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Abstract

We proposed earlier an optimization approach to reactive flow control where the objective
of the control is to maximize the total utility of all sources over their transmission rates. The
control mechanism is derived as a gradient projection algorithm to solve the dual problem. In
this paper we consider two extensions to the basic algorithm. First, the basic algorithm requires
communication from sources of their rates to links in their paths in order to carry out the
gradient projection algorithm. We prove that it is possible for the links to estimate the gradient
using only local information, thus eliminating the need for explicit communication. Second, the
basic algorithm assumes that each source is served by a single path. We generalize the model
to the case where there are multiple paths between a source—destination pair. This allows flow
control and routing to be jointly optimized.

1 Introduction

We have proposed previously an optimization approach to flow control where the control mechanism
is derived as a gradient projection algorithm to solve (the dual of) a global optimization problem

[16, 15]. The purpose of this paper is to study two extensions to the basic algorithm.

Specifically consider a network that consists of a set L of unidirectional links of capacities ¢,
I € L. The network is shared by a set S of sources, where source s is characterized by a utility
function Us(z,) that is concave increasing in its transmission rate z,. The goal is to calculate source
rates that maximize the sum of the utilities ), g Us(z,) over z, subject to capacity constraints.
Solving this problem centrally would require not only the knowledge of all utility functions, but
worse still, complex coordination among potentially all sources due to coupling of sources through
shared links. The key is to consider the dual problem that decomposes the task into simple local

computations to be executed at individual links and sources.

*Partial and preliminary results will be presented at the 16th International Teletraffic Congress, Edinburgh, UK,
June 1999 [18]. This research is partly supported by the Australian Research Council under grant S499705.



The algorithm takes the familiar form of reactive flow control. Based on the local aggregate
source rate each link [ € L calculates a ‘price’ p; for a unit of bandwidth. A source s is fed back the
scalar price p°* = 3" p;, where the sum is taken over all links that s uses, and it chooses a transmission
rate z, that maximizes its own benefit Ug(xzs) — p®zs, utility minus the bandwidth cost. These
individually optimal rates (zs(p®),s € S) may not be socially optimal for a general price vector
(pi,1 € L), i.e., they may not maximize the total utility. The algorithm iteratively approaches
a price vector (p;,l € L) that aligns individual and social optimality such that (z4(p;),s € S5)
indeed maximizes the total utility. In other words, the price p*® represents the complete congestion

information source s needs for its control decision.

The basic algorithm is presented in [16] and a preliminary prototype is briefly discussed in [15].
Its convergence is proved in [19] in both synchronous and asynchronous settings. We now motivate

and summarize two extensions considered in this paper.

First the basic algorithm requires communication of link prices to sources and source rates
to links. In [17], we describe a marking scheme, inspired by the work of [9], that achieves the
communication from links to sources using only binary feedback. In this paper we eliminate the
need for explicit communication in the reverse direction: a link simply sets its price to a fraction of
its buffer occupancy. This is equivalent to the links estimating the gradient using local information
in carrying out the gradient projection algorithm. We prove that descent direction is maintained
and hence the algorithm converges to yield optimal rate allocation. In [17] we combine these two
simplifications to the basic scheme to obtain a variant of Random Early Detection (RED) scheme
[7], that not only stabilizes network queues, as RED does, but does so in a way that optimizes a

global measure of network performance.

Second the basic algorithm assumes that each source is served by a single path. However,
source routing, where a source splits its traffic among multiple paths, offers an important way to
load balance in a service provider network (ISP), e.g., in of MultiProtocol Label Switching (MPLS)
networks [12]. In this paper we extend the basic algorithm to a network with multiple paths
between a source and its destination, where flow control and routing can be jointly optimized. The
problem turns out to be more difficult as the dual problem with multiple paths is nondifferentiable.
We propose a direct extension of the basic algorithm. A source is fed back a price for each path
available to it, and it chooses a total transmission rate based on the minimum price exactly as it
would in the basic algorithm. Then it splits this rate evenly across all paths with the minimum
price. The latter step is similar to the minimum-first-derivative-path routing of [3, 418-419].
Each link then adjusts its price in the same way as in the basic algorithm. We show that this
is equivalent to solving the dual problem using a subgradient method [2, Chapter 6.3] where the

gradient is replaced by a subgradient. We illustrate its behavior with a simple example.

We make three remarks. First under our scheme sources that share the same link do not

necessarily equally share the available bandwidth. Rather their shares reflect how they value the



resource as expressed by their utility functions and how their use of the resource implies a cost on
others. This could be a basis to provide differentiated services in terms of different rate allocations.
Second though network feedbacks are discussed in terms of bandwidth ‘prices’ they may or may
not form a component of the monetary charge a user pays. Our primary goal is not the pricing
of services, but the steering of network towards an efficient operating point where the total source
utility is maximized. The feedback a source receives is a measure of congestion specific to the source
and is simply a control signal to guide its decision. If it further forms part of the service charge
then it provides an incentive for the source to choose a socially optimal rate. Finally though the
optimization problem is formulated as a static problem, the flow control algorithm itself naturally
extends to the time-varying case. The system tracks optimality if network or source conditions

change slowly compared with convergence time [15].

There is a tremendous literature on flow control, including early schemes based on practical
experience, e.g., [11, 7, 22], and recent schemes based on control theory, e.g., [1, 4, 23, 5]. Opti-
mization based flow control have been proposed in [8, 10, 6, 13, 14, 16, 15, 18]. All these works
motivate flow control by an optimization problem and derive their control mechanisms as solutions
to the optimization problem. They differ in their choice of objective functions or their solution ap-
proaches, and result in rather different flow control mechanisms to be implemented at the sources
and the network links. In [8, 10], the goal is to minimize a cost function of source rates using
gradient type algorithm. The cost function has two components, the first can be considered as the
(minus of) total utility of our model and the second being the cost of link congestion. This second
component serves a similar function as the capacity constraints in our model, but it can also be
used to specify (model) the effect of link traffics on quality measures such as delay and loss. In
contrast the cost of congestion in our model, as measured by bandwidth prices, is determined by
the interaction of sources through the capacity constraints. Another important difference is our
solution of the optimization through the dual problem and the resulting simple switch algorithm.
Though in different form the social welfare function in [6] is actually a special case of our formula-
tion here with a specific utility function. Their algorithm can also be considered as a scaled gradient
projection algorithm for the dual problem. Our model is closest to that in [13, 14]. There however
the overall objective of maximizing the total utility is decomposed into optimization subproblems
for the network and the sources, and they propose a different mechanism for its solution where each
source chooses a willingness to pay and the network allocates rates to these sources in a way that
is proportionally fair. In [13] they prove the optimality of proportional fairness and in [14] they
propose simple iterative source and switch algorithms to approach it. An interesting feature of the
approach in [13] is that it allows the users to decide their payments and receive what the network
allocates, whereas in our approach, the users decides their rates and pay what the network charges.

See a more detailed comparison in [19].

The present paper is structured as follows. In Section 2 we review our optimization framework



and the basic OFC (Optimization Flow Control) algorithm. In Section 3 we present OFC with
on-line measurement and prove its convergence. In Section 4 we present OFC with multiple paths

and justify it with a numerical example.

2 Model and basic algorithm
2.1 Model

Consider a network that consists of a set L = {1,..., L} of unidirectional links of capacities ¢,
I € L. ' The network is shared by a set S = {1,...,S} of sources. Source s is characterized
by four parameters (L(s),Us, mg, Mg). The path L(s) C L is a subset of links that source s uses,
Us : Ry — Ris a utility function, ms > 0 and M, < oo are the minimum and maximum transmission
rates, respectively, required by source s. Source s attains a utility Ug(x,) when it transmits at rate
zs that satisfies my < x, < M;. We assume Uy is increasing and strictly concave in its argument.
Let Iy = [ms, M] denote the range in which source rate z:; must lie and I = (I5,s € S) be the
vector. For each link [ let S(I) = {s € S |l € L(s)} be the set of sources that use link /. Note that
[ € L(s) if and only if s € S(I).

Our objective is to choose source rates x = (5, s € S) so as to:

P: max, ¢, ZUS(.'ES) (1)
S
subject to Z s, < ¢, I=1,...,L. (2)
seS(l)

The constraint (2) says that the total source rate at any link [ is less than the capacity. A unique
maximizer, called the primal optimal solution, exists since the objective function is strictly concave,

and hence continuous, and the feasible solution set is compact.

Though the objective function is separable in x4, the source rates zs are coupled by the
constraint (2). Solving the primal problem (1-2) directly requires coordination among possibly all
sources and is impractical in real networks. The key to a distributed and decentralized solution is
to look at its dual, e.g., [3, Section 3.4.2], [20]:

D: min>o D(p) = Y Bs(p’)+ D ma (3)
s .
where
By(p*) = max U(ws) —wsp® (4)
P = > m (5)
lEL(s)

!We abuse notation and use the same symbol to denote both a set and its cardinality when there is no danger of
confusion.



The first term of the dual objective function D(p) is decomposed into S separable subproblems
(4 5). If we interpret p; as the price per unit bandwidth at link [ then p® is the total price per
unit bandwidth for all links in the path of s. Hence x,p® represents the bandwidth cost to source
s when it transmits at rate zs, and Bg(p®) represents the maximum benefit s can achieve at the
given price p®. We shall see that this scalar p® summarizes all the congestion information source s
needs to know. A source s can be induced to solve maximization (4) by bandwidth charging. For

each p, a unique maximizer, denoted by z,(p), exists since Uy is strictly concave.

In general (zs(p),s € S) may not be primal optimal, but by the duality theory, there exists
a p* > 0 such that (zs(p*),s € S) is indeed primal optimal. Hence we will focus on solving the
dual problem (3). Once we have obtained the minimizing prices p* the primal optimal source rates
x* = x(p*) can be obtained by individual sources s by solving (4), a simple maximization (see
below). The important point to note is that, given p*, individual sources s can solve (4) separately
without the need to coordinate with other sources. In a sense p* serves as a coordination signal that

aligns individual optimality of (4) with social optimality of (1)2.

Indeed the unique maximizer x(p) for (4) can be given explicitly, from the Karush-Kuhn—

Tucker theorem, in terms of the marginal utility®:

z,(p) = (U ' (p)]n: (6)
b _

. ! . . . .
where [2]° = max{a, min{b, z}}. Here U, ' is the inverse of U!, which exists over the range

[Ul(My),Ul(my)] if Ul is continuous and Uy strictly concave. It is illustrated in Figure 1. Let
z(p) = (z5(p),s € ).

2.2 Algorithm A1l

In [16, 19] we propose to solve the dual problem using the gradient projection algorithm where link

prices are adjusted in opposite direction to the gradient V. D(p) whose I-th component is given by

([3, pp.669]):
oD
5,0 = a—2'(p) (7)
Pi
where z!(p) := Ysesq s(p) is the aggregate source rate at link . In the following [2]" = max{z, 0}.

Algorithm A1l: Basic OFC

Link [I’s algorithm:

2Despite the notation, a source s does not require the vector price p, but only a scalar p* = Zzerl(s)pl that
represents the sum of link prices on its path; see below.

#We abuse notation and use z;(-) both as a function of scalar price p € R4 and of vector price p € %‘ff‘. When p
is a scalar, z;(p) is given by (6). When p is a vector, z:(p) = z,(p°) = ms(ZzeL(s)pl)' The meaning should be clear
from the context.
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Figure 1: Source rate z5(p) as a function of (scalar) price p.

At times t = 1,2,..., link [:
1. Receives rates z4(t) from all sources s € S(l) that go through link .
2. Computes a new price
p(t+1) = [p(t) + (' () — )]’
where 2! (t) = ¥,c 50 %5 (1).
3. Communicates new prices p;(t + 1) to all sources s € S(I) that use link .
Source s’s algorithm:
At timest = 1,2, ..., source s:
1. Receives from the network the sum p*(t) = 37,1 (5) pi(t) of link bandwidth prices in its path.
2. Chooses a new source rate z4(t + 1) for the next period:

zs(t+1) = arg max Us(xzs) — p°(t)xs.

3. Communicates new rate x4(t + 1) to links | € L(s) in its path.

As noted above though the optimization problem is formulated as a static problem the flow
control algorithm naturally adapts to changing link capacities and set of sources at a link: simply
use the current link capacity ¢;(¢) and the current set S(I;¢) of sources at link [ in the link algorithm
of Al.

In [19] we prove that Algorithm Al generates a sequence that approaches the optimal rate

allocation, provided the following conditions are satisfied:



C1: On the interval I; = [mg, M,], the utility functions U are increasing, strictly concave, and

twice continuously differentiable.

C2: The curvatures of Ug are bounded away from zero on Iy: —U!(zs) > 1/as > 0 for all z5 € I.

These conditions imply that the gradient of the dual objective function is Lipschitz which guarantees
convergence of gradient projection algorithms.

Define L := maxycg |L(s)|, S := maxjcr, |S(1)|, and @ := max {a,, s € S}. In words L is the
length of a longest path used by the sources, S is the number of sources sharing a most congested

link, and @ is the upper bound on all —~U!(z;).

Theorem 1 Suppose assumptions C1-C2 hold. Provided that the step size v satisfies 0 < v <
2/aLsS, starting from any initial rates m < x(0) < M and prices p(0) > 0, every limit point

z* gives the source rates that maximize total utility and p* the shadow bandwidth prices.

In [19] we also present an asynchronous version of the algorithm where network state (prices in
our case) may be probed by different sources at different rates (e.g., the Resource Management (RM)
cells in an ATM networks are sent at different rates by different sources), where feedbacks may reach
different sources after different, substantial and variable delays, and where the communication and
computation at sources and links are uncoordinated and possibly based on outdated information.
We prove there that the asynchronous algorithm converges provided the time interval between
consecutive updates at any link or any source is bounded. For this paper however we will focus on

the synchronous model.

3 OFC with on-line measurement

Algorithm A1l requires communication between sources and links: source s must obtain the sum
p*(t) of link prices in its path, and link / must obtain the aggregate source rates z'(t) at the link.
In [17] we describe a method to achieve the communication from links to sources using only binary
feedback. In this section we describe a method to achieve the communication from sources to links
implicitly: a link sets its price to a fraction of its current buffer occupancy. We shall see that this is
equivalent to the link estimating the aggregate source rate z'(t) by the measured aggregate input
rate #'(t) at the link and using this estimate in the calculation of the gradient (in place of 2!(p) in
(7)):

We first extend our model to include buffer processes at the links. Then we describe precisely

the algorithm and prove its optimality.



3.1 Model

We assume each link has a large buffer so that no packets are lost. We also assume that these links

are work conserving, i.e., their output rates are nonzero as long as the buffer is nonempty.

In the last section the set L(s) of links s visits is unrestricted and can be a tree. Here we
restrict L(s) to be a path for a point-to-point connection. We use L(s) to denote, depending on
the context, both the set of links in source s’s path and the vector of these links with L(s;) as the
1th link in the path.

Let 2;5(Z) be the input rate from source s at link I at time #. Then zp(41),(t) = z4(t) is
the source rate of s at time ¢ which is also the input rate from s at its first link. Note that
T1(s;i)s(t) is both the input rate from s at its ith link and the output rate from s at its 7 — Ist
link. Hence we ignore the propagation delay on source s’s ith link. Let &!(t) = Yses() Tis(t) be
the aggregate input rate at link /. Note that 2!(¢) is generally different from the aggregate source
rate z'(t) = 2 ses@) Ts(t) used in Algorithm Al.

Let b;(t) be the buffer backlog at link [ at time ¢, and b;s(¢) be the fraction of b;(¢) that is
from source s. Hence b(t) = 3 cq0)bis(t). A useful fact that relates the buffer occupancy from

individual sources to their input rates is:
brissiys(E+1) = brieiys(t) + Tr(si)s(t) — Tr(siivn)s(t). (8)
The aggregate buffer occupancy evolves according to:
b(t+1) = [bu(t) +2' (1) — ™. (9)
Finally let m5(t) = bis(t +1) — bis(t), m(t) = bt +1) —b(t), and w(t) = p(t +1) — py(t).

We summarize our notations as follows.

e L(s) : set or vector of links in the path of s.
L(s;1) : ith link in the path of s.

e 25(t) : input rate at link [ from source s at time .

z5(t) = Tr(s1)s(t) : source rate of s at time 2.

o (1) = > ses() Ts(t): aggregate source rate at link [ at time ¢.
il(t) = > ses() Tis(t) : aggregate input rate at link [ at time ¢.

e bis(t) : backlog at link / from s at time .
bi(t) = Xsesq) bis(t) : aggregate backlog at link [ at time 2.
ms(t) = bis(t+1) = bis(t);  m(t) = b(t+1)—bi(t)

e pi(t) : price at link [ at time t.
m(t) = p(t+1) —pi(2).



e v > (: step size in the OFC algorithm.

3.2 Algorithm A2

The new algorithm eliminates the need for explicit communication of the source rates to links. The
source algorithm is identical to that in A1, except step 3 becomes unnecessary. The link algorithm

is simplified to the following:
Link [I’s algorithm:
At timest =1,2,..., link [:

1. Updates price p/(t) = ~b(t).

2. Communicates price p)(t) to all sources s € S(I) that use link .

Algorithm A2 converges, possibly with a smaller step size, under the following additional

assumption:

C3: For all links / and all sources s € S(I) at all ¢, we have n;5(t) = 0;5(¢)m;(t) for some 0;5(t) > 0

Note that C3 is consistent with 3> g ms(t) = m(t). The condition requires that the capacity of
link [ be distributed among the sources s € S(I) ‘fairly’ in that if the aggregate backlog b;(t) is
increased (decreased) then no individual backlog b;s(t) will be strictly decreased (increased). It is
fairly general as 6;4(t) can depend on (I, s,t). Service disciplines such as round robin or generalized

process sharing satisfy C3, but first in first out does not.

Theorem 2 Under conditions C1-C3, the conclusion of Theorem 1 holds for Algorithm A2 with
a step size 7y satisfying 0 < v < 1/aLS.

We prove Theorem 2 in the rest of this section. Define the sequence {\(t) = (\(¢),] € L)} by
M(t) = =), (10)

We can treat #!(t) as an estimate of the aggregate source rate z!(t) and \(¢) an estimate of the
partial derivative 0D /0p; in (7).

Lemma 1 The price sequence {p(t) = (pi(t),l € L)} evolves according to

pE+1) = [p(t) —yN@)]"



Proof. From (9) and (10), it follows that for any v > 0, we have

Yu(t+1) = [ybi(t) —yN(@)] "
The claim follows by construction of p;(¢) in Algorithm A2. [ ]

Given any source s, we say that link I precedes link | with respect to s, denoted ' < [, if both
I' and [ are in L(s) and s visits I’ before [, i.e., if L(s;7) = I’ and L(s;j) = [ then i < j. The
following lemma says that the aggregate input rate at link [ is the aggregate source rate minus the
aggregate changes in backlog from these sources at links preceding link / in their paths. It relates

the aggregate source rate to its estimate.

Lemma 2 .’il(t) = xl(t) — ZSES(Z) Zl’<sl 'Inls(t).

Proof. Applying (8) repeatedly we have
i—1
xL(s;i)s(t) = xs(t) - Znﬁ(s;j)s(t)
j=1

or equivalently z,(t) = z4(t) — >y, nrs(t). Summing over S(I) yields the result. [ |

Let S(I' = 1) € S(I')nS(l), I" # 1, be the set of sources that visit link " before link [. Note
that S(I — 1) = ¢. Define ayi(t) = 3 c g Mrs(t). Then Lemma 2 implies that

Since at least one of S(I' — [) and S(I — ') is empty (links are unidirectional), at least one of

ayy(t) and ayp(t) is zero. Under condition C3 we have

(@) = | D O (@) < ()] = 5w (?)] (11)
seS(l'—1)

where the last equality holds since p;(t) = yb;(t).
The next lemma proves that the prices converge by bounding the error ||V D(p(t)) — A(¢)||T 7 (¢)

in gradient estimate.

Lemma 3 Under conditions C1-C3, ©(t) — 0 and A\(t) — VD(p(t)) as t — oo provided
v < 1/aLs.

Proof. We have proved in [19] that VD is Lipschitz (the proof is included in the Appendix for
completeness). Hence by the descent lemma [2, pp. 553]

D(p(t+1)) < D(p(t) + VD" (p(t)n(t) +¢l[n(t)]]3
= D(p(t)) + [VD(p(t)) = M) w () + N ()7 (2) + ¢[|m(2)]]3 (12)

10



where ¢ = @LS/2.
Now, from (7), (10) and Lemma 2 we have

[VD(p(t)) = A0 x(t) = D (&) — ' (1)m(t)
1
= =Y > an(t)m(t)

I U2l
< S an(@)] m(t)
U2l
= > (lan(@®)] [m ()] + |aw @®)] |7 ()])
1<t

Using (11) and the fact that at least one of ayy () and ay(t) is zero, we have
[VD(p(t)) = AW)] 7 Z m(8)] [ () (13)
l<l’

Using Lemma 1 and the projection theorem [2, pp. 183] it can be shown that (e.g., see [19])
M () (t) < —y7Y|=(t)||2. Applying this inequality and (13) to (12) we have

D(p(t+1)) < D(p(t))—l_jc (Zw (#)] |7 (¢ )
l l<l’
1 —9¢
< D(p(t)) - p (Z ) =2 3 Im(t)] m(t )
l <t
< D(p(t)) - w13

where the second inequality holds provided v < 1/2¢ = 1/aLS. Summing over all ¢ yields

Dp(t+1) < D(p(0) ”4 ZH DIz,

Since D(p) is bounded below by the primal objective value, 3, ||7(#)||? must be bounded, and

hence || (t)|| — 0 as desired.

For the second half of the theorem note that from (7), (10), Lemma 2 and (11), we have

1
VD) = AOL = D lan@®)] < = > |m ()
V£l T

which tends to zero as ¢ — oc. This completes the proof. |

Putting everything together yields the proof of Theorem 2.
Proof of Theorem 2. Let p* be a limit point of the sequence {p(t)} generated by A2. At least

one exists because without loss of generality we can restrict {p(¢)} to a compact set (see [19]).

11



Consider any subsequence {p(t;)} that converges to p*. We will show that p* is dual optimal, and
since z(p(t)) given by (6) is continuous, {z(p(tx))} converges to z(p*), the primal optimal rate.

By Lemmas 3, and the continuity of VD, we have
limA(t) = lmVD(p()) = VD(')
Hence

[p" =y VDE)T —p" = lim [p(te) =y AT —p(ts) = limw(t) = 0

where the last equality follows from Lemma 3. Then the projection theorem implies that for all
p=>0

VD) (p—p*) > 0

which, due to the concavity of D, implies that p* is a minimizer of D. This completes the proof. B

4 OFC with multiple paths

In this section we extend the model in Section 2 to include multiple paths between a source and
its destination, following the formulation of [13], and generalize Algorithm A1l to the new model.
This allows OFC to be applied to networks, such as MPLS, where flow control and routing can be
jointly optimized.

4.1 Model

A path, or route, r C L is a subset of links. Let R denote the set of paths. Let r(l), [ € L, denote the
set of paths that contain [. Let the L x R matrix A be defined by A;, = 1 if [ € r and 0 otherwise.
A source s is characterized by four parameters (R(s),Us, ms, Ms), where R(s) C R is the set of
paths that source s uses, and Uy, mg; and M, are, as before, the utility function, minimum and
maximum rates, respectively. We assume that for each path r, there is a unique source, denoted by
s(r), that uses r. Hence {R(s),s € S} is a (disjoint) partition of R. We assume Uy is increasing and
strictly concave in its argument. Source s splits its rate xg into flows y, along paths r € R(s). Let
y(s) = (yr,7 € R(s)) be the vector of flow rates for source s, and let y = (y(s),s € S) = (y,,7 € R).
We say a flow y supports rate x if 3., cp)yr = x5 for all s. Note that a flow rate y, always
represents the rate at the source of path r, which is not necessarily equal to the input rate at a link

in the path.

For each path r let L(r) = {l € L |l € r} be the set of links in 7. Note that I € L(r) if and only
ifre ’)"(l) Let Z(S) = {(IES,y(S)) ‘ ms < zs < Mg, 0 <y, < M€(T’)”r € R(S)aZrGR(s) Yr = xS}a and
let Z be the product set (Z(s),s € S). Hence Z is the set of all valid source rates x = (zs,s € 5)

12



and flows y = (y,,r € R) that support them. Source s’s task is to decide its source rate z, and
how to split its traffic y, along paths r, r € R(s), available to it such that (z5,y(s)) € Z(s).

Our objective is to choose source rates z and supporting flows y so as to:
P: max(, ez Z Us(zs) (14)
S
subject to Ay < ¢ (15)

A maximizer exists since the objective function is concave, and hence continuous, and the feasible

solution set is compact. Define the Lagrangian

L(:E,p) = ZUs(xs)+pT(C_Ay)
= Z(Us(xs) - Z P"Yr) +pTc-
s reR(s)

The dual problem is thus (e.g., [3, Section 3.4.2], [20])

D: min,>o D(p) = Y Bs(p(s)) + > ma (16)
s !

where the vector p(s) = (p;,l € R(s)) represents the link prices along all paths of source s, and

Bs(p(s)) = (Tg’yr(rgl?))éz(c) Us(ms)rezl?%s)pr(s)%" (17)
p'(s) = > pm, rER(®s) (18)

leL(r)

4.2 Algorithm A3

A natural strategy is, as in the single path case, to solve the dual problem (16 18) using a descent
method. The situation however is more complex in the multipath case because the primal objec-
tive function ), Us(xs) is strictly concave in x but not strictly concave in (z,y), and hence the
dual problem, unlike in the single path case, is not differentiable. Indeed D(p), being convex, is

subdifferentiable at all price vectors p with subgradient ¢ defined by [24]:
Dip+7r)—D(p) > €&'n, forallm

Let 0D(p) denote the subdifferential of D at p, the set of all subgradients at p. Let Z(p) = {(z,v)}
be the set of maximizers (x,y) of (17) given the price vector p. Then the set of all subgradients is
completely determined by the set of maximizers, D (p) = {(¢c; —y',l € L) | (z,y) € Z(p)}, e.g., [2,
Chapter 6.1], [21, Theorem 5.4.7]. D(p) is differentiable only at price vectors p that have unique

minimum path prices for each source s, i.e., arg min, {p"(s),r € R(s)} is unique for all s. At such
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p, the subdifferential of D reduces to the usual gradient, 9D (p) = {V D}, whose I-th component is
given by

WD) = a—vw) (19)
pi

where y!(p) := > rer(t) Yr(p) is the aggregate flow rate through link / at price p.

In the following we present a distributed algorithm to solve the dual problem, that is a direct
extension of the basic OFC algorithm. Comparing the dual problem (3 5) in Section 2 and that
(16-18) of the multipath model, sources will solve (17) and links will carry out a subgradient
method to solve (16) [2, Chapter 6.3].

We first derive the source algorithm. Writing z; = ZreR(s) yr, (17) is equivalent to

max U Z Yr) — Z p"(s)yr

u(s) reR(s) reR(s)
subject to ms < Z Yr < Ms(r)
reR(s)

By the Karush Kuhn Tucker theorem, the optimal rates y(s) satisfy

U Y yr) = X+A = p'(s) ., 7 ER(s) (20)
reR(s)
pryr = 0, 1€ R(s) (21)
AMs = > yr) = 0 (22)
reR(s)
A(ms* Z yr) =0 (23)
reR(s)

for some g, > 0, A > 0 and A > 0. Hence (20-21) imply that the prices p"(s) for paths r of
positive flow, y, > 0, must be minimum (and hence equal). Moreover, (20 23) imply that if p”” (s)
is minimum among {p"(s),r € R(s)} then the maximizer y*(s) is such that
Yooy o= U7 ()
reR(s)

Hence given path prices p", r € R(s), source s’s decision breaks down into two simple steps: it
chooses a source rate zs based on the minimum path price, as in the basic algorithm, and then
splits its traffic across minimum priced paths. The second step is consistent with the minimum

first-derivative-path routing of [3, 418-419]. We summarize.

Lemma 4 Given a price vector p(s), suppose p” (s) = min {p"(s),r € R(s)} is the minimum path
price. Then a magzimizer of (17) is obtained by setting the source rate to xi = [U, ' (p™ (s))]M:

. . . . . . . . *
and arbitrarily splitting the flow only among paths r with minimum price p"(s) = p" (s) such that

ZT’GR(S) y: = xt

14



We now explain the link algorithm. A direct extension of the basic algorithm is to use a
subgradient ¢; — y'(t) in place of the gradient ¢; — #!() in the single path case, where y!(t) =
> rer(y Yr(t) and y, (¢) denotes the flow rate chosen by source s(r) in period ¢ according to Lemma
4.

Algorithm A3: multipath OFC
Link [I’s algorithm:
At timest =1,2,..., link [:
1. Receives flow rates y,(t) for all paths r € r(l) that contain link [.

2. Computes a new price
p(t+1) = () + 7' @) — )
where y(t) = Yorery Yr(t)-
3. Communicates new prices p;(t + 1) to sources s(r) of all paths r € S(I) that contain link [.

Source s’s algorithm:
At timest = 1,2,..., source s:
1. Receives from the network the path prices p"(t) = 3>2c (- pi(t) for all paths r € R(s).

2. Chooses a new source rate xs(t + 1) for the next period:

zs(t+1) = [USL(p" (#)M

ms

where p" (t) = min{p"(t),r € R(s)}, and splits its traffic y,(t + 1) evenly along all paths r

with the minimum price.

3. Communicates new flow rate y,(t + 1) to links | € L(r) in paths r € R(s).

For sufficiently small stepsize 7 it can be shown that the distance of the iterate (y,(t), p;(t),r €
R,l € L) from the optimal solution set is reduced in each step [2, Proposition 6.3.1]. We illustrate

its behavior with a simple example whose equilibrium can be easily obtained analytically.

Example: multiple paths

The network consists of 5 unidirectional links labeled 1,2, ..., 5 as shown in Figure 2. Link capacities

are ¢ = (1,1,1,2,2). Tt is shared by two sources 1 and 2. Source 1 uses two paths (1,5) and (2,5),

15



Figure 2: Network topology of Example 1

while source 2 uses (2,4) and (3,4). Sources s have utility functions Ug(x,) = aslog(1 4+ z5) where
a1 = 1 and as = 2. Both sources have a minimum rate of 0 and maximum rate of 3. Source 1 is

active throughout from time = 1, while source 2 is inactive initially and becomes active at time =
51. Step size v = 0.1.

Figure 3 shows the source rate z4(t). In the first phase when only source 1 is active, the source
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Figure 3: Source rate z4(¢). Solid line is z;(¢); dotted line is z2(#).

rate x1(t) (solid line) climbs rapidly to its optimal rate of 2. At time = 51, source 2 (dotted line)
becomes active and immediately transmits at the maximum rate because it sees a path (3,4) with
zero price. After a brief transient, x1(t) converges to its optimal rate of 1 and z9(t) of 2. The
different bandwidth allocation in equilibrium reflects, as desired, the different marginal utility of

the sources.

Figure 4 shows the traffic split y, of source 1 along its two paths (1,5) and (2,5). In the first
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Figure 4: Traffic split of source 1. Solid line is along path (1,5); dotted line along (2, 5).

phase, both paths have the same price and source 1 equally splits its traffic between them. In phase
2, path (2,5) has a high price than path (1,5) since the former path shares a link with source 2.

Hence source 1 routes all its traffic on path (1,5).

Figure 5 shows the evolution of path prices. The oscillation in phase 2 is due to that some link

prices do not converge, though any limit point is dual optimal. |

5 Conclusion

We have presented two extensions to the basic optimization flow control (OFC) proposed in [16, 15].
The first extension eliminates the need for explicit communication from sources to links and makes
OFC much more practical. Moreover under the on-line algorithm links need not perform any
computation but simply set their prices to a fraction of their buffer occupancies. We have proved
that it converges as the basic algorithm does. This simplification has been combined with a marking
scheme to obtain a variant of RED scheme [7] that can be applied to Internet using the proposed
explicit congestion notification bit in IP (Internet Protocol) header; see [17]. The advantage over

RED is that the behavior of the entire network is under ezplicit control — to track a global optimality.

The second extension is motivated by networks, such as MPLS networks, where flow control
and routing can be jointly optimized. The problem with multiple paths is however trickier due to
nondifferentiability. We have proposed a simple subgradient algorithm adapted directly from the

basic algorithm and illustrated its behavior with a simple example.
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Figure 5: Path prices. Solid line is for path (1,5), dotted line for (2,5), dashed line with square for
(2,4), and dashed line with diamond for (3,4).

Appendix: Proof of Lipschitz continuity of VD

We show in Lemma 6 below that VD is Lipschitz. We will often use vector notation when it is

more convenient.
For any price vector p in §Rfr define §;(p) by

if U'(M,) < p* < U!(my)

otherwise

1
fulp) = { REc) (24)

where p® is defined in (5) and z(p) is the unique maximizer of (4). Let B(p) = Diag (Bs(p),s € S)
be the S x S diagonal matrix with diagonal elements [, (p).

Lemma 5 Under condition C1, the Hessian of D is given by V?D(p) = RB(p)R", where it exists.

Proof. From (7) we have VD(p) = ¢ — Rz(p) where the sth component of z(p) is given by (6),

and hence
Oz
VD) = ~R[510) (25)
p
where g—g(p) is a L x S matrix whose (/,s) element is ?,;; (p). Hence, when it exists,
Ry
Oy oy — | mrtmgy EU(My) <p* <Us(ms) (26)
opy 0 otherwise
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Using (24) we have

Ox T
S| = —BwER" 1)
which together with (25) yields the result. [ ]

Define L := maxseg|L(s)], S := maxey, |S(I)|, and @ := max {@,, s € S}. In words L is the
length of a longest path used by the sources, S is the number of sources sharing a most congested

link, and @ is the upper bound on all —U! ().
Lemma 6 Under conditions C1-C2, D is Lipschitz with

IVD(q) —=VD(p)llz < @LS |lg —pll2
for all p,q > 0.

Proof. Given any p,q > 0, using Taylor theorem and Lemma 5 we have
VD(q) ~VD(p) = V?D(w)(q—p) = RB(w)R"(q—p)

for some w = tp + (1 —t)g > 0, t € [0,1]*. Hence ||[VD(q) — VD(p)|]2 < ||[RB(w)RT||2 - |lqg — pll2-
We now show that ||RB(w)R"||s < @LS which yields the desired result.

Now (see e.g. [3, pp. 635])
|IRB(w)R"[[5 < |[RB(w)R" |0 - ||RB(w)R" |3 (28)

i.e., ||RB(w)R"||5 is upper bounded by the product of the maximum row sum and the maximum
column sum of the L x L matrix RB(w)R!. For ||RB(w)R"||s we have

||IRB(w)R||os = maXZRB )RT

= max ZZ@; w)Rys Ry
= max Zﬂs YRis|L(s)|

where | L(s)| is the number of links in the path of source s. By definition |L(s)| < L, 8s(w) < @, and
hence || RB(w)R"||oc < @L max; |S(I)] < @LS. Similarly we can show ||RB(w)R||; < @LS
With (28) we have ||[RB(w)R"|| < @LS and the proof is complete. [ ]

*Where V?D(w) may not exist, at points where w*® = U.(m,) or w® = U.(Ms) for some s, derivatives should be
replaced by convex subgradients in the proof. Then Lemma 6 and Theorem 1 hold. For simplicity we will ignore
these issues in this paper.
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