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Transmitter Optimization for the Multi-Antenna
Downlink With Per-Antenna Power Constraints

Wei Yu, Member, IEEE, and Tian Lan, Student Member, IEEE

Abstract—This paper considers the transmitter optimization
problem for a multiuser downlink channel with multiple transmit
antennas at the base-station. In contrast to the conventional
sum-power constraint on the transmit antennas, this paper adopts
a more realistic per-antenna power constraint, because in prac-
tical implementations each antenna is equipped with its own
power amplifier and is limited individually by the linearity of the
amplifier. Assuming perfect channel knowledge at the transmitter,
this paper investigates two different transmission schemes under
the per-antenna power constraint: a minimum-power beam-
forming design for downlink channels with a single antenna at
each remote user and a capacity-achieving transmitter design
for downlink channels with multiple antennas at each remote
user. It is shown that in both cases, the per-antenna downlink
transmitter optimization problem may be transformed into a dual
uplink problem with an uncertain noise. This generalizes previous
uplink–downlink duality results and transforms the per-antenna
transmitter optimization problem into an equivalent minimax
optimization problem. Further, it is shown that various notions
of uplink–downlink duality may be unified under a Lagrangian
duality framework. This new interpretation of duality gives rise
to efficient numerical optimization techniques for solving the
downlink per-antenna transmitter optimization problem.

Index Terms—Beamforming, broadcast channel, capacity re-
gion, dirty-paper coding, Lagrangian duality.

I. INTRODUCTION

CONSIDER a wireless multi-antenna downlink transmis-
sion scenario with a base-station equipped with transmit

antennas sending independent information to remote users,
each equipped with receive antennas. This downlink channel
is often modeled as a vector Gaussian broadcast channel

(1)

where is an complex vector repre-
senting the transmit signal, ’s are complex channel
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matrices which are assumed to be known to both the transmitter
and the receivers, ’s are complex vectors representing
the received signal, and ’s are the i.i.d. additive complex
Gaussian noise vectors with variance on each of its real
and imaginary components. A great deal of recent progress
has been made in the characterization of optimal transmis-
sion schemes for the downlink channel. For example, in the
special case in which each remote user is equipped with a
single antenna, i.e., the multiple-input, single-output (MISO)
case, a linear beamforming strategy may be employed at the
transmitter. In this scenario, beamforming vectors may be
used to create data streams. The achievable data rate of each
data stream depends on its signal-to-interference-and-noise
ratio (SINR). The transmitter optimization problem can then
be formulated as a problem of minimizing the total transmit
power subject to a minimum SINR for each user. This problem
has been solved in [1]–[8]. Alternatively, it is possible to
achieve a higher throughput by employing nonlinear interfer-
ence presubtraction methods at the transmitter. In this case,
multiuser interference may be presubtracted using the method
of “dirty-paper coding” [9], which has been shown to achieve
the Shannon capacity of the downlink channel. The transmitter
optimization problem under dirty-paper coding can be formu-
lated as a weighted rate maximization problem subject to a total
power constraint at the transmitter. The solution to this capacity
region maximization problem for the general multiple-input
multiple-output (MIMO) case has been provided in [10]–[14].

A key technique in the solutions of both the MISO min-
imum-power beamforming problem [1]–[8] and the MIMO
capacity region maximization problem [10]–[14] is the idea
of uplink–downlink duality. It can be shown that under a sum
power constraint, the optimal beamforming SINR region for
a downlink MISO channel is identical to that of a dual uplink
channel in which the transmitter and the receivers are reversed
and the channel matrices are transposed [1], [2]. Likewise,
with interference presubtraction at the transmitter, a similar
MIMO downlink capacity region duality can be established
[12], [13], [15]. For both the beamforming and the capacity
region problems, duality is useful, because the uplink problem
has an analytical structure which is computationally easier to
handle. Thus, the downlink problem may be more easily solved
by solving its uplink dual.

However, all existing duality results in the literature depend
crucially on the sum-power constraint across all transmit an-
tennas, which is of the form

(2)
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While analytically attractive, such a sum power constraint is
often unrealistic in practice. In a physical implementation of
a multi-antenna base-station, each antenna has its own power
amplifier in its analog front-end, and is limited individually by
the linearity of the power amplifier. Thus, a power constraint
imposed on a per-antenna basis is more realistic:

(3)

The main objective of this paper is to provide a solution to the
optimal beamforming and the capacity region problems for a
multi-antenna downlink channel with per-antenna power con-
straints. The per-antenna power constraint is also motivated by
future wireless systems in which base-stations can be connected
via high-speed links and are capable of cooperatively trans-
mitting information to and receiving information from mobile
users. In this case, an individual power constraint must be ap-
plied to a group of antennas on each base-station. A similar situ-
ation is applicable for downlink wireline systems in which joint
transmission may be done at the central office by coordinating
multiple modems. In this case, an individual power constraint is
again applicable to each modem.

This paper shows that the solution to the per-antenna problem
arises naturally from a new interpretation of uplink–downlink
duality. In the existing literature, the beamforming duality and
the capacity region duality are derived using seemingly different
methods. This paper shows that they can be unified under the
framework of Lagrangian duality in convex optimization. This
novel viewpoint leads to a solution to the per-antenna downlink
problem as follows. We show that for both the beamforming
problem and the capacity region problem, the dual of a multi-an-
tenna downlink channel with per-antenna power constraints is
an uplink channel with an uncertain and diagonally constrained
noise. For the beamforming problem with one antenna at each
remote user, the SINR regions of the two respective uplink and
downlink channels are identical; for the capacity region problem
with an arbitrary number of antennas at the remote users, the ca-
pacity regions of the two respective channels are also identical.

The formulation of the dual of the per-antenna constrained
downlink problem as an uplink problem with an uncertain noise
also gives rise to numerical methods for solving the per-antenna
downlink problem. For the downlink beamforming problem, this
paper proposes two efficient numerical algorithms for finding the
optimal beamformers under the per-antenna power constraints:
an iterative approach that updates the dual uplink transmit and
noise covariance matrices in each iteration, and an interior-point
based algorithm that updates the transmit and noise covariance
matrices at the same time. For the capacity region problem, we
apply a Newton’s method for minimax optimization [16] that
finds an efficient search direction for the maximization and the
minimization parts of the problem simultaneously.

This paper makes the following assumptions in the problem
formulation. First, perfect channel knowledge is assumed to be
available at the transmitter. In a practical implementation, the
channel realization has to be estimated at the mobile stations and
fedback to the base-station. Second, only the single-cell case
is considered in this paper; out-of-cell interference is assumed
to be stationary; no multi-base-station joint beamforming is as-
sumed to be possible.

A. Related Work

The beamforming duality between the uplink and downlink
channels was discovered by Rashid-Farrokhi, Liu, and Tassiulas
[1] and Visotsky and Madhow [2]. They showed that the optimal
downlink beamforming problem under SINR constraints can be
solved efficiently by an iterative uplink beamformer and power
update algorithm. It is well known that the uplink beamforming
problem is much easier to solve [3]. Thus, by transforming the
nonconvex downlink beamforming problem into the uplink do-
main, the downlink problem may be solved efficiently as well. In
particular, [2] offered an optimality proof for uplink–downlink
duality based on an examination of the Karush–Kuhn–Tucker
(KKT) condition for the optimization problems. The conver-
gence proof for the iterative algorithm is based on the prop-
erties of fixed-point iteration. In a separate work, a different
approach to the same problem was provided by Schubert and
Boche [4], where an iterative algorithm was proposed to solve
not only the minimal transmit power problem for a fixed SINR,
but also the maximum minimal-SINR problem under a sum-
power constraint. In [5], the same authors also extended their
solution to include “dirty-paper coding.” In another different ap-
proach, Bengtsson and Ottersten ([6], [7]) introduced a semidef-
inite programming (SDP) framework for the downlink beam-
forming problem. They proved that despite the apparent non-
convexity of the problem, its SDP relaxation achieves the global
optimum of the original problem. In a recent work, Wiesel,
Eldar and Shamai [8] formulated the problem as a second-order
cone programming (SOCP) problem, and showed that the down-
link beamforming problem can be directly turned into a convex
problem. They further proposed a simple and fast fixed-point it-
eration algorithm for its solution. All of these above approaches
essentially solve the same problem: the downlink beamforming
problem with a sum-power constraint. The main point of this
paper is that uplink–downlink duality may be extended to down-
link problems with a per-antenna power constraints via a La-
grangian duality approach.

Recently, a great deal of progress has also been made in
characterizing the information-theoretical capacity region of
the downlink channel. Under a sum power constraint, Caire and
Shamai [10] showed that the so-called dirty-paper precoding
strategy [9] is optimal for the sum capacity of a downlink
channel with two transmit antennas. This result has since been
generalized for sum capacity but with an arbitrary number of
users and an arbitrary number of transmit and receive antennas
in [11]–[13], and for the entire capacity region by Weingarten,
Steinberg, and Shamai [14]. The sum capacity result in [11]
and that in [12] and [13], although equivalent, also have subtle
differences. The approach of [11] is based on a generalized
decision-feedback equalizer and is applicable to a downlink
channel with arbitrary input constraints, while the alternative
approaches in [12] and [13] establish the capacity result via
uplink–downlink duality, but only for the sum-power con-
strained case. Uplink–downlink duality here refers to the fact
that the dirty-paper region for the downlink channel and the
capacity region of the reciprocal uplink channel are the same
under a sum power constraint. An objective of this paper is to
generalize this capacity region duality to downlink channels
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Fig. 1. Uplink–downlink beamforming duality with per-antenna power constraints.

with per-antenna power constraints. The generalization of up-
link–downlink duality to a per-antenna power constrained case
has been undertaken in part, for sum capacity, in our previous
work [17]. This paper treats the entire capacity region.

B. Organization

The remainder of this paper is organized as follows. In
Section II, we consider the beamforming problem and establish
the duality between the downlink channel with per-antenna
power constraints and the uplink channel with an uncertain
noise. In Section III, we establish the same duality relation
for the capacity region problem with per-antenna power con-
straints. Several extensions and generalizations are treated in
Section IV. Numerical algorithms are proposed in Section V.
Simulation results are presented in Section VI. Conclusions are
drawn in Section VII.

Throughout this paper, we use upper-case bold face letters,
such as , for matrices and lower-case bold face letters, such as

, for vectors. All vectors are column vectors unless otherwise
stated. Further, is used to denote matrix inequality defined on
the cone of nonnegative definite matrices.

II. BEAMFORMING DUALITY

A. Channel Model

In this section, we investigate the multi-antenna transmitter
beamforming problem for a downlink channel with per-antenna
power constraints at the transmitter and where each remote
user is equipped with a single antenna. In this case, the channel
model (1) simplifies to the following: the received vector be-
comes a complex scalar, denoted by , and the channel matrix

becomes an complex vector, denoted as . This
channel model is also applicable to the multi-receive-antenna
case with fixed receiver beamforming vectors.

In a beamforming design, the transmit signal is of the form

(4)

where is a complex scalar denoting the information signal for
user , and is a beamforming vector for user . Without
loss of generality, let . The received signal is

(5)

where is the additive white Gaussian complex noise with vari-
ance on each of its real and imaginary components. It is
easy to see that the SINR for each user may be expressed as

SINR (6)

The SINR is directly related to system performance metrics such
as the bit error rate (BER) and data rate. For example, under
a fixed BER and assuming quadrature-amplitude modulation
(QAM), a practical achievable rate can be computed as

SINR
(7)

where is the SNR gap to capacity. The SNR gap is always
greater than 1 (0 dB), and it gives an approximate relation be-
tween the SINR and the rate [18]. The downlink beamforming
problem is illustrated in Fig. 1.

B. Duality With Per-Antenna Power Constraints

The focus of this paper is on the design of beamforming vec-
tors to minimize the per-antenna power on each transmit an-
tenna while enforcing a set of SINR constraints on each user.
One way to formulate such a per-antenna optimization problem
is to uniformly minimize the margin of over all an-
tennas, i.e.,

minimize (8)

subject to (9)

SINR (10)

where is a set of given SINR targets, and
is a set of given per-antenna power targets. This formulation
provides a single measure that reflects the individual transmit
power on each antenna.1

If the design objective were to minimize the sum transmit
power, the downlink beamforming problem could have been
easily solved via a dual uplink channel with the same SINR con-
straints [1]–[8]. In this paper, we revisit the notion of duality
and provide a derivation of uplink–downlink beamforming du-
ality based on Lagrangian duality in convex optimization. This
viewpoint not only illustrates the duality results of [1]–[8] in
a new perspective, but also allows the downlink beamforming
problem with per-antenna power constraints to be solved.

1Alternatively, one might formulate a problem to minimize the total power
subject to some individual per-antenna power constraints. Such a formulation
would lead to a different dual problem.
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We begin the development by restating the downlink beam-
forming problem as follows:

minimize (11)

subject to (12)

(13)

where denotes the -entry of a matrix, and (12) is the
per-antenna power constraint. The optimization variables are
and ; , , and are fixed. For the rest of this paper, we
make the assumption that the SINR constraints in (8) are such
that there exists at least one feasible solution. A rigorous dis-
cussion on feasibility can be found in [8]. Note that a constant
factor is included in the objective function [11] so that
the objective of the minimization is the total power.

The optimization problem as stated in (11) is not convex.
However, it has the following fundamental property.

Proposition 1: Strong duality holds for the optimization
problem (11). In other words, the Lagrangian dual of (11)
achieves the same optimal value as the original problem (11)
itself. The optimal duality gap is zero.

Strong duality is the fundamental reason that the apparently
nonconvex optimization problem (11) may be solved globally
and efficiently via its uplink dual problem. Strong duality has
been observed in [6] and [8] for the sum-power constrained
problem. The main idea of the proof is that the apparently non-
convex problem may be transformed into a convex problem. The
proof of strong duality for the per-antenna problem is similar
and is presented in Section A of the Appendix.

Because of strong duality, the optimal value of the downlink
problem can be found by solving for its dual. The main result
of this section is that this Lagrangian duality also leads to an
uplink–downlink duality. The dual channel in this case is still
constrained by the same SINR requirements, but it has an un-
usual noise whose covariance matrix is uncertain.

The uplink beamforming problem is illustrated in Fig. 1. The
dual uplink system is derived from the downlink system by in-
terchanging the input and the output vectors and by transposing
the channel matrices. In this case, each remote transmitter is
equipped with a single antenna and transmits with a power

(14)

In an uplink system with multiple antennas at the receiver,
the design objective of the receiver beamforming problem is
to jointly optimize the power allocation , and the receiver
beamforming vectors to satisfy a set of SINR constraints

. Let be the uplink receiver noise covariance matrix.
The uplink optimization problem may be posed as follows:

minimize

subject to (15)

We now state the main result of this section.

Theorem 1: The optimal downlink beamforming problem
(11) with per-antenna power constraints can be
solved via a dual uplink channel in which the SINR constraints
remain the same and the noise is uncertain. More precisely, the
Lagrangian dual of the downlink beamforming problem (11) is
the following minimax problem:

subject to

(16)

where is a diagonal matrix of per-
antenna powers, is the dual variable associated with the
SINR constraint, and is a diagonal
matrix of dual variables associated with the per-antenna power
constraints in the downlink problem. This dual problem can
be interpreted as an uplink problem (15) in which
is the dual uplink power, and the SINR constraints have to be
satisfied for all diagonal dual uplink noise covariance matrices

.
Proof: We first derive the dual of the downlink beam-

forming problem (11). With a simple manipulation of the SINR
constraints (13), the Lagrangian for the downlink optimization
problem (11) is given by

(17)

where ’s are the Lagrange multipliers corresponding to per-
antenna power constraints (12), and ’s are the Lagrange mul-
tipliers corresponding to SINR constraints (13).

Let and . Re-
arranging the terms of (17), we obtain

(18)

The dual objective is therefore

(19)

Since must be positive and there are no constraints on the
beamformer , it is easy to see that if

or is
not positive semidefinite. As and should be chosen such
that the Lagrangian dual is finite, the above two



2650 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 6, JUNE 2007

inequalities impose constraints on the dual objective function.
Formally, the Lagrangian dual problem can be stated as follows:

(20)

By strong duality, the optimal value of the original downlink
problem is the same as that of the dual problem.

Next, we show that this dual problem (20) is equivalent to
(16). We start by noting that (16) can be interpreted as an up-
link problem (15) if we identify as the dual uplink
power and as the dual uplink noise covariance.
Next, the minimization over in (16) can be solved explicitly
for fixed power and fixed noise covariance . Clearly,
the optimal receiver beamforming vector that maximizes the
SINR is the minimum-mean-squared-error (MMSE) filter.2 In
order to take into account the possibility that the noise covari-
ance matrix may not be strictly positive definite, we use a
general form of the MMSE filter as

(21)

where denotes the matrix pseudoinverse [19]. In fact, when
the noise covariance is low rank, the MMSE filter is not unique,
but a minimum-norm MMSE filter can always be found by the
above expression. When this minimum-norm MMSE filter is
used, the SINR constraints are always met with equality.

Now, by substituting the MMSE above into the SINR con-
straint in (16), we obtain the following constraint:

(22)

Next, we claim that the above SINR constraint may be reversed,
and the minimization over in the optimization problem (16)
may also be reversed as a maximization, so that (16) may be
rewritten as

subject to

(23)

The reversal of the SINR constraints and the reversal of the min-
imization as a maximization do not affect the solution to the
optimization problem (16), because, in an uplink problem, for

2The ŵ as expressed in (21) is optimal up to an arbitrary scaling factor.

each fixed noise covariance , the minimization of power
under a set of minimum SINR constraints and the max-

imization of power under a set of maximum SINR constraints
both require the SINR constraints to be met with equality, i.e.,

(24)

This implies that the optimal in both cases is just the unique
fixed point of the above equations [8]. Thus, (16) and (23) have
identical solutions due to the uniqueness of the fixed point.

Now, using Lemma 1, which is stated and proved in Section
B of the Appendix, the SINR constraint in (23) can be shown to
be equivalent to

(25)

Note that this is exactly the SINR constraint in (20). Thus, once
interpreted as an uplink problem, (16) may be rewritten as (20).
Therefore, the Lagrangian dual of the downlink beamforming
problem (11) is equivalent to (16), an uplink beamforming
problem with an uncertain noise.

Corollary 1: At the optimum, the uplink problem (16) and
the downlink problem (11) have the same objective value

(26)

Proof: The corollary follows directly from Proposition 1
and Theorem 1. As the uplink problem (16) and the downlink
problem (20) are Lagrangian duals of each other, and since
strong duality holds, the optimal values of the two problems
must be the same.

Note that in certain degenerate cases, the per-antenna power
constraints in (16) are not met with equality. An example
of this is the following 2-user channel with ,

, , , , and . In this
case, the power constraint is not tight, and strictly speaking,
the optimal downlink beamformers ’s are also not unique, as
mentioned earlier (but the minimum-norm MMSE is always
unique.) In the dual uplink channel, the nonuniqueness is re-
flected in the fact that the dual variable is not strictly positive
definite, and that the MMSE filter is not unique. However,

is always an upper bound on the minimum transmit power,
i.e., .

Corollary 2: The optimal beamforming vectors for the uplink
problem (16) and for the downlink problem (11) are the same
up to a scaling factor. Let the optimal be as in (21). Then,
the optimal where may be found by a matrix
inversion

(27)

where the matrix is defined as follows:
and for , and is an

all-one vector.
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TABLE I
PRIMAL AND DUAL VARIABLES IN BEAMFORMING DUALITY

Proof: To find the optimal , we take the gradient of the
Lagrangian for the downlink problem (18) with respect to
and set it to zero

(28)

To obtain an expression for , add to
both sides of the equation and solve for

(29)

Note that is a scalar. Comparing this expression for
with the expression for as in (21), we see that
where . However, this expression
for depends on itself. To find ’s in terms of ’s, which
are available from the uplink channel [i.e., (21)], we note that the
SINR constraints (13) must be all active at the global optimum
point. So

(30)

Substituting into the above, we obtain a set of
linear equations with unknowns , which can

be solved by an inversion of the matrix defined earlier. The
matrix inverse exists because the original optimization problem
is assumed to be feasible. This solution for , combined with
(21), gives an explicit solution of the downlink beamforming
problem via its uplink dual.

It is interesting to compare the structures of the uplink opti-
mization problem (16) and the downlink problem (11). It is clear
that the Lagrange multipliers corresponding to the SINR con-
straints in the downlink problem play the role of the noise co-
variance in the uplink problem. The Lagrange multipliers cor-
responding to the per-antenna power constraints in the downlink
problem play the role of noise covariance matrix in the uplink.
This correspondence between the primal and dual variables en-
hances and generalizes the previous sum-power duality as in
[1]–[8]. The duality relation is summarized in Table I.

C. Beamforming With Dirty-Paper Coding

In the formulation of the downlink beamforming problem
so far, multiuser interference is regarded as noise. However,
from an information theoretical point of view, it is possible
for a downlink transmitter to presubtract interference using a

technique called “dirty-paper coding.” The theoretical basis
for dirty-paper coding is due to Costa [9], who proved that
the capacity of a Gaussian channel with interference known
noncausally at the transmitter is exactly the same as if the
interference does not exist. Dirty-paper may be implemented
in practice using Tomlinson–Harashima precoding-like tech-
niques [20], [21]. Dirty-paper precoding at the transmitter
for the downlink is akin to interference cancellation at the
receiver for the uplink. In fact, a duality result can be formally
established.

To implement dirty-paper coding, some prior presubtraction
order must be fixed. Without loss of generality, let us suppose
that the encoding order is , i.e., user 1, as the first
user to be encoded at the transmitter, sees all other users as inter-
ference; user 2 is the second to be encoded with user 1’s inter-
ference subtracted, etc.; user has all other users’ interference
subtracted. In this case, the SINR constraint becomes

(31)

With a fixed ordering, [5], [13], and [15] showed that up-
link–downlink duality continues to hold with a sum power
constraint. The generalization of this result to the per-antenna
power constrained case is straightforward.

Corollary 3: Under a fixed subtraction order, the dual of
the optimal downlink beamforming problem with dirty-paper
coding and with per-antenna power constraints at the transmitter
is exactly the optimal uplink beamforming problem with succes-
sive interference cancellation and with an uncertain noise at the
receiver. More precisely, the dual of the downlink problem (11)
with an SINR expression replaced by (31) is the uplink problem
(16) with the SINR expression replaced by

(32)

Further, the uplink and downlink beamforming vectors are the
same up to a scaling factor.

III. ACHIEVABLE RATE REGION DUALITY

In the beamforming problem, we fix the SINR constraints
and minimize the transmit power. In many cases, it is advanta-
geous to reverse the problem and consider instead the maximiza-
tion of achievable rates subject to a fixed transmit power con-
straint. Traditionally, the beamforming problem and the rate-re-
gion problem have been treated independently in the literature.
In this section, we show that these two are intimately related and
uplink–downlink duality extends naturally to the achievable rate
region. In fact, duality is also applicable to the case where re-
mote users are each equipped with multiple receive antennas.

A. Single-Receive-Antenna Case

Consider first the scenario in which each remote user is
equipped with a single receive antenna. In this case, the beam-
forming results stated in the previous section can be directly
translated to achievable rate region results, because the rate
is directly related to the SINR by SINR .
Define the beamforming achievable rate region of a downlink
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channel under a power constraint as the set of for
which there exists a set of beamformers that satisfy the power
constraint and have their corresponding SINR’s achieving the
rates. Theorem 1 implies that the beamforming achievable rate
regions of the uplink and downlink are identical, and Corollary
3 implies that the same is true with dirty-paper coding for
each fixed encoding order. Further, since the achievable rate
region duality holds for every order, the uplink and downlink
rate regions under all possible orders, which are the unions
of respective rate regions over all possible orders must
also be the same. Since it is known that with the use of
capacity-achieving codes dirty-paper coding and successive
interference subtraction achieve the capacity regions of the
downlink and uplink channels respectively, as an immediate
consequence of Corollary 3, we also have the capacity region
duality. Capacity region duality has been previously proved
under the sum power constraint in [12], [13], and [15] using
a very different proof technique. From the preceding develop-
ment, it is clear that capacity region duality may be derived
naturally from beamforming duality. Further, it is also possible
to extend the duality to the per-antenna power constrained case.

Proposition 2: The beamforming achievable rate region of a
downlink channel with one antenna at each remote user and with
per-antenna power constraints on the transmit an-
tennas is exactly the same as the beamforming achievable rate
region of a dual uplink channel with a sum power constraint

across all the users and with an uncertain noise whose
covariance matrix is diagonal and satisfies

. This is true under any SNR gap . In particular, the ca-
pacity regions of the two channels are also the same.

B. Multiple-Receive-Antenna Case

The main motivation for considering the rate region duality
rather than the SINR duality is that the concept of rate region al-
lows a generalization of duality to uplink and downlink channels
with multiple antennas at the remote users. Toward this end, we
first define a beamforming achievable rate region for the mul-
tiple receive-antenna channel, then extend the result to the ca-
pacity region.

1) Achievable Rate Region Duality: Consider the general
multi-antenna downlink channel modeled in (1)

(33)

We define the beamforming achievable rate region of the down-
link as follows. In a beamforming design, each receiver employs
a set of beamformers to create independent data
streams

(34)

where the beamformers ’s are unit-norm vectors.
The transmitter employs beamformers, denoted as

(35)

where is a scalar denoting the information signal for the
th user and th data stream. Let .

Without interference subtraction, the SINR for the th user
and th data stream is

SINR (36)

The achievable rate for user is then

SINR
(37)

The beamforming achievable rate region for the downlink is the
set of satisfying the power constraint.

A similar beamforming achievable rate region may be defined
if dirty-paper coding may be implemented. In this case, by fixing
a total ordering over the doubly indexed , the SINR may
be defined as

SINR (38)

where denotes the condition that either ,
or and . Clearly, the achievable rate region with
dirty-paper coding is larger than that with beamforming alone.
Also, both achievable rate regions depend on . As will be seen
later, the dirty-paper region becomes the capacity region when

dB. We now state the main theorem of this section.
Theorem 2: The beamforming achievable rate region of

a downlink channel under a fixed set of per-antenna power
constraints is identical to the achievable rate
region of a dual uplink channel with a sum power con-
straint across all the users and with an uncertain
noise whose covariance matrix is diagonal and satisfies

. This uplink–downlink duality holds
either with or without dirty-paper coding and successive in-
terference subtraction. This uplink–downlink duality holds
for channels with an arbitrary number of transmit and receive
antennas, and for any SINR gap .

Proof: Trivially, if the set of receiver beamformers
are fixed, then the downlink channel reduces to the single-re-
ceive antenna case discussed in the previous section for which
each different data stream becomes a virtual user and up-
link–downlink duality holds. In other words, under a fixed
transmit power constraint and a fixed set of ’s, the sets
of achievable SINR ’s for the uplink and downlink are the
same. Since the SINR is related to rate by (37), the achievable
rate regions for both the uplink and downlink channels are also
the same. Note that in the dual uplink channel, becomes
a transmit beamforming vector.

Now, the true achievable rate regions for both the uplink and
downlink are the unions of achievable rate regions over all pos-
sible ’s (and all possible ordering if dirty-paper
coding is used.) Therefore, the true beamforming achievable
rate regions for the uplink and downlink channels must also be
the same. This is true for any arbitrary number of transmit and
receive antennas, for any arbitrary gap , and with or without
dirty-paper coding.
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Fig. 2. Achievable rate region duality with per-antenna power constraint.

2) From Achievable Rate Region Duality to Capacity Re-
gion Duality: We are now ready to relate the beamforming
achievable rate region to the information-theoretical capacity
region for a multi-antenna channel. One would expect that with
dirty-paper coding and successive decoding and with dB,
the beamforming achievable rate region would be the capacity
region. While such a result appears intuitive (and indeed is true),
several steps are needed to prove it rigorously.

Consider first the single-user case . The infor-
mation-theoretical capacity of the vector Gaussian channel is
achieved with a water-filling covariance matrix for . The op-
timal transmitter is just the set of left-singular vectors of . The
optimal receiver is just the set of right-singular vectors of .
The singular vectors are exactly beamformers with which the
vector channel is diagonalized into a set of parallel channels.
Clearly, when dB, the beamforming strategy is capacity
achieving.

However, for a multiuser channel, boundary points of the
capacity region are not necessarily achieved with water-filling
covariance matrices. In this case, the information theoreti-
cally optimal transmission strategy is not a diagonalization
of the effective channel by each user. Nevertheless, transmit
and receive beamforming with interference cancellation and
zero gap is still capacity achieving. This is true because of
the following. First, any arbitrary transmit covariance matrix
can be synthesized using the eigenvectors of the covariance
matrix as the transmit beamformers, i.e., , where

is a matrix of beamforming vectors, and contains the
information bits. Second, information in can be recovered
at the receiver via a set of MMSE receive beamformers with
interference subtraction. This is because

, and
each of is achievable with MMSE re-
ceiver beamforming and interference subtraction [22, 8.3.4].
Therefore, beamforming with interference subtraction and with
scalar zero-gap error correcting codes is capacity achieving. A
similar argument can be made for dirty-paper coding. This fact
provides a link between information theoretical capacity region
and the beamforming region for the downlink channel.

Corollary 4: The capacity region of a downlink
channel under a fixed set of per-antenna power constraints

is identical to the capacity region of a dual
uplink channel with a sum power constraint across all
the users and with an uncertain noise whose covariance matrix

is diagonal and satisfies . This

capacity region duality holds for channels with an arbitrary
number of transmit and receive antennas.

Proof: Based on results in information theory, it is known
that the capacity region of a Gaussian multi-antenna multiple-
access channel can be achieved with successive interference
cancellation and that the capacity region of a Gaussian multi-
antenna broadcast channel can be achieved using dirty-paper
coding [14]. Each successive cancellation or dirty-paper coding
step involves a Gaussian vector channel with colored noise.
Now, as mentioned earlier, the vector channel capacity can be
achieved with beamforming and scalar successive-decoding or
dirty-paper-coding with zero-gap codes. Thus, the capacity re-
gion coincides with the beamforming achievable region with
zero gap. Since duality holds for the beamforming achievable
region by Theorem 2, it must also hold for the capacity region.

Fig. 2 illustrates the achievable rate region duality between
the uplink and downlink channels. Corollary 4 states that the
capacity region for the broadcast channel can be computed by
solving the following optimization problem corresponding to
the dual uplink channel. Let be the transmit covariance matrix
for user in the dual uplink; let be
weights characterizing different boundary points of the capacity
region. The dual problem is

(39)

subject to (40)

(41)

(42)

where . This dual problem is concave in
’s and convex in , a fact which significantly simplifies the

original downlink capacity region computation problem.
The capacity region duality under a sum-power constraint has

been previously stated in [12], [13], [15]. The proof technique in
the previous work (i.e., [13]) relies on a so-called “channel-flip-
ping formula,” which, for each set of uplink transmit covariance
matrices, finds a set of corresponding downlink covariance ma-
trices, and vice versa. Theorem 2 of this paper shows that duality
is more general, as it applies to the dB case and to the
per-antenna power constraints as well.
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When specialized to the dB case, Theorem 2 and
Corollary 4 also give a new derivation of the channel-flipping
formula. Each set of transmit covariance matrices (in either
uplink or downlink) defines a set of transmit and receive
beamforming vectors. The correspondence between uplink and
downlink beamformers immediately gives the corresponding
covariance-matrix transformation between the uplink and the
downlink.

Theorem 2 also holds if we restrict the transmission for each
user to include only a fixed number of data streams. For ex-
ample, each receiver in the downstream may be restricted to use
only a single beamformer. In this case, duality still holds. Du-
ality in this special case has been observed for the beamforming
case in [23] and for the dirty-paper coding case in [24], and it
leads to iterative methods of updating the transmit and receive
downlink beamformers. Although such an iterative algorithm
may not necessarily converge to the global optimum, it provides
an efficient way of obtaining a set of locally optimal transmit
and receive beamformers.

IV. GENERALIZED PER-ANTENNA POWER CONSTRAINT

A. Power Constraint Per Groups of Antennas

The results presented so far focus on a downlink channel with
a power constraint on each antenna. As an extension, this section
considers the case in which transmit antennas are partitioned
into groups and a power constraint is imposed on a per-group
basis. A duality for this more general case can be similarly de-
rived.

Corollary 5: Let be a set partition of
. Suppose that a power constraint is applied

to each group of antennas , i.e., for each

(43)

Then, the dual of this downlink problem is an up-
link channel with an uncertain noise. In this case,
the noise covariance is a diagonal matrix of the form

, in which
each is repeated exactly times, and the noise constraint
is . This duality holds for both the
beamforming case under the same set of SINR constraints
(with or without dirty-paper coding) and for the achievable
rate region case in which a sum power constraint is
applied to the dual uplink channel.

The proof of this result is a straightforward generalization
of previous proofs. When , we recover the per-antenna
power constrained case; when , we recover the sum-power
constrained duality.

B. Duality for Frequency-Selective Channels

We now extend the duality result to frequency-selective
downlink channels with per-antenna power constraints. As-
sume a multi-input, multi-output orthogonal frequency-division
multiplex (MIMO-OFDM) system which diagonalizes the
channel by dividing the frequency band into parallel inde-
pendent MIMO subchannels. Let denote the th user’s

channel in frequency band , where . A separate
beamformer is assigned for each frequency subchannel, for
each user and for each data stream at the transmitter, i.e.,

(44)

The receiver also uses a separate beamformer for each data
stream and for each frequency subchannel. The power constraint
is applied to each transmit antenna over the entire frequency
band, i.e.,

(45)

The extension of the duality theorem to this case is again rel-
atively straightforward. We state the following result without a
proof.

Corollary 6: The dual of a downlink frequency-selective
channel with a per-antenna power constraint (45) is an up-
link frequency-selective channel with a sum-power constraint

, in which the noise covariance on each frequency
subchannel is identical and is constrained to be in the convex
set: . This duality holds for both the
beamforming case under the same set of SINR constraints
(with or without dirty-paper coding) and for the achievable rate
region case.

It is interesting to note that the structure of this per-antenna
duality relation is markedly different from previous studies on
the capacity region duality of broadcast and multiple-access
fading channels under the sum power constraint [12].

V. NUMERICAL ALGORITHMS

The main motivation for establishing the duality between the
uplink and the downlink is that the uplink input optimization
problem is more amenable to numerical computation in many
instances. In this section, we provide numerical algorithms to
solve the downlink problem for two such cases.

First, we consider the downlink beamforming problem with
a single antenna at each remote user. Under a sum power
constraint, the dual uplink beamforming problem in this case
can be solved using algorithms that update the power allocation
and beamforming vectors iteratively [1]–[4]. The efficiency of
such updates has been further improved in [8]. The optimal
beamforming problem is even simpler when dirty-paper coding
is used [5]. Although, in theory, the downlink beamforming
problem can also be transformed into a semidefinite program-
ming problem, direct iterative updates are in general more
efficient.

Second, we consider the computation of the downlink ca-
pacity region for the multi-receive-antenna case. Although the
achievable rate region for both the uplink and downlink prob-
lems is in general difficult to solve when interference subtrac-
tion is not used or when the SNR gap dB, when the SNR
gap dB, the uplink capacity region problem is tractable.
The weighted sum rate expression in this case is a convex func-
tion of transmit covariance matrices. This leads to an efficient
solution to the downlink capacity region problem as well.
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A. Iterative Algorithm for Downlink Beamforming

We first focus on the optimal per-antenna power constrained
transmit beamforming problem for a downlink channel with one
antenna at each remote user. In this case, Theorem 1 allows us
to solve this downlink problem (11) by solving a dual uplink
problem with an uncertain noise (16). This dual problem may
be solved by iteratively computing the inner minimization on

and the outer maximization on . Consider the fol-
lowing subproblem of (16) with a fixed

(46)

The main idea is that can be easily computed via a fixed-
point algorithm previously proposed for uplink beamforming
with a fixed noise covariance (e.g., using the method of [8] in
Steps 1 and 2 shown below.) Then, the outer maximization of

may be solved via a subgradient projection algorithm,
where the subgradient may be found using the downlink beam-
formers obtained from the optimal uplink beamforming vectors.

Proposition 3: The function is concave in . Fur-
ther, is a subgradient of , where is
the optimal downlink beamforming vector, which can be found
using the algorithm in Corollary 2.

The proof of the proposition is provided in Appendix C.
The use of as a subgradient for is
intuitive, because is the Lagrangian multiplier for the
per-antenna power constraints in the downlink. We propose
the following algorithm based on the Euclidean projec-
tion of the subgradient of on the constraint set

. This subgradient
projection method is guaranteed to converge to the global
optimum of , since is concave [25]. The proposed
algorithm is summarized as follows.

0) Initialize . Set ,
1) Fix . Solve the subproblem by first
finding the fixed-point of the following equation by
iterative function evaluation [8]:

2) Find the optimal uplink beamformers based on the
optimal uplink power allocation

3) Update the downlink beamformers by
where as defined in Corollary 2.
4) Update using the subgradient projection method
with step size

5) Set and return to Step 1) until convergence.

B. Interior-Point Algorithm for Downlink Beamforming

In this section, we develop an alternative interior-point algo-
rithm for the optimal downlink beamforming problem (11). The
idea is to solve its Lagrangian dual problem (20) directly using
an interior-point method. Note that the first set of constraints in
(20) is a linear matrix inequality constraint, which can be han-
dled by introducing a logarithmic barrier [16]

The second set of constraints are equality constraints, which
can be handled directly. Thus, the new optimization problem
becomes

(47)

where is the magnitude of the barrier. It can be shown that the
above optimization problem is concave in and , since the

function is concave on the set of positive semidefinite ma-
trices. The algorithm and the convergence analysis are standard.

C. Interior-Point Algorithm for Capacity Region Computation

In general, the achievable rate region maximization problem
for a downlink channel with multiple receive antennas is a
difficult problem. However, when the SNR gap dB,
finding the capacity region for the downlink is tractable. In
particular, as shown in Corollary 4, the capacity region of a
multi-antenna downlink with per-antenna power constraints

is the same as that of the dual uplink, which is a
multiple-access channel with a capacity expression (39) that is
concave in and convex in .

One possible way of solving a minimax problem is to iterate
between the minimization and the maximization. However, con-
vergence is difficult to guarantee for such an algorithm. In this
section, we propose the use of a novel infeasible-start Newton’s
method [16] that solves the maximization and the minimization
at the same time. The key ingredient here is a novel stopping cri-
terion that allows the iterative algorithm to approach the saddle
point of the minimax problem directly.

As a first step, write ’s and as vectors, and call them
and , respectively. This is automatic for , which is

already diagonal. For an matrix , we pack the upper
triangular entries into the vector . Recog-
nizing that the inequality constraints (40) are always satisfied
with equality, i.e., and ,
solving (39) is now equivalent to solving

(48)
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where the positive semidefinite constraints are omitted for now,
denotes the objective function in (39) and matrices and

represent the linear trace constraints (40) and (41).
Our algorithm is based on solving the KKT condition for the

minimax optimization (39) as follows:

(49)

(50)

(51)

(52)

where and are Lagrangian multipliers associated with
the equality constraints and , re-
spectively. For notational convenience, is used to denote

, and likewise for . Since the minimax optimization
problem (39) is convex–concave, the KKT condition is suf-
ficient and necessary for optimality. We define the residual

in a vector form. Thus, a solution
is a global optimum if and only if the residual

. This observation enables us to solve for
the root of the residual directly. Toward this end, we approx-
imate as a linear function using its gradient,
and solve the equation as if it is linear. The update of

can then be stated as

(53)

More explicitly, the above equation can be written as

(54)

where the square matrix above is known as the KKT matrix. The
search direction is found via a matrix
inversion.

The search direction derived above is actually a Newton’s di-
rection for both the minimization and the maximization at the
same time. This observation is made in [16]. One way to in-
terpret the search direction defined by (53) is that the minimax
problem is being approximated by a quadratic minimax problem
at each step, and the Newton’s step represents a direction toward
the saddle-point of the quadratic approximation. Note that un-
like the conventional Newton’s method, where the value of the
objective function can be used to ensure that the behavior of
the algorithm is monotonic, for minimax problems, a different
metric is needed. The natural metric in our case is the norm of
the residual, which can be used in the backtrack line search and
as a stopping criterion.

The derivation so far assumes that the optimal ’s and
are strictly positive definite. In general, the positivity constraints
need to be taken into account in the interior-point method [16]

via a logarithmic barrier. More specifically, let
be the barrier function and define

(55)

then the earlier derivation follows with replaced by . The
optimal solution for will approach the optimal solution for
with a gap .

We now summarize the interior-point algorithm for the min-
imax problem. The algorithm is guaranteed to converge to the
global optimum. A detailed convergence analysis follows from
the analysis in [16].

0) Initialize , , , , and .
1) Compute the search direction
using (53) based on the current , , , and .
2) Set

.
Use backtracking line search with parameter to find the
scalar so that

3) If , increase the magnitude of the barrier
function by scaling with a constant factor .
4) Stop if the gap is less than the tolerance
, or equivalently, if is sufficiently large. Go to Step

1 otherwise.

VI. SIMULATIONS

In the first set of simulations, we justify the use of the per-an-
tenna power constraint. Consider a downlink channel with

transmit antennas and receivers each equipped with
antenna. Suppose that each transmit antenna is capable

of transmitting a maximum power of 1/3 W. The channel ma-
trix is drawn from an i.i.d. Gaussian distribution with mean 0
and variance 1. Using the uplink–downlink duality results de-
rived in this paper, we can easily solve for the sum capacity
in such a downlink channel under either the per-antenna power
constraints or a sum power constraint .
Fig. 3 illustrates the optimal transmitting power on one of the an-
tennas for 100 different channel realizations under each type of
constraints. Under a sum power constraint, the optimal transmit
power fluctuates widely, and may be as high as 0.7 W. If one
uses a naive strategy of transmitting independent symbols on
each antenna with equal power, the resulting data rate would be
significantly lower than the optimized strategy.3

Next, we present simulation results for the convergence be-
havior of the numerical algorithms proposed in Section V. First,
we compare the performance of the iterative algorithm and the
interior-point algorithm for the optimal downlink beamforming
problem proposed in Sections V-A and V-B. The same downlink
channel as in the previous simulation is used, but with

3It is possible to derive heuristics that work well. For example, it is possible
to solve the sum-capacity optimization problem first, then scale the resulting
transmit power and their correlations to obtain an approximate solution.
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Fig. 3. Optimal transmit power on the first antenna for a downlink channel
with three transmit antennas and with a sum power constraint across the three
antennas over 100 channel realizations. The transmitting power is normalized
so that 0 dB corresponds to 1/3.

Fig. 4. Convergence behavior of the iterative algorithm, the interior-point algo-
rithm, and a hybrid algorithm for the optimal downlink beamforming problem
with ten transmit antennas and ten users with one receive antenna each. Here,

kw �w k versus the number of iterations is plotted.

users and transmit antennas. The SINR targets are set to
be for all receivers. The iterative algorithm uses a square
summable step size for the subgradient update. The
interior-point algorithm uses a logarithmic barrier function. In
Fig. 4, the Euclidean norm distance between the optimal beam-
former and the beamformer at the th iteration is plotted against
the number of iterations. As illustrated in Fig. 4, the iterative
algorithm is more efficient at the beginning, whereas the in-
terior-point algorithm performs better as the power vector ap-
proaches the optimum.4 We note that it is also possible to use a
hybrid algorithm that first performs the iterative algorithm for
a fixed number of iterations to obtain an approximate solution,

4The comparison is not entirely fair since the complexity per iteration for the
two algorithms is different. However, the comparison between rates of conver-
gence is still meaningful.

Fig. 5. Convergence behavior of the interior-point algorithm for capacity re-
gion computation for a downlink channel withN = 5 transmit antennas,K =

20 users, andM = 2 receive antennas for each user. The sum capacity versus
the number of iterations is plotted.

then switches to the interior-point algorithm to obtain a high
numerical accuracy. The performance of this hybrid method is
also shown in Fig. 4. The hybrid algorithm is observed to be
very efficient.

Finally, we illustrate the convergence of the interior-point
algorithm presented in Section V-C for solving the downlink
channel capacity region problem. In this scenario, a base sta-
tion with transmit antennas and users with

antennas each is simulated. The tolerance is set to be
. The interior-point method parameter is set to 5,

and backtracking line search parameters are set to be ,
and . The sum capacity versus the number of iterations
is plotted in Fig. 5. The algorithm is numerically well behaved.

VII. CONCLUSION

This paper illustrates an uplink–downlink duality for the
multi-antenna downlink channel under the per-antenna power
constraint. For the downlink beamforming problem under a
fixed SINR constraint, we show that the dual of the downlink
is an uplink channel with an uncertain noise. The same duality
relation also holds between the achievable rate regions of the
respective uplink and downlink channels. These duality results
are based on an interpretation of uplink–downlink duality via
Lagrangian duality. Uplink–downlink duality is useful because
the downlink optimization problem can be solved more effec-
tively in the dual uplink domain.

APPENDIX

A. Proof of Proposition 1

We prove in this appendix that strong duality holds for the
downlink beamforming problem (11). The main idea is to use
the technique in [8] to transform the problem into a second-order
cone programing problem.

First, observe that an arbitrary phase rotation can be added to
the beamforming vectors without affecting the SINR. Thus, if
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is optimal, then so is . Without loss of gener-
ality, we may then choose so that is real.

Next, let be a matrix of beamforming
vectors. The SINR constraints can be written as

(56)

where denotes the Euclidean vector norm. Because
can be assumed to be real, we may take square root of

the above equation, the constraint becomes a second-order cone
programming constraint [16], which is convex. Now, the down-
link beamforming problem (11) may be rewritten as

(57)

(58)

(59)

Since both the optimization objective and constraints are
convex, strong duality holds.

In addition, we also prove in this appendix that the Lagran-
gian dual of the convex form of the problem (57) is the same as
the Lagrangian dual of the original form of the problem (11).5

The Lagrangian of (57) is given by

(60)

Let . The dual objective is therefore

(61)

Since strong duality holds, maximized over and
reaches a maximum at the optimal value of the primal problem
(57). To compute , let

(62)

5In general, an optimization problem may be written in several equivalent
ways, each of which may lead to a different dual.

Then, the last term in (60) can be rewritten as

Substituting this into the Lagrangian, we obtain

(63)

where . Note that is lower bounded by
and is strictly positive. Since the only constraint for maxi-

mization on is that , we can change the optimization
variable to . Under this change of variable, the La-
grangian of the convex form of the optimization problem (57)
is then exactly the same as the Lagrangian of the original form
of the optimization problem (11) [as expressed later in (18)].
Therefore, the dual problems of the two equivalent forms [i.e.,
(57) and (11)] must also be the same. [A derivation of the La-
grangian (18) can be found in Section II-A. The dual problem
is shown in (20).]

B. Proof of Lemma 1

Lemma 1: Let be an symmetric positive semidefinite
matrix and be an vector. Then, if and only

.
Proof: We first prove the Lemma with the additional as-

sumption that is strictly positive definite. This assumption
will be removed later. First, assume . Using the prop-
erty of matrix determinant, we obtain

(64)

(65)

(66)

This establishes the necessary condition . To
prove sufficiency, choose an ; we can show that

(67)

(68)
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(69)

(70)

where (68) follows from the matrix inverse lemma, and the last
step uses . By letting , we obtain

. This establishes the Lemma under the assumption
.

Next, if is positive semidefinite with ,
then there exists an unitary matrix , such that

, where represents the first rows of
. Note that in the forward direction, if , then it is

easy to see that must be of the form . In the
reverse direction, the second half of may be set arbitrarily
without affecting . Thus, without loss of generality, we
may regard . Then

where the third step follows from the positive definite case dis-
cussed earlier. This completes the proof of the Lemma.

C. Proof of Proposition 3

We prove in this appendix that the function is concave
in , and is a subgradient of . First,
the concavity of follows directly from the fact that
is the objective function of a dual problem, which is always
concave. The following several steps verify this directly.

Transform into the downlink domain using the beam-
forming duality

(71)

where is the corresponding downlink beamformer.
Let and be two positive semidefinite matrices. We use

to denote the optimal beamformer for , To
verify concavity, we have

SINR

By definition, for a concave function , is a subgradient
of at if for all .
Now

where the last step follows because is diagonal. Thus,
is a subgradient of .
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