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Non-invasive metabolomic analysis of breath using differential mobility
spectrometry in patients with chronic obstructive pulmonary disease and
healthy smokers
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The rapid, accurate and non-invasive diagnosis of respiratory disease represents a challenge to clinicians,

and the development of new treatments can be confounded by insufficient knowledge of lung disease

phenotypes. Exhaled breath contains a complex mixture of volatile organic compounds (VOCs), some of

which could potentially represent biomarkers for lung diseases. We have developed an adaptive sampling

methodology for collecting concentrated samples of exhaled air from participants with impaired

respiratory function, against which we employed two-stage thermal desorption gas chromatography-

differential mobility spectrometry (GC-DMS) analysis, and showed that it was possible to discriminate

between participants with and without chronic obstructive pulmonary disease (COPD). A 2.5 dm3

volume of end tidal breath was collected onto adsorbent traps (Tenax TA/Carbotrap), from participants

with severe COPD and healthy volunteers. Samples were thermally desorbed and analysed by GC-DMS,

and the chromatograms analysed by univariate and multivariate analyses. Kruskal–Wallis ANOVA

indicated several discriminatory (p < 0.01) signals, with good classification performance (receiver

operator characteristic area up to 0.82). Partial least squares discriminant analysis using the full DMS

chromatograms also gave excellent discrimination between groups (a ¼ 19% and b ¼ 12.4%).
Introduction

Chronic obstructive pulmonary disease (COPD) is a multi-

phenotypic syndrome described by progressive airflow obstruc-

tion and inflammation, usually secondary to chronic inhalation

of cigarette smoke. There is significant inter-individual vari-

ability in the clinical presentation and prognosis with many

lifelong smokers never developing symptoms at all. The

discovery of novel biomarkers that can identify disease pheno-

types, assess response to treatment, and even identify ‘‘at-risk’’

smokers is a critical target for COPD research. These biomarkers

may be single compounds or a metabolomic ‘‘fingerprint’’ unique

to individual patients, but sharing common features within

disease sub-phenotypes.

The analysis of volatile organic compounds (VOCs) in the

exhaled breath in COPD may provide novel information about

altered metabolic processes, and the extent and nature of tissue

damage via a non-invasive method. A complete description of

volatiles associated with COPD has yet to be developed.

Nevertheless, studies have identified groups of volatiles and other

biomarkers in COPD patients that have potentially useful rela-

tionships to cell degradation processes.1,2
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Measuring specific volatiles requires a method that separates

them from their immediate environment and then each other

before they are detected. There are several analytical detection

approaches available, including gas chromatography-mass

spectrometry (GC-MS), proton transfer reaction-mass spec-

trometry (PTR-MS), selected ion flow tube-mass spectrometry

(SIFT-MS) and ion mobility spectrometry (IMS)3,4 and more

recently electronic noses and sensors.5,6 Differential mobility

spectrometry (DMS) is a variant of IMS and has been used

recently to complement mass spectrometry in peptide analysis.7

However, it is also a compact (mass less than 5 kg), sensitive

(ppt(v)) and robust (implemented in fieldable chemical agent

detection systems) stand-alone analytical tool with a significant

advantage of atmospheric pressure operation, and as such is ideal

for future point-of-care applications. The principles and theory

behind DMS technology have been reported previously,8,9 and

we have already demonstrated the feasibility of breath collection

and VOC-analysis using DMS.10 This new study aims to test the

reproducibility of the sampling methodology when combined

with GC-DMS and also exploits chemometrics in order to allow

the unequivocal identification of participants with COPD, and

compares their breath profiles to those of smokers without the

disease.
Experimental

Participants

Twenty six participants with a minimum 20 pack-year (i.e. one

pack per day for 20 years) smoking history were enrolled in the
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study [20 COPD, 6 healthy smokers (HS)]. Participants with

COPD fulfilled international consensus definitions for this

disease11 and had no other respiratory disease. HS had no known

respiratory disease and normal lung function. Participants were

recruited from the clinical trials database held by the Medicines

Evaluation Unit, Wythenshawe Hospital, Manchester, UK. This

study was conducted in accordance with the ethical principles of

Good Clinical Practice and the Declaration of Helsinki. The

local ethics committee approved the protocol before

commencement of the study, and all subjects gave written

informed consent.

Demographic data collected from all participants included

gender, age, smoking status and pack-year history, height,

weight, BMI, medical history, co-morbidities, medication,

pulmonary function, alcohol consumption, hours of sleep before

visit and details of diet and cosmetic-usage in 24 h prior to

attending the laboratory (Table 1). Breath collections were made

in the morning: participants were asked to fast for 8 h prior to

sampling, not to wear make-up, perfume or any other facial

products, not to smoke and to withhold their morning medica-

tion until after sampling. Spirometry was performed using

a Vitalograph spirometer (Vitalograph Ltd, UK) according to

American Thoracic Society guidelines.12
Breath collection

The adaptive breath sampler has been described previously.10 In

brief, a full face mask of the sort commonly used for non-invasive

ventilation (Resmed Mirage� NIV full face mask, UK) was

fitted to the face of the subject and checks made to ensure

comfort. Purified medical air (35 L min�1) was supplied to the

mask through a one-way non re-breathing valve and the subject

acclimatised to the system for up to 10 min. The breathing mask

had two luer fittings, one of which was used for the sampling

point and connected to the sampling inlet of the sampling control

unit through an adsorbent sampler assembly. The second luer

fitting on the mask was connected, using silicone tubing, to an

integrated-circuit pressure sensor. This enabled selected sampling
Table 1 Demographic data shown as mean � S.D. (range) except where
indicated. Forced expiratory volume in 1 s (FEV1) and FEV1/forced vital
capacity (FVC) ratio are both physiological measures of airflow
obstruction typically used in the diagnosis of COPD

COPD (n ¼ 20)
Healthy smokers
(n ¼ 6)

Age (years) 64.3 � 4.4 (58–70) 56.8 � 13.1 (41–78)
Sex (male/female) 15/5 3/3
BMI (kg m�2) 27.6 � 5.6 (21–42) 26.7 � 2.6 (25–31)
Smokers

(ex/current)
18/2 0/6

Pack years 52 � 17 (23–78) 48 � 37 (20–120)
FEV1 (L) 1.18 � 0.40 (0.63–2.04) 2.69 � 0.66 (2.23–3.64)
FEV1

(% predicted)
41.8 � 11.8 (22–63) 100.8 � 9.9 (88–112)

FEV1/FVC ratio 39.4 � 10.2 (24–61) 78.5 � 5.8 (74–87)
Co-morbidities 3 Gastro

oesophageal reflux
2 Gastro oesophageal

reflux
8 Hypertension 1 Hypertension
2 Type II diabetes

mellitus
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during a pre-defined part of the respiratory cycle; in this study we

programmed the sensor to trigger sampling only during late

expiration, on the assumption that we would therefore be more

likely to sample from the lower respiratory tract. Five replicates

of 2.5 L breath samples were collected per subject.
Breath analysis

Samples were analysed within one week of collection by gas

chromatography-differential mobility spectrometry (GC-DMS)

as previously described.13 Adsorbent traps were packed with

Tenax TA/Carbotrap (Markes International, UK). Prior to

sampling, traps were conditioned with approximately 100 cm3

min�1 pure N2 at 300 �C overnight. After sampling adsorbent

tubes were transported to the laboratory and stored at 4 �C.

Adsorbent tubes were analysed in random order within one week

of collection. Between each sample analysis, an instrument blank

was run to ensure cross-contamination between samples was

prevented. Thermal desorption (Unity�, Markes International,

UK) was effected in two stages: from the adsorbent trap into

a cold trap at 300 �C as a concentration step and then from the

cold trap to the column at 360 �C in splitless mode. GC-DMS

analysis was carried out using a Hewlett-Packard gas chro-

matograph coupled to a differential mobility spectrometer

(Sionex, USA) with the dispersion field programmed from 14 to

30 kV cm�1 and the compensation field scanned from �860 to

300 V cm�1. The scan duration was 2.45 s with a scan size of 100

steps. The exhaled breath volatiles were separated using a 5%

biphenyl and 95% dimethylpolysiloxane capillary column [30 m

long, 0.25 mm diameter with a 0.25 mm film thickness; Rtx-5MS

low bleed (Restek)] held for 6 min at 40 �C, and then ramped to

220 �C at 4 �C min�1. The final temperature was held for 3 min.
Statistical analysis

Outputs from the GC-DMS were pre-processed before

proceeding to univariate and multivariate analyses. Fig. 1

represents examples of DMS exhaled breath outputs for a HS

(top) and a subject with COPD (bottom). A large part of the

visual output reflects the VOC-content of inspired air, which in

the controlled environment was similar for all participants. In

order to compensate for unavoidable baseline shifts the data

were pre-processed by a three stage process involving interpo-

lation, baseline correction and finally alignment of the chro-

matograms; see Fig. 2 for details. Interpolation is necessary

because the sampling rate is relatively low and resulted in poor

peak shape which may cause problems of alignment. Cubic spline

interpolation was used. Baseline correction was achieved using

asymmetric least squares (ALSs), an adaptive baseline correction

algorithm as described by Eilers.14 Alignment was applied to the

whole dataset via the algorithm correlation optimisation warping

(COW). The number of segments and the slacking size were

optimised by using a simplex optimisation procedure.15,16

To test if the replicates from a single participant were repro-

ducible a pair-wise distance matrix was produced using

(1-correlation coefficient) measuring the dissimilarity between

each pair of chromatograms. The dissimilarity matrix was then

averaged according to the samples originating from the same

individual and between individuals. Given m individuals in
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Fig. 1 Example contour plot of DMS output resultant from an exhaled

breath sample of a healthy smoker (top) and a COPD subject (bottom).

The trace that shifts from �5 to �40 V corresponds to the reactant ion

response (A) together with the ammonia response (B). Note that these

responses were removed during data pre-processing. Product compounds

eluting from the column are detected and response output falls

between �10 and 10 V.
a group, there are m � (m � 1)/2 average dissimilarities between

samples obtained from different individuals and m dissimilarities

among the samples originated from the same individual. Thus, m

� (m � 1)/2 + m dissimilarities were obtained for each group.

Then dissimilarities were ranked from 1 (the least dissimilar) to

(m � (m � 1)/2 + m) (the most dissimilar). The difference

between the ranks originated from the same individuals and

those from different individuals was evaluated by using Kol-

mogorov–Smirnov goodness-of-fit hypothesis test. The detailed

description of this methodology can be found in ref. 17.
Fig. 2 Data processing/analysis flow chart.
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Clinical metadata relating to individual participants were

evaluated by Kruskal–Wallis (KW) analysis of variance

(ANOVA) to determine which demographic attributes discrim-

inated significantly between groups. KW-ANOVA tests the null

hypothesis that there is no difference between the group medians,

for which a c2 probability or p-value can be calculated, a p < 0.05

would indicate a significant difference between-group medians

within a 95% confidence level. In addition to the calculation of p-

values by KW-ANOVA, the area under the receiver operating

characteristic (ROC) curve for all chromatographic DMS time

points was calculated and a scatter plot of these two metrics was

used to determine the chromatographic bins which showed

greatest differentiation between individuals with COPD and HS.

The ROC is a calculation of the rate of false positive (1-sensi-

tivity) to true positive (specificity) classifications which makes no

assumption of class boundaries.18 An area under ROC of 0.5

would indicate a model with a classification accuracy no better

than chance; the closer this value is to unity, the better the

classification power of a particular variable. These p-values and

ROC areas were used to determine the chromatographic peaks

that gave the best discrimination and classification accuracy.

Finally, a multivariate predictive model designed to discrimi-

nate between COPD and HS was derived from DMS chro-

matograms using partial least squares discriminant analysis

(PLS-DA).19 PLS-DA is a supervised fixed linear regression

algorithm which can be used to formulate empirical models from

multivariate datasets. The algorithm was implemented using

a random re-sampling methodology20 over 200 iterations. First,

the two groups were balanced by random selection from the

larger set of COPD samples, and then the training and test

samples for PLS-DA were selected by a second random split to

give 4 training samples and 1 test sample for each model. For

each ‘‘training’’ and ‘‘test’’ dataset, replicates from individuals

were kept together. Using these sub-sampled data the PLS-DA

outputs were encoded as ‘1’ for COPD and ‘0’ for HS.
Results and discussion

Metadata

Demographic details are shown in Table 1. The breath sampling

procedure was well tolerated in all participants, and notably

including those with severe impairment of respiratory function.

Breath analysis can be influenced by a multitude of factors

both endogenous (gender, age, weight, etc.) and exogenous

(exposure to VOCs in the place of work, diet, medication,

etc.).4,5,21 At this early stage of metabolomic investigation of the

breath in respiratory disease, we feel it is vital to control for as

many of the many potential confounders as possible. In this

regard our methodology controls the volatiles in the background

so all the participants breathe similar inspiratory air and thus we

are able to control and/or monitor other potential exogenous

sources of VOCs.

The clinical study presented herein was evaluated to look at

the effect and the influence of these factors. Principal component

analysis of preliminary GC-DMS data (data not shown), where

a group of replicate samples from the same individual were very

different (outliers) from all other participants, suggested that one

such factor, the wearing of make-up, could have a significant
Analyst, 2010, 135, 315–320 | 317



Fig. 3 Rank test: AA represents the cumulative distribution function

(CDF) of the ranks of the averaged dissimilarity of the samples coming

from the same individual and AB represents that of the samples coming

from different individuals.
influence on the results. Therefore the samples from this indi-

vidual are not representative of the breath from a human lung

and its airways and so must be discarded. Other factors were also

considered and when inspecting the clinical metadata for the

completed study we used KW-ANOVA to test the null hypoth-

esis that there is no difference between the group medians of the

metadata with respect to COPD versus HS and found that using

a p-value <0.05 spirometry and whether the participant had

consumed caffeinated drinks that day to be the only measured

significant confounders (Table 2). For future studies it is clear

that we need to define which exogenous factors need to be

controlled for, and that again detailed recording of all factors

that may influence the VOC profile should be recorded.

In addition to the clinical metadata, KW-ANOVA was per-

formed on the sampling metadata associated with each partic-

ipant (Table 2). Parameters such as the individual components

used in the sampling system, such as the connecting tubes and

masks used, had p-values >0.7 indicating no evidence of any

differences between COPD and HS in terms of the sampling

apparatus used and the health status of the individuals ana-

lysed. This demonstrates that minimal bias from the sampling

system was introduced through the experimental intervention.

Both dynamic change and endogenous–exogenous equilibrium

in exhaled breath analysis present difficulties in achieving

reproducibility from replicate breath samples; an essential

prerequisite for a metabolomic approach. We propose our

careful methodology which controls for as many of these

factors as is reasonable, is vital for achieving such essential

reproducibility
Reproducibility

Data from 130 chromatograms were analysed, five from each of

the 26 participants. Reproducibility of the sampling method-

ology was studied by ranking the overall similarities (pair-wise

distance matrices) within and between individuals as detailed

above. As shown in Fig. 3 within-subject variability (AA) was

significantly lower than between-subject variability (AB) (p ¼
6.23 � 10�23). Hence, it can be concluded that there are signifi-

cant amount of very reproducible signals in the exhaled breath

samples collected from the same individuals, and that different

individuals displayed different (but reproducible) VOC profiles.
Table 2 Between-group p-values from Kruskal–Wallis ANOVA for
each of the clinical metadata

Attribute
Kruskal–Wallis
p-value

Spirometry 0.0003
Coffee/tea 0.0199
Age (years) 0.067
Pack years 0.2408
Sex (M/F) 0.2538
Morning cigarette 0.2598
Cosmetics 0.3564
Mask no. 0.7324
Height (m) 0.7374
Capillary no. 0.8529
BMI (kg m�2) 0.86
Weight (kg) 0.9031
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Univariate analysis

The performance as a classifier of intensity measured at each time

point in the DMS chromatogram was assessed by KW-ANOVA

and ROC (Fig. 4). As can be seen in this figure the best chro-

matographic region for discrimination was selected based upon

a low p-value/large ROC area trade-off. This chromatographic

region corresponded to a retention time of 179.33 s, and

discriminated between COPD and HS with a p < 5 � 10�5, and

the ROC area under the curve of 0.82 (Table 3). By further

analysis of subgroups based on the metadata (such as age,

smoking history, etc.) we demonstrated that the main (recorded)

factor influencing the result was indeed the diagnosis of COPD,
Fig. 4 Kruskal–Wallis ANOVA p-values versus area under the ROC

(AUROC) for all chromatographic time points with p < 0.01. The best-

discriminating points at the left of the plot (with low p-values and high

AUROC) are labeled with their retention times (s) from the chromato-

gram, and it can be seen that they arise from one specific region of the

chromatogram between 178.5 and 180.5 s.
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Table 3 Model performance parameters and area under ROC
(AUROC) for the chromatographic region which gave the best discrim-
ination between groups. Also shown for the PLS-DA are the test
predictions across all 200 randomly sub-sampled models

Response
for region 179.33/s

Response for
PLS-DA test
predictions

Sensitivity 0.88 0.88
Specificity 0.58 0.81
Precision 0.88 0.73
Accuracy 0.76 0.84
AUROC 0.79 0.91
AUROC convex hull 0.82 0.92

Fig. 6 PLS-DA model predictions for randomly selected test samples

based upon 200 sub-sampling iterations, with COPD participants enco-

ded as ‘‘1’’ and healthy smokers (HS) ‘‘0’’. Definition of box-plot

parameters as for Fig. 5.
rather than any demographic differences between the groups

(Fig. 5). One limitation of our study demonstrated here is the

possibility of a type I error occurring given our small sample size.

Whilst we have tried to minimise this by combining ANOVA with

ROC,22 it is well recognised that such an error is still possible. One

potential confounder which we have not been able to fully control

for is current smoking status, as all our healthy controls were

current smokers, and the majority of our COPD cases ex-smokers.

We attempted to minimise this by asking patients not to smoke on

the morning of the test, and by sampling early in the day.
Multivariate analysis

Finally, the application of PLS-DA allowed for discrimination

between COPD and HS with a ¼ 19% and b ¼ 12.4% (the type I

and type II errors, respectively). The model predictions for the

randomly sub-sampled training and test samples (200 iterations;

randomly split 4 : 1, training–test) are summarised by a box-plot

in Fig. 6. Most of the outputs of the test samples were within the

95% confidence interval of those of the training set which suggest

that the risk of overfitting was low and the predictive model has

good generalisation performance. The performance parameters

for this model were excellent, demonstrating an area under the
Fig. 5 Box-plot showing signal intensity for chromatographic region

179.33 s, for healthy smokers (HS) (top) and COPD (bottom), with

further sub-groupings based on metadata. n represents the number of

participants in each category. Boxes represent the lower, median and

upper quartiles. Whiskers represent the range or 1.5� the length of the

box, whichever is shorter. Outliers (+) are the values out of the whisker

range.
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ROC curve of 0.91 and sensitivity 0.88 for discriminating COPD

versus HS (Table 3).

As described above, PLS-DA is a supervised modeling algorithm

that can be used to generate predictive models from multivariate

data. The benefit of using such a methodology over a simple

univariate analysis is that combinations of spectral features that

define the class separation are taken into account, and therefore

such tools can act as more powerful classifiers for spectral data. In

addition, where cohorts have a small number of participants,

random re-sampling of training and test data avoids model bias due

to sampling effects, allowing for the calculation of confidence limits

for the model predictions. Further, mapping of the distributions of

model predictions enables visualisation of the model skewness as

well as calculation of other summary statistics such as: accuracy,

precision, sensitivity and specificity as detailed in Table 3.

Conclusion

In summary, we have demonstrated a reproducible method for

collecting exhaled breath and measuring the profile of VOCs in

healthy smokers and participants with COPD, including those

with severe impairment of respiratory function. Differentiation

between COPD and asymptomatic smokers has been achieved by

applying a selective and controlled sampling methodology for the

collection of breath and subsequent analysis by GC-DMS with

univariate and multivariate chemometric analyses (with appro-

priate re-sampling to assess overfitting). Further investigations

will require the use of mass spectrometry to confirm and quantify

the identity of any discriminative biomarkers. With the identifi-

cation of such biomarkers, we may gain novel insights into

mechanistic pathways of disease, and further they may merit

investigation in the clinical setting as potential aids in the diag-

nosis and monitoring of COPD.
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