinality when there is no danger ofconfusion. 4



The �rst term of the dual objective function D(p) is decomposed into S separable subproblems(4{5). If we interpret pl as the price per unit bandwidth at link l then ps is the total price perunit bandwidth for all links in the path of s. Hence xsps represents the bandwidth cost to sources when it transmits at rate xs, and Bs(ps) represents the maximum bene�t s can achieve at thegiven price ps. We shall see that this scalar ps summarizes all the congestion information source sneeds to know. A source s can be induced to solve maximization (4) by bandwidth charging. Foreach p, a unique maximizer, denoted by xs(p), exists since Us is strictly concave.In general (xs(p); s 2 S) may not be primal optimal, but by the duality theory, there existsa p� � 0 such that (xs(p�); s 2 S) is indeed primal optimal. Hence we will focus on solving thedual problem (3). Once we have obtained the minimizing prices p� the primal optimal source ratesx� = x(p�) can be obtained by individual sources s by solving (4), a simple maximization (seebelow). The important point to note is that, given p�, individual sources s can solve (4) separatelywithout the need to coordinate with other sources. In a sense p� serves as a coordination signal thataligns individual optimality of (4) with social optimality of (1)2.Indeed the unique maximizer x(p) for (4) can be given explicitly, from the Karush{Kuhn{Tucker theorem, in terms of the marginal utility3:xs(p) = [U 0�1s (p)]Msms (6)where [z]ba = maxfa;minfb; zgg. Here U 0�1s is the inverse of U 0s, which exists over the range[U 0s(Ms); U 0s(ms)] if U 0s is continuous and Us strictly concave. It is illustrated in Figure 1. Letx(p) = (xs(p); s 2 S).2.2 Algorithm A1In [16, 19] we propose to solve the dual problem using the gradient projection algorithm where linkprices are adjusted in opposite direction to the gradient rD(p) whose l-th component is given by([3, pp.669]): @D@pl (p) = cl � xl(p) (7)where xl(p) :=Ps2S(l) xs(p) is the aggregate source rate at link l. In the following [z]+ = maxfz; 0g.Algorithm A1: Basic OFCLink l's algorithm:2Despite the notation, a source s does not require the vector price p, but only a scalar ps = Pl2L(s) pl thatrepresents the sum of link prices on its path; see below.3We abuse notation and use xs(�) both as a function of scalar price p 2 <+ and of vector price p 2 <jLj+ . When pis a scalar, xs(p) is given by (6). When p is a vector, xs(p) = xs(ps) = xs(Pl2L(s) pl). The meaning should be clearfrom the context. 5
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Figure 1: Source rate xs(p) as a function of (scalar) price p.At times t = 1; 2; : : :, link l:1. Receives rates xs(t) from all sources s 2 S(l) that go through link l.2. Computes a new price pl(t+ 1) = [pl(t) + 
(xl(t)� cl)]+:where xl(t) =Ps2S(l) xs(t).3. Communicates new prices pl(t+ 1) to all sources s 2 S(l) that use link l.Source s's algorithm:At times t = 1; 2; : : :, source s:1. Receives from the network the sum ps(t) =Pl2L(s) pl(t) of link bandwidth prices in its path.2. Chooses a new source rate xs(t+ 1) for the next period:xs(t+ 1) = arg maxxs2Is Us(xs)� ps(t)xs:3. Communicates new rate xs(t+ 1) to links l 2 L(s) in its path.As noted above though the optimization problem is formulated as a static problem the 
owcontrol algorithm naturally adapts to changing link capacities and set of sources at a link: simplyuse the current link capacity cl(t) and the current set S(l; t) of sources at link l in the link algorithmof A1.In [19] we prove that Algorithm A1 generates a sequence that approaches the optimal rateallocation, provided the following conditions are satis�ed:6



C1: On the interval Is = [ms;Ms], the utility functions Us are increasing, strictly concave, andtwice continuously di�erentiable.C2: The curvatures of Us are bounded away from zero on Is: �U 00s (xs) � 1=�s > 0 for all xs 2 Is.These conditions imply that the gradient of the dual objective function is Lipschitz which guaranteesconvergence of gradient projection algorithms.De�ne L := maxs2S jL(s)j, S := maxl2L jS(l)j, and � := max f�s; s 2 Sg. In words L is thelength of a longest path used by the sources, S is the number of sources sharing a most congestedlink, and � is the upper bound on all �U 00s (xs).Theorem 1 Suppose assumptions C1{C2 hold. Provided that the step size 
 satis�es 0 < 
 <2=�LS, starting from any initial rates m � x(0) � M and prices p(0) � 0, every limit point(x�; p�) of the sequence (x(t); p(t)) generated by Algorithm A1 are primal{dual optimal. That is,x� gives the source rates that maximize total utility and p� the shadow bandwidth prices.In [19] we also present an asynchronous version of the algorithm where network state (prices inour case) may be probed by di�erent sources at di�erent rates (e.g., the Resource Management (RM)cells in an ATM networks are sent at di�erent rates by di�erent sources), where feedbacks may reachdi�erent sources after di�erent, substantial and variable delays, and where the communication andcomputation at sources and links are uncoordinated and possibly based on outdated information.We prove there that the asynchronous algorithm converges provided the time interval betweenconsecutive updates at any link or any source is bounded. For this paper however we will focus onthe synchronous model.3 OFC with on-line measurementAlgorithm A1 requires communication between sources and links: source s must obtain the sumps(t) of link prices in its path, and link l must obtain the aggregate source rates xl(t) at the link.In [17] we describe a method to achieve the communication from links to sources using only binaryfeedback. In this section we describe a method to achieve the communication from sources to linksimplicitly: a link sets its price to a fraction of its current bu�er occupancy. We shall see that this isequivalent to the link estimating the aggregate source rate xl(t) by the measured aggregate inputrate x̂l(t) at the link and using this estimate in the calculation of the gradient (in place of xl(p) in(7)).We �rst extend our model to include bu�er processes at the links. Then we describe preciselythe algorithm and prove its optimality.
7



3.1 ModelWe assume each link has a large bu�er so that no packets are lost. We also assume that these linksare work conserving, i.e., their output rates are nonzero as long as the bu�er is nonempty.In the last section the set L(s) of links s visits is unrestricted and can be a tree. Here werestrict L(s) to be a path for a point-to-point connection. We use L(s) to denote, depending onthe context, both the set of links in source s's path and the vector of these links with L(s; i) as theith link in the path.Let xls(t) be the input rate from source s at link l at time t. Then xL(s;1)s(t) = xs(t) isthe source rate of s at time t which is also the input rate from s at its �rst link. Note thatxL(s;i)s(t) is both the input rate from s at its ith link and the output rate from s at its i � 1stlink. Hence we ignore the propagation delay on source s's ith link. Let x̂l(t) = Ps2S(l) xls(t) bethe aggregate input rate at link l. Note that x̂l(t) is generally di�erent from the aggregate sourcerate xl(t) =Ps2S(l) xs(t) used in Algorithm A1.Let bl(t) be the bu�er backlog at link l at time t, and bls(t) be the fraction of bl(t) that isfrom source s. Hence bl(t) = Ps2S(l) bls(t). A useful fact that relates the bu�er occupancy fromindividual sources to their input rates is:bL(s;i)s(t+ 1) = bL(s;i)s(t) + xL(s;i)s(t)� xL(s;i+1)s(t): (8)The aggregate bu�er occupancy evolves according to:bl(t+ 1) = [bl(t) + x̂l(t)� cl]+: (9)Finally let �ls(t) = bls(t+ 1)� bls(t), �l(t) = bl(t+ 1)� bl(t), and �(t) = pl(t+ 1)� pl(t).We summarize our notations as follows.� L(s) : set or vector of links in the path of s.L(s; i) : ith link in the path of s.� xls(t) : input rate at link l from source s at time t.xs(t) = xL(s;1)s(t) : source rate of s at time t.� xl(t) =Ps2S(l) xs(t): aggregate source rate at link l at time t.x̂l(t) =Ps2S(l) xls(t) : aggregate input rate at link l at time t.� bls(t) : backlog at link l from s at time t.bl(t) =Ps2S(l) bls(t) : aggregate backlog at link l at time t.�ls(t) = bls(t+ 1)� bls(t); �l(t) = bl(t+ 1)� bl(t).� pl(t) : price at link l at time t.�(t) = pl(t+ 1)� pl(t). 8



� 
 > 0 : step size in the OFC algorithm.3.2 Algorithm A2The new algorithm eliminates the need for explicit communication of the source rates to links. Thesource algorithm is identical to that in A1, except step 3 becomes unnecessary. The link algorithmis simpli�ed to the following:Link l's algorithm:At times t = 1; 2; : : :, link l:1. Updates price pl(t) = 
bl(t).2. Communicates price pl(t) to all sources s 2 S(l) that use link l.Algorithm A2 converges, possibly with a smaller step size, under the following additionalassumption:C3: For all links l and all sources s 2 S(l) at all t, we have �ls(t) = �ls(t)�l(t) for some �ls(t) � 0with Ps2S(l) �ls(t) = 1.Note that C3 is consistent with Ps2S(l) �ls(t) = �l(t). The condition requires that the capacity oflink l be distributed among the sources s 2 S(l) `fairly' in that if the aggregate backlog bl(t) isincreased (decreased) then no individual backlog bls(t) will be strictly decreased (increased). It isfairly general as �ls(t) can depend on (l; s; t). Service disciplines such as round robin or generalizedprocess sharing satisfy C3, but �rst{in{�rst{out does not.Theorem 2 Under conditions C1{C3, the conclusion of Theorem 1 holds for Algorithm A2 witha step size 
 satisfying 0 < 
 < 1=�LS.We prove Theorem 2 in the rest of this section. De�ne the sequence f�(t) = (�l(t); l 2 L)g by�l(t) = cl � x̂l(t): (10)We can treat x̂l(t) as an estimate of the aggregate source rate xl(t) and �l(t) an estimate of thepartial derivative @D=@pl in (7).Lemma 1 The price sequence fp(t) = (pl(t); l 2 L)g evolves according topl(t+ 1) = [pl(t)� 
�l(t)]+9



Proof. From (9) and (10), it follows that for any 
 > 0, we have
bl(t+ 1) = [
bl(t)� 
�l(t)]+:The claim follows by construction of pl(t) in Algorithm A2.Given any source s, we say that link l0 precedes link l with respect to s, denoted l0 �s l, if bothl0 and l are in L(s) and s visits l0 before l, i.e., if L(s; i) = l0 and L(s; j) = l then i < j. Thefollowing lemma says that the aggregate input rate at link l is the aggregate source rate minus theaggregate changes in backlog from these sources at links preceding link l in their paths. It relatesthe aggregate source rate to its estimate.Lemma 2 x̂l(t) = xl(t)�Ps2S(l)Pl0�sl �l0s(t).Proof. Applying (8) repeatedly we havexL(s;i)s(t) = xs(t)� i�1Xj=1 �L(s;j)s(t)or equivalently xls(t) = xs(t)�Pl0�sl �l0s(t). Summing over S(l) yields the result.Let S(l0 ! l) � S(l0) \ S(l), l0 6= l, be the set of sources that visit link l0 before link l. Notethat S(l! l) = �. De�ne al0l(t) =Ps2S(l0!l) �l0s(t). Then Lemma 2 implies thatx̂l(t)� xl(t) = �Xl0 6=l al0l(t)Since at least one of S(l0 ! l) and S(l ! l0) is empty (links are unidirectional), at least one ofal0l(t) and all0(t) is zero. Under condition C3 we havejal0l(t)j = j Xs2S(l0!l)�l0s(t) �l0(t)j � j�l0(t)j = 
�1j�l0(t)j (11)where the last equality holds since pl(t) = 
bl(t).The next lemma proves that the prices converge by bounding the error jjrD(p(t))��(t)jjT�(t)in gradient estimate.Lemma 3 Under conditions C1{C3, �(t) �! 0 and �(t) �! rD(p(t)) as t �! 1 provided
 < 1=�LS.Proof. We have proved in [19] that rD is Lipschitz (the proof is included in the Appendix forcompleteness). Hence by the descent lemma [2, pp. 553]D(p(t+ 1)) � D(p(t)) +rDT (p(t))�(t) + �jj�(t)jj22= D(p(t)) + [rD(p(t))� �(t)]T�(t) + �T (t)�(t) + �jj�(t)jj22 (12)10



where � = �LS=2.Now, from (7), (10) and Lemma 2 we have[rD(p(t))� �(t)]T�(t) = Xl (x̂l(t)� xl(t))�l(t)= �Xl Xl0 6=l al0l(t)�l(t)� Xl Xl0 6=l jal0l(t)j j�l(t)j= Xl<l0(jal0l(t)j j�l(t)j+ jall0(t)j j�l0(t)j)Using (11) and the fact that at least one of all0(t) and al0l(t) is zero, we have[rD(p(t))� �(t)]T�(t) � 1
 Xl<l0 j�l(t)j j�l0(t)j (13)Using Lemma 1 and the projection theorem [2, pp. 183] it can be shown that (e.g., see [19])�T (t)�(t) � �
�1jj�(t)jj22. Applying this inequality and (13) to (12) we haveD(p(t+ 1)) � D(p(t))� 1� 
�
 0@Xl �2l (t)� 11� 
� Xl<l0 j�l(t)j j�l0(t)j1A< D(p(t))� 1� 
�
 0@Xl �2l (t)� 2 Xl<l0 j�l(t)j j�l0(t)j1A� D(p(t))� 1� 
�
 jj�(t)jj21where the second inequality holds provided 
 < 1=2� = 1=�LS. Summing over all t yieldsD(p(t+ 1)) � D(p(0))� 1� 
�
 1Xt=1 jj�(t)jj21:Since D(p) is bounded below by the primal objective value, Pt jj�(t)jj21 must be bounded, andhence jj�(t)jj �! 0 as desired.For the second half of the theorem note that from (7), (10), Lemma 2 and (11), we havej[rD(p(t))� �(t)]lj = Xl0 6=l jal0l(t)j � 1
Xl0 j�l0(t)jwhich tends to zero as t!1. This completes the proof.Putting everything together yields the proof of Theorem 2.Proof of Theorem 2. Let p� be a limit point of the sequence fp(t)g generated by A2. At leastone exists because without loss of generality we can restrict fp(t)g to a compact set (see [19]).11



Consider any subsequence fp(tk)g that converges to p�. We will show that p� is dual optimal, andsince x(p(t)) given by (6) is continuous, fx(p(tk))g converges to x(p�), the primal optimal rate.By Lemmas 3, and the continuity of rD, we havelimk �(tk) = limk rD(p(tk)) = rD(p�)Hence [p� � 
�rD(p�)]+ � p� = limk [p(tk)� 
��(tk)]+ � p(tk) = limk �(tk) = 0where the last equality follows from Lemma 3. Then the projection theorem implies that for allp � 0 [rD(p�)]T (p� p�) � 0which, due to the concavity of D, implies that p� is a minimizer of D. This completes the proof.4 OFC with multiple pathsIn this section we extend the model in Section 2 to include multiple paths between a source andits destination, following the formulation of [13], and generalize Algorithm A1 to the new model.This allows OFC to be applied to networks, such as MPLS, where 
ow control and routing can bejointly optimized.4.1 ModelA path, or route, r � L is a subset of links. Let R denote the set of paths. Let r(l), l 2 L, denote theset of paths that contain l. Let the L�R matrix A be de�ned by Alr = 1 if l 2 r and 0 otherwise.A source s is characterized by four parameters (R(s); Us;ms;Ms), where R(s) � R is the set ofpaths that source s uses, and Us, ms and Ms are, as before, the utility function, minimum andmaximum rates, respectively. We assume that for each path r, there is a unique source, denoted bys(r), that uses r. Hence fR(s); s 2 Sg is a (disjoint) partition of R. We assume Us is increasing andstrictly concave in its argument. Source s splits its rate xs into 
ows yr along paths r 2 R(s). Lety(s) = (yr; r 2 R(s)) be the vector of 
ow rates for source s, and let y = (y(s); s 2 S) = (yr; r 2 R).We say a 
ow y supports rate x if Pr2R(s) yr = xs for all s. Note that a 
ow rate yr alwaysrepresents the rate at the source of path r, which is not necessarily equal to the input rate at a linkin the path.For each path r let L(r) = fl 2 L j l 2 rg be the set of links in r. Note that l 2 L(r) if and onlyif r 2 r(l). Let Z(s) = f(xs; y(s)) j ms � xs �Ms, 0 � yr �Ms(r); r 2 R(s);Pr2R(s) yr = xsg, andlet Z be the product set (Z(s); s 2 S). Hence Z is the set of all valid source rates x = (xs; s 2 S)12



and 
ows y = (yr; r 2 R) that support them. Source s's task is to decide its source rate xs andhow to split its tra�c yr along paths r, r 2 R(s), available to it such that (xs; y(s)) 2 Z(s).Our objective is to choose source rates x and supporting 
ows y so as to:P: max(x;y)2Z Xs Us(xs) (14)subject to Ay � c (15)A maximizer exists since the objective function is concave, and hence continuous, and the feasiblesolution set is compact. De�ne the LagrangianL(x; p) = Xs Us(xs) + pT (c�Ay)= Xs (Us(xs)� Xr2R(s) pryr) + pT c:The dual problem is thus (e.g., [3, Section 3.4.2], [20])D: minp�0 D(p) = Xs Bs(p(s)) +Xl plcl (16)where the vector p(s) = (pl; l 2 R(s)) represents the link prices along all paths of source s, andBs(p(s)) = max(xs;y(s))2Z(s) Us(xs)� Xr2R(s) pr(s)yr (17)pr(s) = Xl2L(r) pl; r 2 R(s) (18)4.2 Algorithm A3A natural strategy is, as in the single{path case, to solve the dual problem (16{18) using a descentmethod. The situation however is more complex in the multipath case because the primal objec-tive function Ps Us(xs) is strictly concave in x but not strictly concave in (x; y), and hence thedual problem, unlike in the single{path case, is not di�erentiable. Indeed D(p), being convex, issubdi�erentiable at all price vectors p with subgradient � de�ned by [24]:D(p+ �)�D(p) � �T�; for all �Let @D(p) denote the subdi�erential of D at p, the set of all subgradients at p. Let Z(p) = f(x; y)gbe the set of maximizers (x; y) of (17) given the price vector p. Then the set of all subgradients iscompletely determined by the set of maximizers, @D(p) = f(cl � yl; l 2 L) j (x; y) 2 Z(p)g, e.g., [2,Chapter 6.1], [21, Theorem 5.4.7]. D(p) is di�erentiable only at price vectors p that have uniqueminimum path prices for each source s, i.e., argminr fpr(s); r 2 R(s)g is unique for all s. At such13



p, the subdi�erential of D reduces to the usual gradient, @D(p) = frDg, whose l{th component isgiven by @D@pl (p) = cl � yl(p) (19)where yl(p) :=Pr2r(l) yr(p) is the aggregate 
ow rate through link l at price p.In the following we present a distributed algorithm to solve the dual problem, that is a directextension of the basic OFC algorithm. Comparing the dual problem (3{5) in Section 2 and that(16{18) of the multipath model, sources will solve (17) and links will carry out a subgradientmethod to solve (16) [2, Chapter 6.3].We �rst derive the source algorithm. Writing xs =Pr2R(s) yr, (17) is equivalent tomaxy(s) Us( Xr2R(s) yr)� Xr2R(s) pr(s)yrsubject to ms � Xr2R(s) yr �Ms(r)yr � 0; r 2 R(s)By the Karush{Kuhn{Tucker theorem, the optimal rates y(s) satisfyU 0s( Xr2R(s) yr)� �+ � = pr(s)� �r; r 2 R(s) (20)�ryr = 0; r 2 R(s) (21)�(Ms � Xr2R(s) yr) = 0 (22)�(ms � Xr2R(s) yr) = 0 (23)for some �r � 0, � � 0 and � � 0. Hence (20{21) imply that the prices pr(s) for paths r ofpositive 
ow, yr > 0, must be minimum (and hence equal). Moreover, (20{23) imply that if pr�(s)is minimum among fpr(s); r 2 R(s)g then the maximizer y�(s) is such thatXr2R(s) y�r = [U 0�1s (pr�(s))]MsmsHence given path prices pr, r 2 R(s), source s's decision breaks down into two simple steps: itchooses a source rate xs based on the minimum path price, as in the basic algorithm, and thensplits its tra�c across minimum priced paths. The second step is consistent with the minimum{�rst{derivative{path routing of [3, 418{419]. We summarize.Lemma 4 Given a price vector p(s), suppose pr�(s) = min fpr(s); r 2 R(s)g is the minimum pathprice. Then a maximizer of (17) is obtained by setting the source rate to x�s = [U 0�1s (pr�(s))]Msmsand arbitrarily splitting the 
ow only among paths r with minimum price pr(s) = pr�(s) such thatPr2R(s) y�r = x�s. 14



We now explain the link algorithm. A direct extension of the basic algorithm is to use asubgradient cl � yl(t) in place of the gradient cl � xl(t) in the single{path case, where yl(t) =Pr2r(l) yr(t) and yr(t) denotes the 
ow rate chosen by source s(r) in period t according to Lemma4.Algorithm A3: multipath OFCLink l's algorithm:At times t = 1; 2; : : :, link l:1. Receives 
ow rates yr(t) for all paths r 2 r(l) that contain link l.2. Computes a new price pl(t+ 1) = [pl(t) + 
(yl(t)� cl)]+where yl(t) =Pr2r(l) yr(t).3. Communicates new prices pl(t+ 1) to sources s(r) of all paths r 2 S(l) that contain link l.Source s's algorithm:At times t = 1; 2; : : :, source s:1. Receives from the network the path prices pr(t) =Pl2L(r) pl(t) for all paths r 2 R(s).2. Chooses a new source rate xs(t+ 1) for the next period:xs(t+ 1) = [U 0�1s (pr�(t)]Msmswhere pr�(t) = minfpr(t); r 2 R(s)g, and splits its tra�c yr(t + 1) evenly along all paths rwith the minimum price.3. Communicates new 
ow rate yr(t+ 1) to links l 2 L(r) in paths r 2 R(s).For su�ciently small stepsize 
 it can be shown that the distance of the iterate (yr(t); pl(t); r 2R; l 2 L) from the optimal solution set is reduced in each step [2, Proposition 6.3.1]. We illustrateits behavior with a simple example whose equilibrium can be easily obtained analytically.Example: multiple pathsThe network consists of 5 unidirectional links labeled 1; 2; : : : ; 5 as shown in Figure 2. Link capacitiesare c = (1; 1; 1; 2; 2). It is shared by two sources 1 and 2. Source 1 uses two paths (1; 5) and (2; 5),15
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Figure 3: Source rate xs(t). Solid line is x1(t); dotted line is x2(t).rate x1(t) (solid line) climbs rapidly to its optimal rate of 2. At time = 51, source 2 (dotted line)becomes active and immediately transmits at the maximum rate because it sees a path (3; 4) withzero price. After a brief transient, x1(t) converges to its optimal rate of 1 and x2(t) of 2. Thedi�erent bandwidth allocation in equilibrium re
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Figure 4: Tra�c split of source 1. Solid line is along path (1; 5); dotted line along (2; 5).phase, both paths have the same price and source 1 equally splits its tra�c between them. In phase2, path (2; 5) has a high price than path (1; 5) since the former path shares a link with source 2.Hence source 1 routes all its tra�c on path (1; 5).Figure 5 shows the evolution of path prices. The oscillation in phase 2 is due to that some linkprices do not converge, though any limit point is dual optimal.5 ConclusionWe have presented two extensions to the basic optimization 
ow control (OFC) proposed in [16, 15].The �rst extension eliminates the need for explicit communication from sources to links and makesOFC much more practical. Moreover under the on{line algorithm links need not perform anycomputation but simply set their prices to a fraction of their bu�er occupancies. We have provedthat it converges as the basic algorithm does. This simpli�cation has been combined with a markingscheme to obtain a variant of RED scheme [7] that can be applied to Internet using the proposedexplicit congestion noti�cation bit in IP (Internet Protocol) header; see [17]. The advantage overRED is that the behavior of the entire network is under explicit control { to track a global optimality.The second extension is motivated by networks, such as MPLS networks, where 
ow controland routing can be jointly optimized. The problem with multiple paths is however trickier due tonondi�erentiability. We have proposed a simple subgradient algorithm adapted directly from thebasic algorithm and illustrated its behavior with a simple example.17
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Figure 5: Path prices. Solid line is for path (1; 5), dotted line for (2; 5), dashed line with square for(2,4), and dashed line with diamond for (3,4).Appendix: Proof of Lipschitz continuity of rDWe show in Lemma 6 below that rD is Lipschitz. We will often use vector notation when it ismore convenient.For any price vector p in <L+ de�ne �s(p) by�s(p) = ( 1�U 00s (xs(p)) if U 0s(Ms) � ps � U 0s(ms)0 otherwise (24)where ps is de�ned in (5) and x(p) is the unique maximizer of (4). Let B(p) = Diag (�s(p); s 2 S)be the S � S diagonal matrix with diagonal elements �s(p).Lemma 5 Under condition C1, the Hessian of D is given by r2D(p) = RB(p)RT , where it exists.Proof. From (7) we have rD(p) = c � Rx(p) where the sth component of x(p) is given by (6),and hence r2D(p) = �R �@x@p (p)�T (25)where @x@p (p) is a L� S matrix whose (l; s) element is @xs@pl (p). Hence, when it exists,@xs@pl (p) = ( RlsU 00s (xs(p)) if U 0s(Ms) � ps � U 0s(ms)0 otherwise (26)18



Using (24) we have �@x@p (p)�T = �B(p)RT (27)which together with (25) yields the result.De�ne L := maxs2S jL(s)j, S := maxl2L jS(l)j, and � := max f�s; s 2 Sg. In words L is thelength of a longest path used by the sources, S is the number of sources sharing a most congestedlink, and � is the upper bound on all �U 00s (xs).Lemma 6 Under conditions C1{C2, D is Lipschitz withjjrD(q)�rD(p)jj2 � �LS jjq � pjj2for all p; q � 0.Proof. Given any p; q � 0, using Taylor theorem and Lemma 5 we haverD(q)�rD(p) = r2D(w)(q � p) = RB(w)RT (q � p)for some w = tp+ (1 � t)q � 0, t 2 [0; 1]4. Hence jjrD(q)�rD(p)jj2 � jjRB(w)RT jj2 � jjq � pjj2.We now show that jjRB(w)RT jj2 � �LS which yields the desired result.Now (see e.g. [3, pp. 635])jjRB(w)RT jj22 � jjRB(w)RT jj1 � jjRB(w)RT jj1 (28)i.e., jjRB(w)RT jj2 is upper bounded by the product of the maximum row sum and the maximumcolumn sum of the L� L matrix RB(w)RT . For jjRB(w)RT jj1 we havejjRB(w)RT jj1 = maxl Xl0 [RB(w)RT ]ll0= maxl Xl0 Xs �s(w)RlsRl0s= maxl Xs �s(w)RlsjL(s)jwhere jL(s)j is the number of links in the path of source s. By de�nition jL(s)j � L, �s(w) � �, andhence jjRB(w)RT jj1 � �L maxl jS(l)j � �LS. Similarly we can show jjRB(w)RT jj1 � �LS.With (28) we have jjRB(w)RT jj2 � �LS and the proof is complete.4Where r2D(w) may not exist, at points where ws = U 0s(ms) or ws = U 0s(Ms) for some s, derivatives should bereplaced by convex subgradients in the proof. Then Lemma 6 and Theorem 1 hold. For simplicity we will ignorethese issues in this paper. 19
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