
Inheritance of
Dynamic Behavior

in UML

Wil van der Aalst

Eindhoven University of Technology
Department of Information and Technology

P.O. Box 513, 5600 MB Eindhoven
The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Outline

1. Motivation
2. Inheritance of behavior
3. Inheritance preserving transformation rules
4. Inheritance of behavior in UML

• Sequence diagrams
• Statecharts diagrams
• Activity diagrams

5. Conclusion

Motivation

• UML has become the standard object-oriented
framework.

• Inheritance is one of the cornerstones of object
orientation

• UML has at least four diagrams focusing on
dynamic behavior / process modeling.

• Yet inheritance is typically restricted to static
aspects.

• Frustration: Our work (with Twan Basten and Eric
Verbeek) on inheritance has not been adopted by
people working on UML.

Approach [Engels et al. 2001]

• It is not our aim to provide formal semantics for UML.
• The mappings may be partial/abstractions.
• The intermediate domains are used for analysis

purposes.

sequence
diagram

collaboration
diagram

statechart
diagram

activity
diagram

transition
system

object life cycle/
WF-net

(Petri-net setting)

ACP term
(process-algebraic
setting)

UML diagrams

intermediate
semantic
domains

core semantic
domain

Inheritance of dynamic behavior

• When is a object life-cycle a subclass of another object
life-cyle?

• Four notions of inheritance based on two orthogonal
mechanisms.

• Blocking: If it is not possible to distinguish the behaviors
of x and y when only methods of x that are also present in
y are executed, then x is a subclass of y. (encapsulation)

• Hiding:If it is not possible to distinguish the behaviors of
x and y when arbitrary methods of x are executed but
when only the effects of methods that are also present in y
are considered, then x is a subclass of y. (abstraction)

Four notions of inheritance

• Have been defined for the
core semantic domain
(labeled transition
systems) and two
intermediate semantic
domains (Petri nets and
ACP).

• We will illustrate the four
notions of inheritance
using the core semantic
domain

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Superclass TS1

receive
order

ship
order

accept
order

reject
order

close
orders1 s2 s3 s4 s5

Subclass TS2

receive
order

ship
order

accept
order

reject
order

close
orders1 s2 s3 s4 s5

subcontract
order

receive
confirmation

ship
order

Blocking: If it is not possible to distinguish the behaviors of x and y
when only methods of x that are also present in y are executed, then x is
a subclass of y.

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Subclass TS3

receive
order

ship
order

reject
order

close
order

s1 s2
s3

s4 s5
ship
order

send
invoice

send
invoice

accept
order

Hiding:If it is not possible to distinguish the behaviors of x and y when
arbitrary methods of x are executed but when only the effects of methods
that are also present in y are considered, then x is a subclass of y.

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Subclass TS4

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

receive
order

ship
order

accept
order

reject
order

close
orders1 s2 s3 s4 s5

reject
order

answer

question

Subclass TS5

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

receive
order

ship
order

close
order

s1 s2
s3

s4 s5
ship
order

send
invoice

send
invoice

accept
order

reject
order

subcontract
order

receive
confirmation

ship
order

Inheritance preserving
transformation rules

• Constructions which preserve one or more notions of
inheritance, i.e., rules to transform a superclass into a
subclass.

• The four basic rules PP, PT, PJ and PJ3 have been
defined in both a Petri-net and a process-algebraic setting
(i.e., both intermediate semantic domains considered).

• In this talk we show the rules in a Petri-net setting.
• The requirements for the rules can be checked locally.
• The transformation rules have been equipped with

transfer rules to migrate objects from a superclass to a
subclass and vice versa.

Transformation rule PP:
adding loops

i

p

o

PP

i

p

o

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Transformation rule PT: adding
alternatives

i

po

o

PT

i

o

pi

po

pi

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Transformation rule PJ:
inserting steps

i

p

o

PJ

i

o

tp

p

tp

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Transformation rule PJ3: add
parallel behavior

i

to

o

PJ3

i

o

ti

to

ti

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Inheritance of behavior in UML

• The goal is to illustrate the four inheritance
notions and the four transfer rules in the context of
UML.

• The goal is NOT to provide a complete semantic
mapping consistent with current standards.

• The four diagrams types that are relevant are:
• Sequence diagrams
• (Collaboration diagrams)
• Statecharts diagrams
• Activity diagrams

Sequence diagrams

• Constructs considered: lifelines, messages
(communications of type procedure call,
asynchronous and return), activation and
concurrent branching.

• Not considered: more advanced constructs such as
iteration, conditional and timed behavior.

• Semantic domains: TS and PN (marked graphs).
• Relevant notions of inheritance: projection

inheritance.
• Relevant transformation rules: PJ, PJ3 and PP.

Example

contractor subcontractor

request()

accept()

send_work()

return_work()

contractor subcontractor

request()

accept()

send_work()

return_work()

worker

inform()

order()

complete()

send_bill()

send_bill()

prepare_bill()

PJ/PJ3

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Statechart diagrams

• Constructs considered: States, composite states,
concurrent substates, transitions, compound
transitions, etc.

• Not considered: data or time dependent behavior
(e.g., abstraction from ECA rules).

• Semantic domains: TS, PA, and PN.
• Relevant notions of inheritance: all.
• Relevant transformation rules: all.

Example

PP/PT

blinking
switch_on switch_off

yellow

red

green

start_cycle end_cycle

sw_rg

sw_gy

sw_yr

blinking
switch_on

switch_off

yellow

red

green

start_cycle end_cycle

sw_gy

sw_yr

blink

sw_rg

TL
TL

no_light

fail

fail

fail

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Example (2)

PJ/PJ3

blinking
switch_on switch_off

yellow

red

green

start_cycle end_cycle

sw_rg

sw_gy

sw_yr

TL

blinking
switch_on switch_off

start_cycle end_cycle

sw_yr

TL

yellow

red

green

sw_rry

sw_gy

red+yellow

sw_rg

count_cars

new_car

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Activity diagrams

• Constructs considered: States, action states,
decision/merge nodes, fork/join nodes, etc.

• Not considered: data or time dependent behavior
(e.g., abstraction from ECA rules).

• Semantic domains: TS, PA, and PN.
• Relevant notions of inheritance: all.
• Relevant transformation rules: all.

Example

PT/PJ3

receive_order

ship_order

accept_order

close _order

reject_order

receive_order

ship_order

accept_order

close _order

reject_order

send_invoice

subcontract_order

receive_confirmation

ship_order

Protocol/
projection

inheritance

Life-cycle
inheritance

Protocol
inheritance
(blocking)

Projection
inheritance

(hiding)

Conclusion

• Four definitions of inheritance have been
illustrated using the core semantic domain.

• Four transformation rules haven been
illustrated using one of the intermediate
semantic domains.

• To illustrate the applicability of these notions
in the context of UML, examples have been
given for sequence, statechart, and activity
diagrams.

References
1. W.M.P. van der Aalst and T. Basten. Life-cycle Inheritance: A Petri-net-based Approach. In
P. Az ´ ema and G. Balbo, editors, Application and Theory of Petri Nets 1997, volume 1248 of
Lecture Notes in Computer Science, pages 62–81. Springer-Verlag, Berlin, 1997.
2. W.M.P. van der Aalst and T. Basten. Identifying Commonalities and Differences in Object
Life Cycles using Behavioral Inheritance. In J.M. Colom and M. Koutny, editors, Application
and Theory of Petri Nets 2001, volume 2075 of Lecture Notes in Computer Science, pages
32–52. Springer-Verlag, Berlin, 2001.
3. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1-2):125–203, 2002.
4. P. America. Designing an Object-Oriented Programming Language with Behavioral Sub-typing.
In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Foundation of
Object-Oriented Languages, volume 489 of Lecture Notes in Computer Science, pages 60–
90. Springer-Verlag, Berlin, 1991.
5. T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra. PhD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, December 1998.
6. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic and Algebraic
Programming, 47(2):47–145, 2001.

7. R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe, and V. Thurner. Towards a
Precise Semantics for Object-Oriented Modeling Techniques. In M. Aksit and S. Matsuoka,
editors, 11th European Conference on Object-Oriented Programming ECOOP’97, volume
1241 of Lecture Notes in Computer Science, pages 344–366. Springer-Verlag, Berlin, 1997.
8. G. Engels, R. Heckel, and J.M. K¨ uster. Rule-Based Specification of Behavioral Consistency
Based on the UML Meta-model. In M. Gogella and C. Kobryn, editors, 4th International
Conference on The Unified Modeling Language (UML 2001), volume 2185 of Lecture Notes
in Computer Science, pages 272–286. Springer-Verlag, Berlin, 2001.
9. R. Eshuis and R. Wieringa. Comparing Petri Nets and Activity Diagram Variants for Work-flow
Modelling- A Quest for Reactive Petri Nets. In H. Ehrig, W. Reisig, and G. Rozenberg,
editors, Petri Net Technologies for Communication Based Systems, Lecture Notes in Com-puter
Science. Springer-Verlag, Berlin, 2002.
10. R.J. van Glabbeek. The Linear Time - Branching Time Spectrum II: The Semantics of
Sequential Systems with Silent Moves. In E. Best, editor, Proceedings of CONCUR 1993,
volume 715 of Lecture Notes in Computer Science, pages 66–81. Springer-Verlag, Berlin,
1993.
11. Object Management Group. OMG Unified Modeling Language, Version 1.4. OMG,
http://www.omg.com/uml/, 2001.

12. Object Management Group. OMG Unified Modeling Language 2.0 Proposal, Re-vised
submission to OMG RFPs ad/00-09-01 and ad/00-09-02, Version 0.671. OMG,
http://www.omg.com/uml/, 2002.
13. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8:231–274, 1987.
14. D. Harel and O. Kupferman. On the Behavioral Inheritance of State-Based Objects. Techni-cal
Report MCS99-12, The Weizmann Institute of Science, Israel, 1999.
15. G. Kappel and M. Schrefl. Inheritance of Object Behavior - Consistent Extension of Object
Life Cycles. In J. Eder and L.A. Kalinichenko, editors, Proceedings of the Second Inter-national
East/West Database Workshop (EWDW 1994) , pages 289–300. Springer-Verlag,
Berlin, 1995.
16. E. Kindler, A. Martens, and W. Reisig. Inter-Operability of Workflow Applications: Local
Criteria for Global Soundness. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 235–253. Springer-Verlag, Berlin, 2000.
17. B. Liskov and J. Wing. A Behavioral Notion of Subtyping. ACM Transactions on Program-ming
Languages and Systems, 16(6):1811–1841, November 1994.
18. O. Nierstrasz. Regular Types for Active Objects. ACM Sigplan Notices, 28(10):1–15, Octo-ber
1993. Special issue containing the proceedings of the 8th. annual conference on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA’93, Washington DC, 1993.

20. E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message Sequence Charts. Com-puter
Networks and ISDN Systems, 28(12):1629–1641, 1996.
21. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Man-ual.
Addison Wesley, Reading, MA, USA, 1998.
22. M. Schrefl and M. Stumptner. On the Design of Behavior Consistent Specialization of Object
Life Cycles in OBD and UML. In M. Papazoglou, S. Spaccapietra, and Z. Tari, editors,
Advances in Object-Oriented Data Modelling, pages 65–104. MIT Press, 2000.
23. M. Stumptner and M. Schrefl. Behavior Consistent Inheritance in UML. In Alberto
H. F. Laender et al. editor, Proceedings of the 19th International Conference on Conceptual
Modeling (ER 2000), volume 1920 of Lecture Notes in Computer Science, pages 527–542.
Springer-Verlag, Berlin, 2000.
24. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes
using Woflan. The Computer Journal, 44(4):246–279, 2001.
25. H. Wehrheim. Subtyping Patterns for Active Objects. In H. Giese and S. Philippi, editors,
Proceedings 8ter Workshop des GI Arbeitskreises GROOM (Grundlagen objekt-orientierter
Modellierung), volume 24/00, M¨ unster, Germany, 2000. University of M¨ unster.
26. R.J. Wieringa. Algebraic Foundations for Dynamic Conceptual Models. PhD thesis, Free
University, Amsterdam, The Netherlands, 1990.

BPM 2003

INTERNATIONAL CONFERENCE ON
BUSINESS PROCESS MANAGEMENT

On the Application of Formal Methods to “Process-Aware” Information Systems

Eindhoven, The Netherlands, June 26-27, 2003

http://www.tm.tue.nl/it/bpm2003

