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Motivation

• UML has become the standard object-oriented 
framework.

• Inheritance is one of the cornerstones of object 
orientation

• UML has at least four diagrams focusing on 
dynamic behavior / process modeling.

• Yet inheritance is typically restricted to static 
aspects.

• Frustration: Our work (with Twan Basten and Eric
Verbeek) on inheritance has not been adopted by 
people working on UML.



Approach [Engels et al. 2001]

• It is not our aim to provide formal semantics for UML.
• The mappings may be partial/abstractions.
• The intermediate domains are used for analysis 

purposes.
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Inheritance of dynamic behavior

• When is a object life-cycle a subclass of another object 
life-cyle?

• Four notions of inheritance based on two orthogonal 
mechanisms.

• Blocking: If it is not possible to distinguish the behaviors 
of x and y when only methods of x that are also present in 
y are executed, then x is a subclass of y. (encapsulation)

• Hiding:If it is not possible to distinguish the behaviors of 
x and y when arbitrary methods of x are executed but 
when only the effects of methods that are also present in y 
are considered, then x is a subclass of y. (abstraction)



Four notions of inheritance

• Have been defined for the 
core semantic domain 
(labeled transition 
systems) and two 
intermediate semantic 
domains (Petri nets and 
ACP).

• We will illustrate the four 
notions of inheritance 
using the core semantic 
domain 
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Blocking: If it is not possible to distinguish the behaviors of x and y 
when only methods of x that are also present in y are executed, then x is 
a subclass of y.
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Hiding:If it is not possible to distinguish the behaviors of x and y when 
arbitrary methods of x are executed but when only the effects of methods 
that are also present in y are considered, then x is a subclass of y.
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Subclass TS4
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Subclass TS5
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Inheritance preserving 
transformation rules

• Constructions which preserve one or more notions of 
inheritance, i.e., rules to transform a superclass into a 
subclass.

• The four basic rules PP, PT, PJ and PJ3 have been 
defined in both a Petri-net and a process-algebraic setting 
(i.e., both intermediate semantic domains considered).

• In this talk we show the rules in a Petri-net setting.
• The requirements for the rules can be checked locally.
• The transformation rules have been equipped with 

transfer rules to migrate objects from a superclass to a 
subclass and vice versa. 



Transformation rule PP: 
adding loops
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Transformation rule PT: adding 
alternatives
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Transformation rule PJ: 
inserting steps
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Transformation rule PJ3: add 
parallel behavior
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Inheritance of behavior in UML

• The goal is to illustrate the four inheritance 
notions and the four transfer rules in the context of 
UML.

• The goal is NOT to provide a complete semantic 
mapping consistent with current standards. 

• The four diagrams types that are relevant are:
• Sequence diagrams
• (Collaboration diagrams)
• Statecharts diagrams
• Activity diagrams



Sequence diagrams

• Constructs considered: lifelines, messages 
(communications of type procedure call, 
asynchronous and return), activation and 
concurrent branching.

• Not considered: more advanced constructs such as 
iteration, conditional and timed behavior.

• Semantic domains: TS and PN (marked graphs).
• Relevant notions of inheritance: projection 

inheritance.
• Relevant transformation rules: PJ, PJ3 and PP.
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Statechart diagrams

• Constructs considered: States, composite states, 
concurrent substates, transitions, compound 
transitions, etc.

• Not considered: data or time dependent behavior 
(e.g., abstraction from ECA rules).

• Semantic domains: TS, PA, and PN.
• Relevant notions of inheritance: all.
• Relevant transformation rules: all.
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Example (2)

PJ/PJ3

blinking
switch_on switch_off

yellow

red

green

start_cycle end_cycle

sw_rg

sw_gy

sw_yr

TL

blinking
switch_on switch_off

start_cycle end_cycle

sw_yr

TL

yellow

red

green

sw_rry

sw_gy

red+yellow

sw_rg

count_cars

new_car

Protocol/
projection 

inheritance

Life-cycle
inheritance

Protocol 
inheritance 
(blocking)

Projection 
inheritance 

(hiding)



Activity diagrams

• Constructs considered: States, action states, 
decision/merge nodes, fork/join nodes, etc.

• Not considered: data or time dependent behavior 
(e.g., abstraction from ECA rules).

• Semantic domains: TS, PA, and PN.
• Relevant notions of inheritance: all.
• Relevant transformation rules: all.
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Conclusion

• Four definitions of inheritance have been 
illustrated using the core semantic domain.

• Four transformation rules haven been 
illustrated using one of the intermediate 
semantic domains.

• To illustrate the applicability of these notions 
in the context of UML, examples have been 
given for sequence, statechart, and activity 
diagrams.
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