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Abstract

Potential games are a special class of games for which many adaptive user dynamics
converge to a Nash equilibrium. In this paper, we study properties of near-potential
games, i.e., games that are close in terms of payoffs to potential games, and show that
such games admit similar limiting dynamics. We first present a distance notion in
the space of games and study the geometry of potential games and sets of games that
are equivalent, with respect to various equivalence relations, to potential games. We
discuss how given an arbitrary game, one can find a nearby game in these sets. We
then study dynamics in near-potential games by focusing on continuous-time fictitious
play dynamics. We characterize the limiting behavior of this dynamics in terms of
the level sets of the potential function of a close potential game and approximate
equilibria of the game. Exploiting structural properties of approximate equilibrium
sets, we strengthen our result and show that for games that are sufficiently close to a
potential game, the sequence of mixed strategies generated by this dynamics converges
to a small neighborhood of equilibria whose size is a function of the distance from the
set of potential games. We also consider continuous-time ε-fictitious play dynamics, a
variant of fictitious play dynamics where players update their strategies only when the
utility improvement is larger than some fixed level ε. When the game is sufficiently
close to a potential game and ε is small, we establish convergence of this dynamics to
a small neighborhood of equilibria.
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1 Introduction

Potential games play an important role in game-theoretic analysis because of their appealing

structural and dynamic properties. One property which is particularly relevant in the jus-

tification and implementation of equilibria is that many reasonable adaptive user dynamics

converge to a Nash equilibrium in potential games (see [25, 24, 14, 31]). This motivates the

question whether such convergence behavior extends to larger classes of games. A natural

starting point is to consider games which are “close” to potential games.

In this paper, we formalize this notion and study near-potential games. We start by

defining a distance notion on the space of games, and present a convex optimization formu-

lation for finding the closest potential game to a given game in terms of it. We also consider

best-response (in pure and mixed strategies) and Von Neumann-Morgenstern equivalence

relations, and focus on sets of games that are equivalent (with respect to these equivalence

relations) to potential games. Two games that are equivalent with respect to these equiva-

lence relations generate the same trajectories of strategy profiles under update rules such as

best response dynamics and fictitious play. Therefore, sets of games that are equivalent to

potential games share the same limiting dynamic behavior as potential games. Identifying

such sets enable us to extend the favorable dynamic properties of potential games to a larger

set of games. We investigate how one can find the closest games that belong to these sets,

and establish that this requires solving a nonconvex optimization problem. Set of games

that are Von Neumann-Morgenstern equivalent to potential games coincide with the set of

weighted potential games, a generalization of potential games. We study the geometry of

this set and the set of ordinal potential games which is another generalization of potential

games [25]. We show that these sets are nonconvex subsets of the space of games, and hence

finding the closest weighted or ordinal potential game also requires solving a nonconvex opti-

mization problem. We provide a convex optimization relaxation for finding a close weighted

potential game to a given game. This relaxation allows for obtaining a weighted potential

game that is (weakly) closer to the original game than the closest potential game. Moreover,

if the original game is a weighted potential game our formulation identifies that the closest

weighted potential game to this game is itself.

Our next set of results use this distance notion to provide a quantitative characterization

of the limiting set of dynamics in games. We focus on continuous-time fictitious play, an

update rule that is studied extensively in the literature as a reasonable model of adaptive

user behavior (see [17, 14]). The trajectories of continuous-time fictitious play are charac-

terized by differential equations, which involve each player updating its strategy according

to a (singleton-valued) smoothened best response function. For potential games, the lim-

iting behavior of the trajectories generated by this update rule can be analyzed using a

Lyapunov function that consists of two terms: the potential function and a term related
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to the smoothing in the best responses. Previous work has established convergence of the

trajectories to the equilibrium points of the differential equations [17]. We first show that

these equilibrium points are contained in a set of approximate equilibria, which is a subset

of a neighborhood of (mixed) Nash equilibria of the underlying game, when the smoothing

factor is small (Theorem 4.1, and Corollary 4.1).

We then focus on near-potential games and show that in these games, the potential func-

tion of a nearby potential game increases along the trajectories of continuous-time fictitious

play dynamics outside some approximate equilibrium set. This result is then used to estab-

lish convergence to a set of strategy profiles characterized by the approximate equilibrium set

of the game, and the level sets of the potential function of a close potential game (Theorem

4.2).

Exploiting the properties of the approximate equilibrium sets we strengthen our result

and show that if the original game is sufficiently close to a potential game (and the smooth-

ing factor is small) then trajectories converge to a small neighborhood of equilibria whose

size approaches zero as the distance from potential games (and the smoothing factor) goes

to zero (Theorem 4.3). Our analysis relies on the following observation: In games with

finitely many equilibria, for sufficiently small ε, the ε-equilibria are contained in small dis-

joint neighborhoods of the equilibria. Using this observation we first establish that after

some time instant the trajectories of the continuous-time fictitious play dynamics visit only

one such neighborhood. Then using the fact that the potential function increases outside a

small approximate equilibrium set, and the Lipschitz continuity of the mixed extension of

the potential function, we quantify how far the trajectories can get from this set.

We next define ε-fictitious play dynamics, a variant of continuous-time fictitious play

dynamics where players update their strategies only if they have a utility1 improvement

opportunity of at least ε > 0. This ε-stopping condition captures scenarios where agents

(perhaps due to unmodelled costs) do not update their strategies unless there is a significant

utility improvement possibility.2 The differential equations that describe the evolution of

trajectories for this update rule have discontinuous right hand sides. To deal with this

issue, we adopt a solution concept that involves differential inclusions (at the points of

discontinuity), and allow for multiple trajectories corresponding to a single initial condition.

We establish that when the ε parameter is larger than the distance of the original game

from a potential game (and the smoothing parameter), all trajectories of this update rule

converge to an ε-equilibrium set (Theorem 5.2). Moreover, for small ε, this set is contained

in a neighborhood of the equilibria of the game.

1In this paper, we use the terms utility and payoff interchangeably.
2It is documented in experimental economics that decision makers disproportionately stick with the status

quo in settings that involve repeated decision making (see [27]). The update rule we study can be viewed as
a model of status quo inertia.
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Other than the papers cited above, our paper is related to a long line of literature studying

convergence properties of various user dynamics in potential games: see [25, 31, 28] for

better/best response dynamics, [24, 29, 20, 17, 29] for fictitious play and [6, 7, 1, 21] for logit

response dynamics. It is most closely related to the recent papers [8, 10] and [9]. In [8, 10],

we developed a framework for obtaining the closest potential game to a given game (using a

distance notion slightly different than the one we employ in this paper). In [9], we studied

convergence behavior of discrete time update processes in near-potential games. We showed

that the trajectories of discrete time better/best response dynamics converge to approximate

equilibrium sets while the empirical frequencies of fictitious play converge to a neighborhood

of (mixed)Nash equilibrium. Moreover, the sizes of these sets diminish when the distance

of the original game from the set of potential games goes to zero. This paper provides a

more in depth study of the geometry of the set of potential games and sets of games that

are equivalent to potential games, and investigates the limiting behavior of continuous-time

update rules in near-potential games.

The rest of the paper is organized as follows: We present the game theoretic preliminaries

for our work in Section 2. In Section 3, we show how to find a close potential game to a

given game, and discuss the geometry of the sets of games that are equivalent to potential

games. In Section 4, we analyze continuous-time fictitious play dynamics in near potential

games. We introduce a variant of this update rule, and study its limiting behavior in Section

5. We close in Section 6 with concluding remarks and future work.

2 Preliminaries

In this section, we present the game-theoretic background that is relevant to our work.

Additionally, we introduce some features of potential games and structural properties of

mixed equilibria that are used in the rest of the paper.

2.1 Finite Strategic Form Games

Our focus in this paper is on finite strategic form games. A (noncooperative) finite game in

strategic form consists of:

• A finite set of players, denoted by M = {1, . . . ,M}.

• Strategy spaces: A finite set of strategies (or actions) Em, for every m ∈M.

• Utility functions: um :
∏

k∈MEk → R, for every m ∈M.

We denote a (strategic form) game by the tuple 〈M, {Em}m∈M, {um}m∈M〉, the number

of players in this game by |M| = M , and the joint strategy space of this game by E =
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∏
m∈MEm. We refer to a collection of strategies of all players as a strategy profile and

denote it by p = (p1, . . . , pM) ∈ E. The collection of strategies of all players but the mth

one is denoted by p−m.

The basic solution concept in a noncooperative game is that of a (pure) Nash Equilibrium

(NE). A pure Nash equilibrium is a strategy profile from which no player can unilaterally

deviate and improve its payoff. Formally, p is a Nash equilibrium if

um(qm,p−m)− um(pm,p−m) ≤ 0,

for every qm ∈ Em and m ∈M.

To address strategy profiles that are approximately a Nash equilibrium, we use the con-

cept of ε-equilibrium. A strategy profile p , (p1, . . . , pM) is an ε-equilibrium (ε ≥ 0) if

um(qm,p−m)− um(pm,p−m) ≤ ε

for every qm ∈ Em and m ∈ M. Note that a Nash equilibrium is an ε-equilibrium with

ε = 0.

2.2 Potential Games

We next describe a particular class of games that is central in this paper, the class of potential

games [25].

Definition 2.1. Consider a noncooperative game G = 〈M, {Em}m∈M, {um}m∈M〉. If there

exists a function φ : E → R such that for every m ∈M, pm, qm ∈ Em, p−m ∈ E−m,

1. φ(pm,p−m)− φ(qm,p−m) = um(pm,p−m)− um(qm,p−m), then G is an exact potential

game.

2. φ(pm,p−m)−φ(qm,p−m) = wm(um(pm,p−m)−um(qm,p−m)), for some strictly positive

weight wm > 0, then G is a weighted potential game.

3. φ(pm,p−m)−φ(qm,p−m) > 0⇔ um(pm,p−m)−um(qm,p−m) > 0, then G is an ordinal

potential game.

The function φ is referred to as a potential function of the game.

This definition suggests that potential games are games in which the utility changes

due to unilateral deviations for each player coincide with the corresponding change in the

value of a global potential function φ. Note that every exact potential game is a weighted

potential game with wm = 1 for all m ∈ M. From the definitions it also follows that every

weighted potential game is an ordinal potential game. In other words, ordinal potential

5



games generalize weighted potential games, and weighted potential games generalize exact

potential games.

Definition 2.1 ensures that in exact, weighted and ordinal potential games unilateral

deviations from a strategy profile that maximizes the potential function (weakly) decrease the

utility of the deviating player. Thus, this strategy profile corresponds to a Nash equilibrium,

and it follows that every ordinal potential game has a pure Nash equilibrium.

In this paper, our main focus is on exact potential games. The only exception is Sec-

tion 3.3 where we discuss the geometries of weighted and ordinal potential games. For this

reason, whenever there is no confusion, we refer to exact potential games as potential games.

We conclude this section by providing necessary and sufficient conditions for a game to

be an exact or ordinal potential game. Before we formally state these conditions, we first

provide some definitions, which will be used in Section 3.

Definition 2.2 (Path – Closed Path – Improvement Path). A path is a collection of strategy

profiles γ = (p0, . . .pN) such that pi and pi+1 differ in the strategy of exactly one player. A

path is a closed path (or a cycle) if p0 = pN . A path is an improvement path if umi(pi) ≥
umi(pi−1) where mi is the player who modifies its strategy when the strategy profile is updated

from pi−1 to pi.

The transition from strategy profile pi−1 to pi is referred to as step i of the path. We

refer to a closed improvement path such that the inequality umi(pi) ≥ umi(pi−1) is strict for

at least a single step of the path, as a weak improvement cycle. We say that a closed path

is simple if no strategy profile other than the first and the last strategy profiles is repeated

along the path. For any path γ = (p0, . . .pN), let I(γ) represent the “utility improvement”

along the path, i.e.,

I(γ) =
N∑
i=1

umi(pi)− umi(pi−1),

where mi is the index of the player that modifies its strategy in the ith step of the path.

The following proposition provides an alternative characterization of exact and ordinal

potential games. This characterization will be used when studying the geometry of sets of

different classes of potential games (cf. Theorem 3.1).

Proposition 2.1 ([25], [30]). (i) A finite game G is an exact potential game if and only if

I(γ) = 0 for all simple closed paths γ.

(ii) A finite game G is an ordinal potential game if and only if it does not include weak

improvement cycles.
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2.3 Mixed Strategies and ε-Equilibria

Our study of continuous-time fictitious play relies on the notion of mixed strategies and

structural properties of mixed equilibrium sets in games. In this section we provide the

relevant definitions and properties of mixed equilibria.

We start by introducing the concept of mixed strategies in games. For each player

m ∈ M, we denote by ∆Em the set of probability distributions on Em. For xm ∈ ∆Em,

xm(pm) denotes the probability player m assigns to strategy pm ∈ Em. We refer to the

distribution xm ∈ ∆Em as a mixed strategy of player m ∈ M and to the collection x =

{xm}m∈M ∈
∏

m ∆Em as a mixed strategy profile. The mixed strategy profile of all players

but the mth one is denoted by x−m. We use ||·|| to denote the standard 2-norm on
∏

m ∆Em,

i.e., for x ∈
∏

m ∆Em, we have ||x||2 =
∑

m∈M
∑

pm∈Em (xm(pm))2.

By slight (but standard) abuse of notation, we use the same notation for the mixed

extension of utility function um of player m ∈M, i.e.,

um(x) =
∑
p∈E

um(p)
∏
k∈M

xk(pk), (1)

for all x ∈
∏

m ∆Em. In addition, if player m uses some pure strategy qm and other players

use the mixed strategy profile x−m, the payoff of player m is denoted by

um(qm,x−m) =
∑

p−m∈E−m
um(qm,p−m)

∏
k∈M,k 6=m

xk(pk).

Similarly, we denote the mixed extension of the potential function by φ(x), and we use the

notation φ(qm,x−m) to denote the potential when player m uses some pure strategy qm and

other players use the mixed strategy profile x−m.

A mixed strategy profile x = {xm}m∈M ∈
∏

m ∆Em is a mixed ε-equilibrium if for all

m ∈M and pm ∈ Em,

um(pm,x−m)− um(xm,x−m) ≤ ε. (2)

Note that if the inequality holds for ε = 0, then x is referred to as a mixed Nash equilibrium

of the game. We use the notation Xε to denote the set of mixed ε-equilibria.

We conclude this section with two technical lemmas which summarize some continuity

properties of the mixed equilibrium correspondence and the mixed extensions of potential

and utility functions. These results appeared earlier in [9], and we refer the interested reader

to this paper for the proofs.

Before we state these lemmas we first provide the relevant definitions (see [5, 16]).

Definition 2.3 (Upper Semicontinuous Function). A function g : X → Y ⊂ R is upper

semicontinuous at x∗, if, for each ε > 0 there exists a neighborhood U of x∗, such that g(x) <
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g(x∗) + ε for all x ∈ U . We say g is upper semicontinuous, if it is upper semicontinuous at

every point in its domain.

Alternatively, g is upper semicontinuous if lim supxn→x∗ g(xn) ≤ g(x∗) for every x∗ in its

domain.

Definition 2.4 (Upper Semicontinuous Correspondence). A correspondence g : X ⇒ Y is

upper semicontinuous at x∗, if for any open neighborhood V of g(x∗) there exists a neighbor-

hood U of x∗ such that g(x) ⊂ V for all x ∈ U . We say g is upper semicontinuous, if it is

upper semicontinuous at every point in its domain and g(x) is a compact set for each x ∈ X.

Alternatively, when Y is compact, g is upper semicontinuous if its graph is closed, i.e.,

the set {(x, y)|x ∈ X, y ∈ g(x)} is closed.

The first lemma establishes the Lipschitz continuity of the mixed extensions of the payoff

functions and the potential function. The second lemma proves upper semicontinuity of the

approximate equilibrium mapping.3

Lemma 2.1 ([9]). Let ν :
∏

m∈MEm → R be a mapping from pure strategy profiles to

real numbers. Its mixed extension is Lipschitz continuous with a Lipschitz constant of

M
∑

p∈E |ν(p)| over the domain
∏

m∈M∆Em.

Lemma 2.2 ([9]). Let g : R ⇒
∏

m∈M∆Em be the correspondence such that g(α) = Xα.

This correspondence is upper semicontinuous.

Upper semicontinuity of the approximate equilibrium mapping implies that for any given

neighborhood of the ε-equilibrium set, there exists an ε′ > ε such that ε′-equilibrium set is

contained in this neighborhood. In particular, this implies that every neighborhood of equi-

libria of the game contains an ε′-equilibrium set for some ε′ > 0. Hence, if there are finitely

many equilibria, the disjoint neighborhoods of these equilibria contain the ε′-equilibrium set

for a sufficiently small ε′ > 0. In Section 4, we use this observation to establish convergence of

continuous-time fictitious play to small neighborhoods of equilibria of near-potential games.

3 Equivalence Classes and

Geometry of Potential Games

In this section, we first introduce a distance notion in the space of games and show how to

find the closest potential game to a given game with respect to this notion (Section 3.1).

3Here we fix the game, and discuss upper semicontinuity with respect to the ε parameter characterizing
the ε-equilibrium set. We note that this is different than the common results in the literature which discuss
upper semicontinuity of the equilibrium set with respect to changes in the utility functions of the underlying
game (see [16]).
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This notion is invariant under constant additions to payoffs of players, and the invariance

can be used to define an equivalence relation in the space of games. We then introduce

other equivalence relations for games, such as best response equivalence in pure and mixed

strategies. These equivalence relations allow for identifying sets of games that have similar

dynamical properties to potential games, and thereby extending our analysis to a larger set

of nearby games. For a given game, we discuss how to find the closest games that are equiv-

alent to potential games, and establish that the corresponding optimization formulations

are nonconvex (Section 3.2). We establish a connection between the set of games that are

equivalent to potential games and the set of weighted potential games and further study

the geometry of sets of weighted and ordinal potential games. We show that these sets are

nonconvex subsets of the space of games and provide a convex optimization relaxation for

finding a close weighted potential game to a given game (Section 3.3).

3.1 Maximum Pairwise Difference and Near-Potential Games

We start this section by formally defining a notion of distance between games.

Definition 3.1 (Maximum Pairwise Difference). Let G and Ĝ be two games with set of

players M, set of strategy profiles E, and collections of utility functions {um}m∈M and

{ûm}m∈M respectively. The maximum pairwise difference (MPD) between these games is

defined as

d(G, Ĝ)
4
= max

p∈E,m∈M,qm∈Em

∣∣(um(qm,p−m)− um(pm,p−m)
)
−
(
ûm(qm,p−m)− ûm(pm,p−m)

)∣∣ .
Note that the (pairwise) utility difference um(qm,p−m) − um(pm,p−m) quantifies how

much playerm can improve its utility by unilaterally deviating from strategy profile (pm,p−m)

to strategy profile (qm,p−m). Thus, the MPD captures how different two games are in terms

of the utility improvements due to unilateral deviations. We refer to pairs of games with

small MPD as close games, and games that have a small MPD to a potential game as

near-potential games.

The MPD measures the closeness of games in terms of the difference of utility changes

rather than the difference of their utility functions, i.e., using terms of the form∣∣(um(qm,p−m)− um(pm,p−m)
)
−
(
ûm(qm,p−m)− ûm(pm,p−m)

)∣∣
instead of terms of the form |um(pm,p−m)− ûm(pm,p−m)|. This is because the difference

in utility changes provides a better characterization of the strategic similarities (equilibrium

and dynamic properties) between two games than the difference in utility functions. For

instance consider two games with payoffs um(p) and um(p) + νm(p−m) for every player

m and strategy profile p, where νm :
∏

k 6=mE
k → R is an arbitrary function. It can be
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seen from the definition of Nash equilibrium that despite a potentially nonzero difference

of their utility functions, these two games share the same equilibrium set. Intuitively, since

the νm term does not change the utility improvement due to unilateral deviations, it does

not affect any of the strategic considerations in the game. While these two games have

nonzero utility difference, the MPD between them is equal to zero.4 Hence MPD identifies a

strategic equivalence between these games.5 We defer the discussion of other relevant notions

of strategic equivalence to Section 3.2.

Using the distance notion defined above and Definition 2.1, we next formulate the problem

of finding the closest potential game to a given game. Assume that a game with utility

functions {um}m is given. The closest potential game (in terms of MPD) to this game, with

payoff functions {ûm}m, and potential function φ can be obtained by solving the following

optimization problem:

(P)

min
φ,{ûm}m

max
p∈E,m∈M,qm∈Em

∣∣(um(qm,p−m)− um(pm,p−m)
)

−
(
ûm(qm,p−m)− ûm(pm,p−m)

)∣∣
s.t. φ(q̄m, p̄−m)− φ(p̄m, p̄−m) = ûm(q̄m, p̄−m)− ûm(p̄m, p̄−m),

for all m ∈M, p̄ ∈ E, q̄m ∈ Em.

Note that the difference (um(qm,p−m)− um(pm,p−m)) − (ûm(qm,p−m)− ûm(pm,p−m)) is

linear in {ûm}m. Thus, the objective function is the maximum of such linear functions, and

hence is convex in {ûm}m. The constraints of this optimization problem guarantee that the

game with payoff functions {ûm}m is a potential game with potential function φ. Note that

these constrains are linear. Hence, the closest potential game (in terms of MPD) to a given

game can be found by solving convex optimization problem (P).

3.2 Equivalence Classes of Games

In this section, we define different equivalence relations for games and focus on the sets of

games that are equivalent to potential games. The games that belong to these sets have

similar dynamic behavior to potential games under different update rules. This enables our

analysis of dynamics in the subsequent sections to apply more broadly to games that will be

nearby such sets.

We start by introducing an equivalence relation that involves MPD. The MPD between

two games can be zero even when these games are not identical. For instance, as discussed

4Since two games that are not identical may have MPD equal to zero it follows that MPD is not a norm
in the space of games. However, it can be easily shown that it is a seminorm.

5If two games have zero MPD, then the equilibrium sets of these games are identical. However, payoffs at
equilibria may differ, and hence they may be different in terms of their efficiency (such as Pareto efficiency)
properties (see [8]).
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in the previous section the MPD between games with payoff functions um(p) and um(p) +

νm(p−m) equal to zero. We refer to games that have MPD equal to zero as MPD-equivalent

games. It was established in [8] that two games with payoffs {um} and {ûm} have identical

(pairwise) utility differences (hence zero MPD) if and only if there exist functions νm :∏
k 6=mE

k → R such that for all players m and strategy profiles p, we have um(p) = ûm(p) +

νm(p−m). This result provides a necessary and sufficient condition for MPD-equivalence

between games.

We first consider games that are MPD-equivalent to potential games. It can be seen that

any game that is MPD-equivalent to an (exact) potential game is also an (exact) potential

game with the same potential function. Therefore, the set of games that are MPD-equivalent

to potential games is the set of potential games itself.

We next introduce three additional equivalence relations that enable us to extend the set

of potential games to larger sets with similar dynamic properties.

Definition 3.2. Let G and Ĝ be two games with set of players M, set of strategy profiles E,

and collections of utility functions {um}m∈M and {ûm}m∈M respectively. These games are

• Pure strategy best response equivalent if for any player m and pure strategy profile

p−m we have arg maxqm∈Em u
m(qm,p−m) = arg maxqm∈Em û

m(qm,p−m),

• Mixed strategy best response equivalent if for any player m and mixed strategy profile

x−m we have arg maxqm∈Em u
m(qm,x−m) = arg maxqm∈Em û

m(qm,x−m).

• VNM-equivalent if for every player m, there exists a nonnegative constant wm > 0,

and a function νm :
∏

k 6=mE
k → R such that for any strategy profile p, we have

um(p) = wmûm(p) + νm(p−m).

It can be easily seen from the definition that these are valid equivalence relations. The

definition also suggests that VNM-equivalence reduces to MPD-equivalence when the weights

{wm} are chosen to be equal to 1 for all players, i.e., two games that are MPD-equivalent

are VNM-equivalent. Moreover, two games which are VNM-equivalent have identical best

responses for every player m and every opponent mixed strategy profile x−m. This shows

that games that are VNM-equivalent are mixed strategy best response equivalent. Clearly

two games that are mixed strategy best response equivalent are pure strategy best response

equivalent. Hence MPD, VNM, mixed and pure strategy best response equivalences de-

fine progressively more inclusive equivalence relations between games. An important conse-

quence for our purposes is that these equivalence relations define a sequence of nested sets

(by considering sets of games that are equivalent to potential games) containing the set of

potential games. The paper [26] studies other relevant equivalence relations and it follows

from their analysis that VNM-equivalence is strictly included in the mixed strategy best
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response equivalence, i.e., there are games that are mixed strategy best response equivalent,

but not VNM-equivalent.6

Pure strategy best response equivalence is relevant in the context of best response dynam-

ics (in pure strategies) since it leads to similar trajectories under this dynamics. Similarly,

mixed strategy best response equivalence applies when considering dynamics that involve

each player choosing a best response against their opponents’ mixed strategies; an example

of such dynamics is fictitious play (see [24], and also Section 4). Two games with pay-

off functions {um} and {wmum}, where wm > 0 are per player weights, are VNM-equivalent

(and hence mixed and pure strategy best response equivalent). Therefore, VNM-equivalence,

while relevant for best-response type dynamics (in pure and mixed strategies), does not ap-

ply when considering dynamics that involve absolute values of payoff gains due to unilateral

deviations (such as logit response, see [6, 7]). For such dynamics, it is natural to focus on

classes of games which are MPD-equivalent.

We conclude this section by presenting optimization formulations for finding close games

that are equivalent to potential games. As mentioned earlier, the set of games that are MPD-

equivalent to potential games is the set of potential games itself. Thus, we focus on finding

close games in the set of games which are pure/mixed strategy best response equivalent or

VNM-equivalent to potential games.

Given a game with payoff functions {um}, we are interested in finding the closest game

(in terms of MPD) which is pure/mixed strategy best response equivalent to a potential

game. Since pure/mixed strategy best response equivalence is defined implicitly in terms of

the solution of an optimization problem (note the arg max operator in Definition 3.2), this

6The definition of best response equivalence in [26] is closely related to the equivalence relations defined
here. In this paper, for each player m, the authors first define the function Λm such that

Λm(qm, X|um) =

λm ∈ ∆E−m|
∑

p−m∈E−m

λm(p−m)(um(qm,p−m)− um(pm,p−m)) ≥ 0 for all pm ∈ X

 ,

where ∆E−m denotes the set of probability distributions over strategy profiles that belong to
∏

k 6=mEk.
That is for a given strategy qm ∈ Em, Λm(qm, X|um) denotes the set of distributions over

∏
k 6=mEk such

that when the strategy profile of its opponents are drawn according to a distribution from this set, player
m prefers strategy qm to all other strategies in X. In [26], authors define two games to be best response
equivalent if Λm(qm, Em|um) = Λm(qm, Em|ûm) for all players m and strategies qm ∈ Em. Note that this
equivalence relation is contained in mixed strategy best response equivalence considered here, as it allows for
distributions over

∏
k 6=mEk that are not necessarily mixed strategy profiles. In [26], it is established that

there is nontrivial gap between best response equivalence and VNM-equivalence, i.e., there are games that are
best response equivalent, but not VNM-equivalent. Since their best response equivalence is included in our
mixed strategy best response equivalence, the same holds for our mixed strategy best response equivalence.
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problem can be formulated as finding the closest such game with payoffs {vm} such that

(P2)

min
φ,{ûm}m,{vm}

max
p∈E,m∈M,qm∈Em

∣∣(um(qm,p−m)− um(pm,p−m)
)

−
(
vm(qm,p−m)− vm(pm,p−m)

)∣∣
s.t. φ(q̄m, p̄−m)− φ(p̄m, p̄−m) = ûm(q̄m, p̄−m)− ûm(p̄m, p̄−m),

for all m ∈M, p̄ ∈ E, q̄m ∈ Em,

{vm} and {ûm} are pure/mixed strategy best response equivalent.

On the other hand, games that are VNM-equivalent to potential games admit an explicit

characterization in terms of payoffs. Assume that a game with payoff functions {um} is

given. Let {ûm} be a potential game with potential function φ, and assume that the closest

game VNM-equivalent to this potential game has payoffs {vm = wmûm + νm}, where for

each m, νm is a function such that νm :
∏

k 6=mE
k → R. The MPD between this game and

the original game is given by

max
p∈E,m∈M,qm∈Em

∣∣(um(qm,p−m)− um(pm,p−m)
)
−
(
vm(qm,p−m)− vm(pm,p−m)

)∣∣ .
Substituting vm = wmûm + νm, and observing that νm terms cancel each other, the above

equation takes the following form:

max
p∈E,m∈M,qm∈Em

∣∣(um(qm,p−m)− um(pm,p−m)
)
− wm

(
ûm(qm,p−m)− ûm(pm,p−m)

)∣∣ .
Thus, the closest game to {um}m that is VNM-equivalent to a potential game, with payoff

functions {ûm}m, and potential function φ can be obtained by solving the following opti-

mization problem:

(P3)

min
φ,{wm>0}m{ûm}m

max
p∈E,m∈M,qm∈Em

∣∣(um(qm,p−m)− um(pm,p−m)
)

−wm
(
ûm(qm,p−m)− ûm(pm,p−m)

)∣∣
s.t. φ(q̄m, p̄−m)− φ(p̄m, p̄−m) = ûm(q̄m, p̄−m)− ûm(p̄m, p̄−m),

for all m ∈M, p̄ ∈ E, q̄m ∈ Em.

The payoff functions in the equivalent game are given by {wmûm+νm}, where νm :
∏

k 6=mE
k →

R is an arbitrary function.

Problem (P3) is a nonconvex optimization problem due to the nonlinear term wmûm in

the objective function. This problem finds the closest game in the set of games that are

VNM-equivalent to a potential game. It was shown in [26] that the set of games that are

VNM-equivalent to potential games is the set of weighted potential games. To see this note

from Definitions 2.1 and 3.2 that a game which is VNM-equivalent (with weights {wm})
to an exact potential game with potential function φ is a weighted potential game with
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the same weights and potential function. Hence problem (P3) finds the closest weighted

potential game to a given game. The next section studies the geometry of (exact, weighted,

and ordinal) potential games to investigate the tractability of the problem of finding the

closest weighted potential game.

3.3 Geometry of Potential Games

In this section, we discuss the geometry of sets of exact, weighted and ordinal potential

games and discuss how to find a close weighted potential game to a given game. We first

show that the sets of weighted and ordinal potential games are nonconvex, hence finding

the closest (in the sense of MPD) potential game in these sets requires solving a nonconvex

optimization problem. We then present a convex optimization relaxation for finding a close

weighted potential game to a given game.

In this section, we denote the set of all games with set of players M and set of strategy

profiles E by GM,E. Before we present our result on the sets of potential games, we introduce

the notion of convexity for sets of games.

Definition 3.3. Let B ⊂ GM,E. The set B is said to be convex if and only if for any

two game instances G1, G2 ∈ B with collections of utilities u = {um}m∈M, v = {vm}m∈M
respectively

〈M, {Em}m∈M, {αum + (1− α)vm}m∈M〉 ∈ B,

for all α ∈ [0, 1].

Below we show that the set of exact potential games is a subspace of the space of games,

whereas, the sets of weighted and ordinal potential games are nonconvex.

Theorem 3.1. (i) The sets of exact potential games is a subspace of GM,E.

(ii) The sets of weighted potential games, and ordinal potential games are nonconvex

subsets of GM,E.

Proof. (i) Definition 2.1 implies that the set of exact potential games is the subset of space

of games where the utility functions satisfy the condition

um(pm,p−m)− um(qm,p−m) = φ(pm,p−m)− φ(qm,p−m),

for some function φ, and all strategy profiles p, and players m. Note that for each p and

m this is a linear equality constraint on the utility functions {um} and potential function φ.

The set of all utility functions and potential functions that correspond to a potential game

is the intersection of the sets defined by these linear equality constraints, and hence is a
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subspace. Projecting this set onto the collection of utility functions, or to GM,E, it follows

that the set of exact potential games is also a subspace of the space of games.

(ii) We prove the claim by showing that the convex combination of two weighted potential

games is not an ordinal potential game. This implies that the sets of both weighted and

ordinal potential games are nonconvex since every weighted potential game is an ordinal

potential game.

In Table 1 we present the payoffs and the potential function in a two player game, G1,

where each player has two strategies. Given strategies of both players the first table shows

payoffs of players (the first number denotes the payoff of the first player), the second table

shows the corresponding potential function. In both tables the first column stands for actions

of the first player and the top row stands for actions of the second player. Note that this

game is a weighted potential game with weights w1 = 1, w2 = 3.

(u1, u2) A B

A 0,0 0,4

B 2,0 8,6

φ A B

A 0 12

B 2 20

Table 1: Payoffs and potential function in G1

Similarly, another game G2 is defined in Table 2. Note that this game is also a weighted

potential game with weights w1 = 3, w2 = 1.

(u1, u2) A B

A 4,2 6,0

B 0,8 0,0

φ A B

A 20 18

B 8 0

Table 2: Payoffs and potential function in G2

In Table 3, we consider a game G3, in which the payoffs are averages (hence convex

combinations) of payoffs of G1 and G2.

(u1, u2) A B

A 2,1 3,2

B 1,4 4,3

Table 3: Payoffs in G3

Note that this game has a weak improvement cycle:

(A,A)− (A,B)− (B,B)− (B,A)− (A,A).

From Proposition 2.1 (ii), it follows that G3 is not an ordinal potential game.

15



The above example shows that the sets of weighted and ordinal potential games with two

players each of which has two strategies is nonconvex. For general n player games, the claim

immediately follows by constructing two n player weighted potential games, and embedding

G1 and G2 in these games.

The example provided in the proof of part (ii) of Theorem 3.1 also shows that the sets

of games that are pure strategy or mixed strategy best response equivalent to potential

games are nonconvex. To see this, note that G1 and G2 are weighted potential games thus

mixed (and pure) strategy best response equivalent to exact potential games, but their

convex combination, G3, cannot be pure or mixed strategy best response equivalent to an

exact potential game, due to presence of an improvement cycle (note that all games that

are pure/mixed strategy best response equivalent to G3 have the same improvement cycle,

however Proposition 2.1 implies that potential games cannot have such cycles). Thus, finding

the closest game that is mixed/pure strategy best response equivalent to an exact potential

game involves solving a nonconvex optimization problem.

We next describe additional properties of weighted and ordinal potential games. It follows

from Definition 2.1 that for any fixed set of weights, the set of weighted potential games is

characterized by linear equalities similar to those used for exact potential games. Thus, it

follows that the set of such games are also subspaces. Since the set of weighted potential

games is union of such sets over all possible nonnegative weights, we conclude that the set

of weighted potential games is an uncountable union of subspaces of GM,E. Given a game,

the multiplication of the utilities by a positive scalar gives a game with the same weak

improvement cycles. If the original game is an ordinal potential game and does not have a

weak improvement cycle, the scaled game cannot have a weak improvement cycle. Thus, the

scaled game is also an ordinal potential game. Therefore, we conclude that the set of ordinal

potential games is a cone. By Theorem 3.1, it is a nonconvex cone.

We conclude this section by providing a convex optimization relaxation for finding a close

weighted potential game to a given game. Since the set of weighted potential games coincides

with the set of games that are VNM-equivalent to exact potential games, this relaxation can

also be used to find a close game that is VNM-equivalent to an exact potential games.

The problem of finding the closest weighted potential game (with payoffs {ûm}) to a

given game (with payoffs {um}) can be formulated as follows:

(W)

min
φ,{wm>0}m{ûm}m

max
p∈E,m∈M,qm∈Em

∣∣(um(qm,p−m)− um(pm,p−m)
)

−
(
ûm(qm,p−m)− ûm(pm,p−m)

)∣∣
s.t. φ(q̄m, p̄−m)− φ(p̄m, p̄−m) = wm

(
ûm(q̄m, p̄−m)− ûm(p̄m, p̄−m)

)
,

for all m ∈M, p̄ ∈ E, q̄m ∈ Em.
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Note that this optimization problem is an immediate reformulation of (P3), which can be

used to find the closest game that is VNM-equivalent to a potential game. The nonconvexity

in this problem stems from the equality constraints which involve the nonlinear terms wmûm.

Defining functions vm = wmûm, we obtain an equivalent problem:

(W2)

min
φ,{wm>0}m{vm}m

max
p∈E,m∈M,qm∈Em

∣∣(um(qm,p−m)− um(pm,p−m)
)

− 1

wm
(
vm(qm,p−m)− vm(pm,p−m)

)∣∣∣∣
s.t. φ(q̄m, p̄−m)− φ(p̄m, p̄−m) = vm(q̄m, p̄−m)− vm(p̄m, p̄−m),

for all m ∈M, p̄ ∈ E, q̄m ∈ Em.

This problem is still nonconvex due to the presence of 1/wm term in the objective function.

We present a convex optimization relaxation by scaling the objective function of the above

problem by wm for deviations corresponding to player m. This yields the following problem:

(W3)

min
φ,{wm≥1}m{vm}m

max
p∈E,m∈M,qm∈Em

∣∣(wmum(qm,p−m)− wmum(pm,p−m)
)

−
(
vm(qm,p−m)− vm(pm,p−m)

)∣∣
s.t. φ(q̄m, p̄−m)− φ(p̄m, p̄−m) = vm(q̄m, p̄−m)− vm(p̄m, p̄−m),

for all m ∈M, p̄ ∈ E, q̄m ∈ Em.

Note that in the above formulation we require wm ≥ 1, unlike (W) and (W2) where we

require wm > 0. This is because, if we used the latter condition, then there would be feasible

solutions of (W3) with objective values arbitrarily close to zero (by setting vm = φ = 0 and

choosing weights arbitrarily close to zero) for any given game.

Since (wmum(qm,p−m)− wmum(pm,p−m)) − (vm(qm,p−m)− vm(pm,p−m)) is linear in

the problem variables ({wm}m and {vm}m), the above is a convex optimization problem that

can be used for finding a close weighted potential game to a given game. Given a solution

of this problem, the game with utilities {vm/wm} is a weighted potential game with weights

{wm}. The distance (in terms of MPD) of this game from the original game is bounded from

above by the optimal value of (W3), since the objective function is a scaled version of MPD

by weights (weakly) larger than 1.

Observe from Definition 2.1 that the weights and the potential function that correspond

to a given weighted potential game are not unique: a weighted potential game with weights

{wm} and potential function φ is also a weighted potential game with weights {αwm} and

potential function αφ, for any α > 0. Thus, for any weighted potential game, it is possible

to find a potential function corresponding to weights larger than 1. Observe that for a given

weighted potential game, such weights and potential function constitute an optimal solution

of (W3), and the corresponding objective value is equal to zero. Hence, our relaxation not
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only provides a tractable way of finding close weighted potential games, but it also determines

whether a given game is a weighted potential game.

Consider an optimal solution of (W3), and observe that this is also a feasible solution of

(W2). Thus, the optimal objective value of (W2) is weakly smaller than the value attained

by this feasible solution. Hence the weighted potential game obtained by solving (W2) is

closer to the original game than that obtained by solving (W3).7 On the other hand, for

weights equal to 1, (W3) is equivalent to (P). Thus, it follows that the optimal value of

(W3) is smaller than or equal to that of (P), or equivalently the weighted potential game

obtained by solving (W3) is (weakly) closer to the original game than the exact potential

game obtained by solving (P). Moreover, for weighted potential games that are not exact

potential games, as explained before (W3) has an optimal value of zero, whereas this is not

the case for (P). Hence, in some cases (W3) leads to weighted potential games that are

strictly closer (in terms of MPD) to the original game.

In the rest of the paper, we shift our attention to analysis of dynamics in near-potential

games. In these sections, we do not discuss how a close potential game to a given game is

obtained, but we just assume that a close exact potential game with potential function φ is

known and the MPD between this game and the original game is δ. We provide characteri-

zation results on limiting dynamics for a given game in terms of φ and δ.

4 Continuous-time Fictitious Play Dynamics

In this section, we analyze convergence of continuous-time fictitious play dynamics in near-

potential games. This update rule assumes that each agent continuously updates its strat-

egy, by using its best response to its opponents’ strategies. continuous-time fictitious play is

closely related to its well-known discrete time counterpart through the stochastic approxima-

tion theory [3, 4]: under some conditions, “limit points” of discrete-time fictitious play are

the “recurrent states” of continuous-time fictitious play. Hence, limiting behavior of discrete-

time fictitious play can be characterized in terms of the limiting behavior of continuous-time

fictitious play which in general admits a more tractable analysis than its discrete-time coun-

terpart. Using this approach, convergence properties of different versions of discrete-time

fictitious play have been established [4, 17, 14, 15].

We focus on a smoothened version of the continuous-time fictitious play dynamics previ-

ously studied in the literature [17, 14, 15]. It is known that for potential games this update

rule converges [17, 29], and the convergence proof follows from a Lyapunov-function argu-

ment. Extending these results, we first establish that in potential games, provided that the

7Bounds on optimality loss due to our convex optimization relaxation, i.e., the optimality gap between
the solutions of (W2) and (W3), are left for future work.
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smoothing factor is small, the limiting point of fictitious play dynamics is contained in a

small neighborhood of equilibria of the game. Then we show that the convergence properties

of potential games extend to near-potential games.

Before we define continuous-time fictitious play dynamics, we introduce the notion of a

smoothened best response. The smoothened (mixed strategy) best response of player m is a

function β̃m :
∏

k 6=m ∆Ek → ∆Em such that

β̃m(x−m) = argmax
ym∈∆Em

um(ym,x−m) +Hm(ym). (3)

Here Hm : ∆Em → R+ is a strictly concave function such that maxym∈∆Em H
m(ym) = τ > 0

for all ym ∈ ∆Em. Since Hm is strictly concave and um(ym,x−m) is linear in ym, it follows

that the smoothened best response is single valued. We refer to Hm as the smoothing

function associated with the update rule, and τ as the smoothing parameter. A smoothing

function that is commonly used in the literature is the entropy function [17, 14] , which is

given by:

Hm(xm) = −c
∑

qm∈Em
xm(qm) log(xm(qm)), xm ∈ ∆Em, (4)

where c > 0 is a fixed constant. Note that for this function, if the value of c is small, then

strategy β̃m is an approximate best response of player m.

We are now ready to provide a formal definition of continuous-time fictitious play.

Definition 4.1 (Continuous-Time Fictitious Play). Continuous-time fictitious play is the

update rule where the mixed strategy of each player m ∈ M evolves according to the differ-

ential equation

ẋm = β̃m(x−m)− xm. (5)

Note that presence of the smoothing factor guarantees that the smoothened best response

is single valued and continuous, and therefore the differential equation in (5) is well defined.

We say that continuous-time fictitious-play converges to a set S, if starting from any mixed

strategy profile, the trajectory defined by the above differential equation converges to S, i.e.,

infx∈S ||xt − x|| → 0 as t→∞.

If the original game is a potential game with potential function φ, V (x) = φ(x) +∑
mH

m(xm) is a strict Lyapunov function for the continuous-time fictitious play dynamics

(see [17]). Thus, it follows that in potential games, fictitious play dynamics converges to the

set of strategy profiles for which ẋ = 0, or equivalently β̃m(x−m)− xm = 0 for all players m.

Note that due to the presence of the smoothing term, this set does not coincide with the set

of equilibria of the game. Our first result shows that if the smoothing term is bounded by

τ , this set is contained in the τ -equilibrium set of the game.
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Theorem 4.1. In potential games, continuous-time fictitious play dynamics with smoothing

parameter τ converges to Xτ , the set of τ -equilibria of the game.

Proof. For each x /∈ Xτ , there exists a player m and strategy ym ∈ ∆Em such that

um(ym,x−m) − um(xm,x−m) > τ . Since 0 ≤ Hm(zm) ≤ τ for all zm ∈ ∆Em it follows

that um(ym,x−m) +Hm(ym)− um(xm,x−m)−Hm(xm) > 0, and thus xm 6= β̃m(x−m). Since

fictitious play converges to the set of strategy profiles for which β̃m(x−m) − xm = 0 for all

players m, it follows that no x /∈ Xτ belongs to the limiting set. Hence, the limiting points

of fictitious play are contained in Xτ .

The smoothing term is present in the definition of continuous-time fictitious play mainly

for mathematical convenience (as it leads to a single valued, and continuous best response

map). Thus, we can focus on analysis of convergence behavior when the smoothing factor

is arbitrarily small. Using the structure of the mixed equilibrium sets of games and the

above result, we next show that in potential games provided that the smoothing parameter

is small, continuous time fictitious play dynamics converges to a small neighborhood of the

equilibria of the game.

Corollary 4.1. Consider a potential game G, and let a constant r > 0 be given. There

exists a sufficiently small τ > 0 such that continuous-time fictitious play with a smoothing

parameter τ , converges to r-neighborhood of the equilibria of the game.

Proof. Lemma 2.2 (ii) implies that for small enough τ > 0, Xτ is contained in a r-neighborhood

of the equilibria. Using this observation, the result immediately follows from Theorem 4.1.

We next focus on near-potential games and investigate the convergence behavior of

continuous-time fictitious play in such games. Our first result establishes that in near-

potential games, starting from a strategy profile that is not an ε-equilibrium (where ε >

M(δ+τ)), the potential of a nearby potential game increases with rate at least ε−M(δ+τ).

Using this result we also characterize the limiting behavior of continuous-time fictitious play

in near-potential games in terms of the approximate equilibrium set of the game and the

level sets of the potential function of a close potential game.

Theorem 4.2. Consider a game G and let Ĝ be a close potential game such that d(G, Ĝ) ≤ δ.

Denote the potential function of Ĝ by φ, and the smoothing parameter by τ > 0. Assume

continuous-time fictitious play dynamics are employed in G. Then,

(i) φ̇(xt) > ε−M(δ + τ) if xt /∈ Xε
(ii) The trajectory of the update rule converges to the set of mixed strategy profiles which

have potential larger than the minimum potential in the M(δ+τ)-equilibrium set of the game,

i.e., xt converges to {x|φ(x) ≥ miny∈XM(δ+τ)
φ(y)} as t→∞.
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Proof. (i) When continuous-time fictitious play dynamics is used, players always modify

their mixed strategies in the direction of their best responses. From the definition of mixed

extension of φ it follows that

φ̇(xt) =
∑
m

∇mφ
T (xt)(β̃

m(x−mt )− xmt ) =
∑
m

(φ(β̃m(x−mt ),x−mt )− φ(xmt ,x
−m
t )), (6)

where ∇m denotes the collection of partial derivatives with respect to the strategies of player

m, or equivalently the entries of the xm vector.

Observe that if xt /∈ Xε, then there exists a player m and strategy ym such that

um(ym,x−mt )− um(xmt ,x
−m
t ) > ε. (7)

By definition of β̃m it follows that

um(β̃m(x−m),x−m) +Hm(β̃m(x−m)) ≥ um(ym,x−m) +Hm(ym). (8)

Since 0 ≤ Hm(xm) ≤ τ , we obtain

um(β̃m(x−m),x−m) ≥ um(ym,x−m)− τ. (9)

Equations (8) and (9) together with the definition of MPD and above inequality imply

that
φ(β̃m(x−mt ),x−mt )− φ(xmt ,x

−m
t ) ≥ um(β̃m(x−mt ),x−mt )− um(xmt ,x

−m
t )− δ

≥ um(ym,x−mt )− um(xmt ,x
−m
t )− δ − τ

> ε− δ − τ.

(10)

Using the same equations, for players k 6= m, it follows that

φ(β̃k(x−kt ),x−kt )− φ(xkt ,x
−k
t ) ≥ uk(β̃k(x−kt ),x−kt )− uk(xkt ,x−kt )− δ
≥ uk(yk,x−kt )− uk(xkt ,x−kt )− δ − τ
≥ −δ − τ,

(11)

where yk denotes the best response of player k to x−kt , i.e., uk(yk,x−kt ) = maxzk u
k(zk,x−kt ).

Thus, if xt /∈ Xε, then summing the above inequalities ((10) and (11)) over all players, and

using (6) we obtain

φ̇(xt) > ε−M(δ + τ) (12)

(ii) Let ε > M(δ + τ) be given. The first part of the theorem implies that outside Xε,
the potential increases with a rate of at least ε−M(δ + τ) > 0. Since the mixed extension

of the potential function is a bounded function, it follows that starting from any strategy

profile, the set Xε is reached in finite time. It is immediate that φ(x) ≥ miny∈Xε φ(y) for any

x ∈ Xε. Since φ̇(x) > ε−M(δ+τ) > 0 for x /∈ Xε, and φ̇ is bounded it follows that when the
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trajectory leaves Xε, φ(x) cannot decrease below miny∈Xε φ(y). Thus, we conclude that after

Xε is reached for the first time, the trajectory of dynamics satisfies φ(xt) ≥ maxy∈Xε φ(y).

Therefore it follows that the trajectory converges to the set of mixed strategies {x|φ(x) ≥
miny∈Xε φ(y)}. Since this is true for any ε > M(δ + τ), we obtain convergence to {x|φ(x) ≥
miny∈XM(δ+τ)

φ(y)}.

This theorem characterizes the limiting behavior of continuous-time fictitious play dy-

namics in near-potential games in terms of the approximate equilibrium set of the game,

and the level sets of the potential function of a close potential game. As the deviation from

a potential game increases, the set in which dynamics will be contained gradually becomes

larger. Thus, characterization is more accurate for games that are closer to potential games.

For exact potential games, as we established in Corollary 4.1, the continuous-time ficti-

tious play dynamics converges to a small neighborhood of the equilibria of the game, provided

that the τ parameter is small. However, even for potential games (i.e., when δ = 0) the above

theorem provides a characterization of the limiting behavior only in terms of the level sets of

the potential function, and hence cannot recover this convergence result for potential games.

We next strengthen the above convergence result by exploiting the properties of mixed

approximate equilibrium sets in near-potential games. The feature of mixed equilibrium

sets which plays a key role in our analysis was stated in Lemma 2.2. By considering the

upper semicontinuity of the approximate equilibrium correspondence g(α) at α = 0, this

lemma implies that for small ε, the ε-equilibrium set is contained in a small neighborhood

of equilibria.

It was established in part (i) of Theorem 4.2 that under continuous-time fictitious play

dynamics the potential function of a nearby potential game (with MPD δ to the original

game), evaluated at the current mixed strategy profile x, increases when x is outside the

M(δ+ τ)-equilibrium set of the original game. As discussed above, if δ and τ are sufficiently

small, then the M(δ + τ)-equilibria of the game will be contained in a small neighborhood

of the equilibria. Thus, for sufficiently small δ and τ , it is possible to establish that the

potential of a close potential game increases outside a small neighborhood of the equilibria

of the game. In Theorem 4.3, we use this observation to show that for sufficiently small δ

and τ the empirical frequencies of fictitious play dynamics converge to a neighborhood of an

equilibrium. We state the theorem under the assumption that the original game has finitely

many equilibria. This assumption generically holds, i.e., for any game a (nondegenerate)

random perturbation of payoffs will lead to such a game with probability one (see [16]).

When stating our result, we make use of the Lipschitz continuity of the mixed extension of

the potential function, as established in Lemma 2.1.

Theorem 4.3. Consider a game G and let Ĝ be a close potential game such that d(G, Ĝ) ≤ δ.

Denote the potential function of Ĝ by φ, and the Lipschitz constant of the mixed extension of
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φ by L. Assume that G has finitely many equilibria, and in G players update their strategies

according to continuous-time fictitious play dynamics.

There exists some δ̄, ε̄ > 0, (which are functions of utilities of G but not δ) such that if

δ + τ < δ̄, then the empirical frequencies of fictitious play converge to{
x

∣∣∣∣ ||x− x∗k|| ≤
2MLf(M(δ + τ))

ε
+ f(M(δ + τ) + ε), for some equilibrium x∗k

}
, (13)

for any ε̄ ≥ ε > 0, where f : R+ → R+ is an upper semicontinuous function satisfying

f(x)→ 0 as x→ 0.

The proof of this theorem can be found in the Appendix. As explained earlier, for small

δ, τ and ε, the M(δ+ τ) + ε-equilibrium set of the game is contained in small neighborhoods

of the equilibria of the game. If there are finitely many equilibria, these neighborhoods are

disjoint and each of them contains a different component of the M(δ + τ) + ε-equilibrium

set. In the proof we show that the potential increases if the played strategy profile is outside

this approximate equilibrium set. Then, we quantify the increase in the potential, when

the trajectory leaves this approximate equilibrium set and returns back to it at a later time

instant. Using this increase condition we show that after some time, the trajectory can

visit the component of the approximate equilibrium set in the neighborhood of only a single

equilibrium. This holds since, the increase condition guarantees that the potential increases

significantly when the trajectory leaves the neighborhood of an equilibrium, and reaches

to that of another equilibrium. Finally, using the increase condition one more time, we

establish that if after time T , the trajectory visits the approximate equilibrium set only in the

neighborhood of a single equilibrium, we can construct a neighborhood of this equilibrium,

which contains the trajectory for all t > T . This neighborhood is expressed in (13).

If the original game is a potential game (hence δ = 0), and the smoothing parameter

τ is arbitrarily small, the above theorem implies (by choosing ε small as well, and using

upper semicontinuity of f and the fact that f(0) = 0) that the trajectory of continuous-time

fictitious play dynamics converges to a small neighborhood of the equilibria. Moreover, for

any given r > 0, there exists a sufficiently small τ , such that ε can be chosen to guarantee

f(M(δ+τ)+ ε) ≤ r/2 and 2MLf(M(δ+τ))/ε ≤ r/2. Thus, the above theorem recovers the

convergence result of continuous-time fictitious play for potential games, stated in Corollary

4.1. Hence, we conclude that the convergence result of continuous-time fictitious play in

near-potential games (Theorem 4.3) is a natural extension of the convergence result for

potential games (Corollary 4.1).
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5 Fictitious Play Dynamics with ε-stopping Condition

In this section, we introduce a variant of the continuous-time fictitious play dynamics, where

players update their strategies only when there is possibility of significant utility improve-

ment. This update rule is characterized with a strategy update threshold ε, i.e., only players

who have at least ε utility improvement opportunity update their strategies. Presence of the

ε threshold captures unmodeled decision making costs, which prevent players from updating

their strategies, unless they can guarantee significant payoff improvement. We refer to this

update rule as continuous-time ε-fictitious play.

Due to the presence of ε threshold for strategy updates, the differential equations describ-

ing this dynamical process has discontinuous right hand sides. Hence, in order to analyze

this update rule, we introduce a proper solution concept that involves differential inclusions.

We also present an invariance theorem which is used to characterize the limiting behavior

of these differential inclusions. Using this machinery and exploiting properties of close po-

tential games, we characterize the limiting behavior of continuous-time ε-fictitious play in

near-potential games. In particular, we show that in near potential games trajectory of this

update rule converges to a set of approximate equilibria. This set is contained in a small

neighborhood of equilibria of the game provided that ε is small. Thus, we conclude that in

near-potential games convergence results similar to those of continuous-time fictitious play

can be obtained, even when a small ε threshold for strategy updates is present.

We start by providing a formal definition of continuous-time ε-fictitious play dynamics

studied in this section. This definition involves the concept of smoothened best response,

introduced in the previous section.

Definition 5.1 (Continuous-Time ε-Fictitious Play). Continuous-time ε-fictitious play is

the update rule, where the mixed strategy of each player m ∈ M evolves according to the

differential equation

ẋm =

{
0 if for all ym ∈ ∆Em, um(ym,x−m)− um(xm,x−m) ≤ ε,

β̃m(x−m)− xm otherwise.
(14)

It can be seen from this definition that unlike fictitious play, in ε-fictitious play agents

update their strategies only if it is possible to improve their utility by more than ε.

Note that the right hand side of (14) is discontinuous, and a proper solution concept

should be adopted for its analysis. We introduce two relevant solution concepts that will be

discussed in this section [13, 12, 11, 2].

Definition 5.2 (Krasovskii Solution - Filippov Solution). Given a differential equation ẋ =

f(x), with a discontinuous right hand side, (i) a Krasovskii solution is a solution of the
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differential inclusion:

ẋ ∈
⋂
θ>0

cof(x+ θB), (15)

(ii) a Filippov solution is a solution of the differential inclusion

ẋ ∈
⋂
θ>0

⋂
ν(N )=0

cof(x+ θB \ N ), (16)

where, x ∈ Rn, co S stands for the closure of the convex hull of set S, ν stands for the

Lebesgue measure on Rn and B is the open unit ball in Rn.

Intuitively, at the points of discontinuity, these definitions extend differential equations

to differential inclusions, by allowing any right hand side which is in the convex hull of the

discontinuous end points of the f function. Due to the intersection over sets of measure zero

(ν(N ) = 0) present in its definition, Filippov solutions disregard certain types of discontinu-

ities8, and lead to more “robust” solutions [18]. If f is a continuous function, both of these

solutions reduce to regular differential equations.

Note that since in these solution concepts we have differential inclusions instead of dif-

ferential equations, the trajectory corresponding to a given initial condition x0 need not be

unique. It can be seen from Definition 5.2 that the right hand side of the differential inclu-

sion for Filippov solutions is a subset of that of Krasovskii solution, hence any trajectory

obtained from a Filippov solution is also a Krasovskii solution. In the rest of the paper,

we restrict our attention to Krasovskii solutions, and note that convergence for Filippov

solutions immediately follows from convergence for Krasovskii solutions.

We next focus on the differential inclusion corresponding to the Krasovskii solutions of

the ε-fictitious play dynamics, and characterize its properties. Note that the right hand side

of (14) is discontinuous at x ∈
∏

m ∆Em, only when, for some player m and zm ∈ ∆Em,

um(zm,x−m)− um(xm,x−m) = ε, (17)

and for all other ym ∈ ∆Em, um(ym,x−m)−um(xm,x−m) ≤ ε. For every player m, we define

a function gm :
∏

m ∆Em → 2[0,1], such that

gm(x) =


{0} for all ym ∈ ∆Em, um(ym, x−m)− um(xm, x−m) < ε

{1} for some ym ∈ ∆Em, um(ym, x−m)− um(xm, x−m) > ε

[0, 1] otherwise.

(18)

Note that gm is multivalued, if and only if (17) holds, or equivalently at the points of

discontinuity of the right hand side of (14). Additionally, at these points, the definition of

8For instance, if one can obtain a continuous function fc, changing the value of f function on a set of
measure zero, then Filippov solution leads to a differential equation where the right hand side is fc.
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the Krasovskii solution implies that ẋm belongs to the convex hull of β̃m(x−m)− xm and 0.

Therefore, it follows that the differential inclusion Fm corresponding to the ε-fictitious play

dynamics can be expressed as

ẋm ∈ Fm(x) for all m ∈M, (19)

where Fm(x) = {θm(β̃m(x−m)− xm)|θm ∈ gm(x)}.
We say that continuous-time ε-fictitious play converges to a set S, if starting from any

mixed strategy profile, all the trajectory defined by the above differential inclusion converges

to S, i.e., infx∈S ||xt − x|| → 0 as t→∞.

We next present an invariance theorem, which will be used to establish convergence

of ε-fictitious play dynamics in the above defined sense. Before we state the theorem, we

introduce some additional notation. For any continuously differentiable function V : Ω→ R,

we define the function DFV : Ω→ R associated with the multivalued function F , such that

for all x ∈ Ω

DFV (x) = sup
ν∈F (x)

{
lim
z→0

1

z
[V (x+ zν)− V (x)]

}
. (20)

Note that DFV (x) is well defined as long as x + zν ∈ Ω for sufficiently small z and all

ν ∈ F (x).

The following theorem generalizes La Salle’s invariance theorem to differential inclusions

(see [19, 22]) and will be used in our analysis of the continuous-time ε-fictitious play dynamics.

Theorem 5.1 ([22]). Consider the differential inclusion, ẋ ∈ F (x), where the trajectories

of the dynamics are contained in a compact set and there exists a bounded set B such that

F (x) ⊂ B for all x ∈ Ω. Assume that

(i) There exists a continuously differentiable function V : Ω → R and a continuous

function W : Ω→ R satisfying

DFV (x) ≤ −W (x) ≤ 0 for all x ∈ Ω. (21)

(ii) V is bounded below.

Then, for any solution of the differential inclusion, trajectory xt converges to {x ∈
Ω|W (x) = 0} as t→∞.

The collection of differential inclusions introduced in (19) can alternatively be written as

ẋ ∈ F (x), (22)

where F (x) = {Fm(x)}m∈M. Since β̃m(x−m), xm ∈ ∆Em, and Fm(x) = {θm(β̃m(x−m) −
xm)|θm ∈ gm(x)}, we have∑

pm∈Em
νm(pm) = 0 for all νm ∈ Fm(x), (23)
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and hence
∑

pm∈Em ẋ
m(pm) = 0. Additionally, since β̃m(x−m) ∈ ∆Em and ẋm ∈ Fm(x), if at

time t player m uses strategy pm with probability 1, i.e., xmt (pm) = 1, then ẋmt (pm) ≤ 0, and

similarly if it uses strategy pm with probability 0, then ẋmt (pm) ≥ 0. These facts imply that

all trajectories generated by the differential inclusion in (22) are contained in the compact

set
∏

m ∆Em, and xm + zνm ∈ ∆Em for every νm ∈ Fm(x) and sufficiently small z > 0.

Moreover, from the definition of β̃m(x−m) it follows that F (x) is a subset of the bounded set∏
m[−1, 1]|E

m|. Thus, it can be seen that the differential inclusion in (22) satisfies conditions

of Theorem 5.1 on properties of F , and trajectories of dynamics (conditions other than (i)

and (ii)). We next show that conditions (i) and (ii) also hold for appropriately defined V and

W functions, and use Theorem 5.1 to characterize the limiting behavior of continuous-time

ε-fictitious play dynamics in near-potential games.

Theorem 5.2. Consider a game G and let Ĝ be a close potential game such that d(G, Ĝ) = δ.

Denote the potential function of Ĝ by φ, and the smoothing parameter by τ > 0.

If continuous-time ε-fictitious play dynamics are employed in G, and ε > δ + τ , then all

trajectories of the update rule converge to the set of ε-equilibria of G.

Proof. In order to prove the theorem, we define the functions V :
∏

m ∆Em → R and

W :
∏

m ∆Em → R properly and use Theorem 5.1.

We define V such that V (x) = −φ(x). Note that V is a bounded function that is also

smooth and continuously differentiable. Additionally, for any x ∈
∏

m ∆Em, m ∈ M and

νm ∈ Fm(x) we have xm + zνm ∈ ∆Em for small enough z as explained before. Thus, the

limit limz→0
V (x+zν)−V (x)

z
exists for all x ∈

∏
m ∆Em and ν ∈ F (x). Note that this quantity

corresponds to the directional derivative of V in ν direction. Observing that
∏

m ∆Em ⊂∏
m R|Em|, and writing the directional derivative of V in terms of the inner product of the

relevant direction vector and the gradient of V , it follows that

lim
z→0

V (x + zν)− V (x)

z
= ∇V T (x)ν =

∑
m

∇mV
T (x)νm. (24)

Here νm is the component of the ν vector corresponding to player m’s strategies, ∇mV

denotes the vector of partial derivatives { ∂V
∂xm(pm)

}pm∈Em , and ∂V
∂xm(pm)

stands for the partial

derivative of V with respect to the probability that player m uses strategy pm. Therefore,

using the characterization of F in (22) and (19), it follows that

DFV (x) = sup
ν∈F (x)

{∑
m

∇mV
T (x)νm

}
= sup

θk∈gk(x),∀k

∑
m

θm∇mV
T (x)(β̃m(x−m)− xm)

≤
∑
m

sup
θm∈gm(x)

θm∇mV
T (x)(β̃m(x−m)− xm).

(25)
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Note that ∂V (x)
∂xm(pm)

= −φ(pm,x−m), hence for any ym ∈ Em, it follows that ∇mV
T (x)ym =

−φ(ym,x−m). Thus, the above inequality can be rewritten as:

DFV (x) ≤
∑
m

sup
θm∈gm(x)

−θm(φ(β̃m(x−m),x−m)− φ(xm,x−m)). (26)

The definition of gm (see (18)) implies that θm can be chosen different than 0 only for agents

for which

um(ym,x−m)− um(xm,x−m) ≥ ε, (27)

for some ym ∈ ∆Em. Let m be such an agent, and ym denote such a strategy. By definition

of β̃m it follows that

um(β̃m(x−m),x−m) +Hm(β̃m(x−m)) ≥ um(ym,x−m) +Hm(ym). (28)

Since 0 ≤ Hm(xm) ≤ τ , we obtain

um(β̃m(x−m),x−m) ≥ um(ym,x−m)− τ. (29)

Subtracting um(xm,x−m) from both sides, together with (27) the above inequality implies

that
um(β̃m(x−m),x−m)− um(xm,x−m) ≥ um(ym,x−m)− um(xm,x−m)− τ

≥ ε− τ.
(30)

Therefore, using the definition of MPD the above inequality implies that

φ(β̃m(x−m),x−m)− φ(xm,x−m) ≥ um(β̃m(x−m),x−m)− um(xm,x−m)− δ
≥ ε− τ − δ > 0.

(31)

Since gk(x) = {0}, for agents which have uk(yk,x−k)− uk(xk,x−k) < ε for all yk, and for all

other agents the above inequality holds, (26) can be rewritten as

DFV (x) ≤
∑
m

sup
θm∈gm(x)

−θm(ε− τ − δ). (32)

Let x /∈ Xε, and k denote a player who can improve its payoff by strictly more than ε,

unilaterally deviating from x. Since θm ≥ 0 for m 6= k and gk(x) = {1} it follows that

DFV (x) ≤ −(ε− τ − δ) < 0. (33)

Similarly, if x ∈ Xε, then (32) implies that

DFV (x) ≤ 0. (34)

Let W :
∏

m ∆Em → R be a function such that W (x) = dist(Xε,x)(ε− τ − δ), where

dist(Xε,x) = miny∈Xε ||x−y||∞ and || · ||∞ denotes the infinity norm in the Euclidean space
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R
Q
m |Em|, which contains

∏
m ∆Em. Since, Xε is a closed set and

∏
m ∆Em ⊂ [0, 1]

Q
m |Em|

it follows that dist is a well defined continuous function, which is bounded by 1 for all

x ∈
∏

m ∆Em. Thus, we have W (x) = 0, for x ∈ Xε and 0 < W (x) ≤ (ε − τ − δ) for all

x ∈
∏

m ∆Em \ Xε. Hence, W :
∏

m ∆Em → R is a continuous function, and as implied by

(33) and (34), DFV (x) ≤ −W (x) ≤ 0.

Since the trajectories of the dynamics are contained in the compact set
∏

m ∆Em and

F (x) is a subset of the bounded set
∏

m[−1, 1]|E
m|, for all x ∈

∏
m ∆Em, Theorem 5.1,

with the functions V and W introduced above, implies that the ε-fictitious play dynamics

converge to the set for which W (x) = 0. On the other hand, the definition of W (·) implies

that this set is equivalent to Xε, the set of ε-equilibria of G, and the claim follows.

The above theorem implies that if the original game is close to a potential game, and

the smoothing term is small (hence δ ≈ 0, and τ is small), ε can be chosen small to es-

tablish convergence of the continuous-time ε-fictitious play dynamics converges to a small

approximate equilibrium set of the game. Moreover, as the deviation from a potential game

increases, the set in which dynamics will be contained gradually becomes larger. By Lemma

2.2 for sufficiently small ε, the limiting approximate equilibrium set is contained in a small

neighborhood of the equilibria of the game. Thus, we conclude that in near-potential games

(and hence in potential games), even if players stop updating their strategies due to limited

utility improvement opportunity, using a fictitious play type update rule leads to convergence

to a small neighborhood of the equilibria for small ε, τ and δ.

6 Conclusions

In this paper, we study properties of near-potential games, and characterize the limiting

behavior of continuous-time dynamics in these games. We first introduce a distance notion

in the space of games, and study the geometry of sets of potential games and games that are

equivalent to potential games. We also provide a framework for finding games that are close

to potential games. Then we focus on continuous-time fictitious play dynamics, and in near-

potential games characterize its limiting behavior in terms of the approximate equilibrium

sets of the game, and the level sets of the potential function of a nearby potential game.

The characterization is tighter when the original game is closer to a potential game. We

strengthen our result by exploiting the structure of the mixed equilibrium sets, and showing

that if the original game is sufficiently close to a potential game, then convergence to a

small neighborhood of the equilibria can be established. We also study the convergence

properties of ε-fictitious play, a variant of continuous-time fictitious play dynamics, where

players update their strategies only if there is significant payoff improvement possibility. We
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show that in near-potential games, provided that the strategy update threshold ε and the

distance between the game and a nearby potential game is sufficiently small, the trajectories

of this update process converge to a small neighborhood of the equilibria of the game.

Our results extend the known convergence properties of continuous-time fictitious play in

potential games to near-potential games, and to settings where strategy updates take place

only when there is sufficient utility improvement opportunity.

Our analysis and results motivate a number of interesting research questions. An in-

teresting direction is to consider other learning dynamics, such as projection dynamics and

replicator dynamics (see [28]), which are known to converge in potential games and inves-

tigate whether one can extend these convergence results to near-potential games. Other

future work includes focusing on other classes of games with appealing dynamic properties,

such as zero-sum games and supermodular games [23, 14, 31], and understanding through an

analysis similar to the one in this paper, whether or not one can establish similar dynamic

properties for nearby games.
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A Proofs

Proof of Theorem 4.3: Assume that G has l > 0 equilibria, denoted by x∗1, . . . ,x
∗
l .

Define the minimum pairwise distance between the equilibria as d , mini 6=j ||x∗i − x∗j ||. Let

f : R+ → R+ be a function such that

f(α) = max
x∈Xα

min
k∈{1,...,l}

||x− x∗k||, (35)

for all α ∈ R+. Note that mink∈{1,...,l} ||x − x∗k|| is continuous in x, since it is minimum of

finitely many continuous functions. Moreover, Xα is a compact set, since ε-equilibria are

defined by finitely many inequality constraints of the form (2). Therefore, in (35) maximum

is achieved and f is well-defined for all α ≥ 0. From the definition of f , it follows that the

union of closed balls of radius f(α), centered at equilibria, contain α-equilibrium set of the

game. Thus, intuitively, f(α) captures the size of a closed neighborhood of equilibria, which

contains α-equilibria of the underlying game.

Let a > 0 be such that f(a) < d/4, i.e., every a-equilibrium is at most d/4 distant from an

equilibrium of a game. Lemma 2.2 implies (using upper semicontinuity at α = 0) that such a

exists. Since d is defined as the minimum pairwise distance between the equilibria, it follows

that a-equilibria of the game are contained in disjoint f(a) < d/4 neighborhoods around

equilibria of the game, i.e., if x ∈ Xa, then ||x − x∗k|| ≤ f(a) for exactly one equilibrium

x∗k. Moreover, for a1 ≤ a, since Xa1 ⊂ Xa, it follows that a1-equilibria of the game are also

contained in disjoint neighborhoods of equilibria.

We prove the theorem in 4 steps summarized below. First two steps explore the properties

of function f , and define δ̄ and ε̄ present in the theorem statement. Last two steps are the

main steps of the proof, where we establish convergence of fictitious play to a neighborhood

of equilibria.

• Step 1: We first show that f is (i) weakly increasing, (ii) upper semicontinuous, and

it satisfies (iii) f(0) = 0, (iv) f(x)→ 0 as x→ 0.

• Step 2: We show that there exists some δ̄ > 0, ε̄ > 0 such that the following inequalities

hold:

Mδ̄ + ε̄ < a, (36)

and

f(Mδ̄ + ε̄) <
d(a−Mδ̄)

16ML
. (37)

We will prove the statement of the theorem assuming that 0 ≤ δ+ τ < δ̄ and establish

convergence to the set in (13), for any ε̄ ≥ ε > 0. As can be seen from the definition

of a and f (see (35)), the first inequality guarantees that ε̄ + Mδ̄-equilibrium set is
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contained in disjoint neighborhoods of equilibria, and the second one guarantees that

these neighborhoods are small.

• Step 3: In this step we prove that after some time fictitious play can visit the ε̄+M(δ+

τ)-equilibrium set contained in the neighborhood of only one equilibrium.

• Step 4: In this step, using the fact that the neighborhood of only one equilibrium is

visited after some time, we show that the trajectory converges to the set given in the

theorem statement.

Next we prove each of these steps.

Step 1: By definition Xα1 ⊂ Xα for any α1 ≤ α. Since the feasible set of the maximization

problem in (35) is given by Xα, this implies that f(α1) ≤ f(α), i.e., f is a weakly increasing

function of its argument. Note that the feasible set of the maximization problem in (35)

can be given by the correspondence g(α) = Xα, which is upper semi continuous in α as

shown in Lemma 2.2. Since as a function of x, mink∈{1,...,l} ||x− x∗k|| is continuous it follows

from Berge’s maximum theorem (see [5]) that for α ≥ 0, f(α) is an upper semicontinuous

function.

The set X0 corresponds to the set of equilibria of the game, hence X0 = {x∗1, . . . ,x∗l }.
Thus, the definition of f implies that f(0) = 0. Moreover, upper semicontinuity of f implies

that for any ε > 0, there exists some neighborhood V of 0, such that f(x) ≤ ε for all x ∈ V .

Since, f(x) ≥ 0 by definition, this implies that limx→0 f(x) exists and equals to 0.

Step 2: Let δ̄, ε̄ > 0 be small enough such that Mδ̄ + ε̄ < a/2. Since limx→0 f(x) = 0, it

follows that for sufficiently small δ̄, ε̄ we obtain f(Mδ̄ + ε̄) < ad
32ML

< (a−Mδ̄)d
16ML

.

Step 3: Assume that the trajectory of the dynamics leaves the component of the ε̄ +

M(δ + τ)-equilibrium set contained in the neighborhood of equilibrium x∗k, and enters the

component of this approximate equilibrium set in the neighborhood of equilibrium x∗l . Since

ε̄+M(δ+ τ) ≤ ε̄+Mδ̄ < a in such an evolution the trajectory needs to leave the f(a) < d/4

neighborhood of equilibrium x∗k, and enter the f(a) neighborhood of equilibrium x∗l .

Let t1 denote the time instant the trajectory leaves the component of the ε̄+M(δ + τ)-

equilibrium set around equilibrium x∗k, t2 denote the instant it leaves the f(a) neighborhood

of x∗k, t3 denote the instant it enters the f(a) neighborhood of x∗l , and finally t4 denote the

instant it enters the component of the ε̄+M(δ + τ)-equilibrium set around equilibrium x∗l .

It follows from part (i) of Theorem 4.2 that

φ(xt2)− φ(xt1), φ(xt4)− φ(xt3) ≥ 0. (38)
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Observe that xt is outside the f(a) neighborhood of equilibria between t2 and t3, and this

neighborhood contains Xa. Since equilibria are at least d apart, and f(a) < d/4 we obtain

||xt2 − xt3|| ≥ d/2. Additionally, since β̃m(x−m), xm ∈ ∆Em for all m, it follows that

||ẋm|| = ||β̃m(x−m) − xm|| ≤ ||xm|| + ||β̃m(x−m)|| ≤ 2 and hence ||ẋ|| ≤
∑

m ||ẋm|| ≤ 2M .

Thus, we obtain t3 − t2 ≥ d/4M , and hence part (i) of Theorem 4.2 implies that

φ(xt3)− φ(xt2) ≥ (a−M(δ + τ))d/4M. (39)

Let φk = max{x | ||x−x∗k||≤f(ε̄+M(δ+τ))} φ(x) and define yk as a strategy profile which

achieves this maximum. Similarly, let φ
l
= min{x | ||x−x∗l ||≤f(ε̄+M(δ+τ))} φ(x) and define yl as a

strategy profile which achieves this minimum. Since ||xt1−x∗k||, ||xt4−x∗l || ≤ f(ε̄+M(δ+τ)),

it follows that ||xt1 − yk||, ||xt4 − yl|| ≤ 2f(ε̄ + M(δ + τ)). Thus, by Lipschitz conti-

nuity of the potential function it follows that φk − φ(xt1) ≤ 2f(ε̄ + M(δ + τ))L and

φ(xt4)− φl ≤ 2f(ε̄+M(δ + τ))L. From these inequalities we conclude that

φ
l
− φk ≥ φ(xt4)− φ(xt1)− 4f(ε̄+M(δ + τ))L

≥ φ(xt3)− φ(xt2)− 4f(ε̄+M(δ + τ))L

≥ (a−M(δ + τ))d/4M − 4f(ε̄+M(δ + τ))L,

(40)

where the last two lines follow from (38), and (39) and φ(xt4)−φ(xt1) = (φ(xt4)− φ(xt3)) +

(φ(xt3)− φ(xt2)) + (φ(xt2)− φ(xt1)) .

Since δ̄ ≥ δ + τ , by step 2 and the fact that f is weakly increasing in its argument we

have

(a−M(δ + τ))d/4M − 4f(ε̄+M(δ + τ))L ≥ (a−Mδ̄)d/4M − 4f(ε̄+Mδ̄)L

= 4L
(
(a−Mδ̄)d/16ML− f(ε̄+Mδ̄)

)
> 0.

(41)

Thus, (40) and (41) imply that φ
l
− φk > 0. Hence, we conclude that if the trajectory

leaves the component of the ε̄ + M(δ + τ)-equilibrium set around x∗k and enters to that

around equilibrium x∗l , the maximum potential in the first set is smaller than the minimum

potential in the second one. Since this is true for arbitrary equilibria x∗k and x∗l , it follows that

once trajectories enter the component of approximate equilibrium set around equilibrium x∗l ,

they cannot revisit the component of the approximate equilibrium set around x∗k. Thus, we

conclude that after some time trajectories can visit the ε̄+M(δ+ τ)-equilibrium set around

at most one equilibrium.

Step 4: Let ε, ε1 be such that 0 < ε1 < ε ≤ ε̄. By Theorem 4.2 it follows that φ̇(x) ≥ ε1

for any x /∈ Xε1+M(δ+τ). Thus, it follows that after any time instant T , there exists another
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time instant when the set Xε1+M(δ+τ) is visited. By Step 3 it follows that after some time the

trajectory visits the component of ε+M(δ + τ)-equilibrium set only around one equilibrium.

Assume that after time instant T , the component of ε+M(δ + τ)-equilibrium set around

only a single equilibrium, say x∗k, is visited, at t1 > t the trajectory leaves the ε1 +M(δ + τ)-

equilibrium set, at t2 > t1 it leaves the f(M(δ + τ) + ε) neighborhood of x∗k, at t3 >

t2, it returns back to this neighborhood and at t4 > t3 it returns to the ε1 + M(δ + τ)-

equilibrium set around x∗k. Let d∗ be the distance the trajectory gets from the f(M(δ+τ)+ε)

neighborhood of x∗k (note that this set contains the relevant component of the ε1 +M(δ + τ)-

equilibrium set). Since ||ẋ|| ≤ 2M , as shown in the proof of step 3, it follows that t3 − t2 ≥
2d∗

2M
= d∗

M
. Additionally, since φ̇(x) ≥ ε outside the M(δ+τ)+ε equilibrium set, it follows that

potential increases at least by d∗ε/M , when trajectory leaves the f(M(δ+τ)+ε) neighborhood

by d∗ and returns back to it, i.e., φ(xt3)− φ(xt2) ≥ d∗ε/M . Similarly, φ̇(x) ≥ ε1 > 0 outside

the ε1 + M(δ + τ)-equilibrium set, and hence φ(xt2) − φ(xt1), φ(xt4) − φ(xt3) ≥ 0. Using

these, we obtain

φ(xt4)− φ(xt1) ≥ d∗ε/M. (42)

On the other hand, by definition xt4 and xt1 belong to the ε1 +M(δ+ τ)-equilibrium set

around x∗k, and hence ||xt4−xt1|| ≤ 2f(ε1 +M(δ+ τ)). Thus, the Lipschitz continuity of the

potential function implies that φ(xt4) − φ(xt1) ≤ 2f(ε1 + M(δ + τ))L. Together with (42)

this implies that

d∗ε/M ≤ 2f(ε1 +M(δ + τ))L, (43)

or equivalently d∗ ≤ 2MLf(ε1 +M(δ+ τ)/ε. Since the distance between equilibrium x∗k, and

any point in the f(M(δ + τ) + ε) neighborhood is at most f(M(δ + τ) + ε), it follows that

the trajectory can become at most f(M(δ + τ) + ε) + 2MLf(ε1 +M(δ + τ))/ε distant from

equilibrium x∗k. Since this is true for all ε1 ∈ (0, ε), taking ε1 → 0, the result follows from

upper semicontinuity of f proved in Step 1.
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