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Psychoph ysica l methods, or how
to measure a threshold , and why

BART FARELL and DE IS G. PELLl

5 .1 Introduction
This chapter explains how to measure visual effects. Psychoph ysical method s are
usually described in a historical context , sta rting with Weber, Fechner , and Wundt in
the 1800s and the development of the theor etical found ations; here we take a practi­
cal approach , focusing on what is most useful to know. Drawing conclusion s about
visual perception is difficult-not all questions are answerable. Psychophysics only
considers questions that can be answered by measuring an observer's performance of
a visual task . The art of psychophysical measurement is to channel one's curiosity
into designing a question that retains the motivating interest and yet can be convinc­
ingly answered by measuring task performance. This chapter describes those tasks
and measures that have proven to be most useful in vision research , and explains
what kinds of question they answer.

Consider the complications in what might seem the simplest question, 'Do you see
it?' One can simply presen t visual signals and put the question directly to the
observer. But, on reflection, are we really interested in whether the observer says
'yes' , or are we interested instead in whether the observer can prove that he or she
has seen the signal, e.g. by correctly identifying it or locating it in time or space? In
either case, when we collect the responses we find that the answer is probabilistic : in
practice one measures the probability of each kind of allowed response to the signal.
But then what does one do with these probab ilities? Such complications need to be
carefully considered on an experiment-by-experiment basis, but we will share with the
reader the guidance offered by existing theory and practical experience about the
most generally useful approaches to the most commonl y encountered experimental
problems.

5.2 Threshold
Prob ability measures of task performance , e.g. proportion correct, are usually much
harder to interpret than the physical parameter s of the stimulus. For example, theor­
ies of visual acuity directly relate known optical and anatomical propert ies of the
eye-ph ysical parameters -to the size of identifiable lellers of an eye chart -s-another
physical parameter-but would require speculative ancillary assumptions in order to
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predict the proportion correct. Consequentl y, the experimenter will almost always
want to measure a 'threshold' . Threshold is the strength of the signal, as controlled
by a particul ar stimulus dimension , that is requir ed to attain a given level of ta sk
performance .

Fund amentally, there are two kinds of task that are used to obtain thresholds:
adjustment and classification (Pelli and Far ell, 1995). In adj ustment tasks the
observer is asked to adjust a knob controllin g the stimulus to achieve some verbally
described criterion, e.g . 'so you can just barely see it ' or 'so it matches the standard
stimulus ' . Here, the observer directly sets the physical parameter of the stimulus. In
classification tasks the observer is merely asked to identify the signal by placing it in
one of a number of predetermined categories, e.g. 'is the screen displaying a pattern
or a blank?' or ' is the test stimulu s larger or smaller than the standard?' Repeated
testing of the classification of a set of stimuli varying in signa l strength measures the
propor tion of the identification respon ses to each stimulus that were correct, but it is
usually most useful to find the thre shold value of the stimulus parameter that would
yield a certa in prop ortion correct. So, in practice, both adjustment and classification
tasks are used to estimate the threshold value of the signal parameter, i.e. the value
that achieves a specified criterion, subjective in the case of adjustment, objective in
the case of classification.

Thu s, while one can imagine a wide variety of questions that might reasonably be
asked to obtain a measure of psychoph ysical performance, the most useful method s
that curr ent vision science has to offer, and the most widely practised , are those that
measure threshold.

5,3 Adjustment
In the days when vision research labs used analog function generators to synthesize
their stimuli, it was very easy to continuou sly display a stimulus while adjusting it.
Today , digital computers synthesize a vastly greater range of images to be used as
stimuli, but , unfortunately, it takes some effort to get a computer dynamically to
recompute the stimulus in response to the observer's adjustments. Nevertheless , com­
puters are getting faster, and there are shortcut s to synthesizing certain stimuli. When
feasible, adju stment tasks offer a quick direct measurement of a subjective match
between the variable stimulus and a standard. Because of the subjective natur e of the
adjustment settings, this method is ideally suited for experimenters using themselves
as observers, allowing them to quickly experience the full range of effects of a stimu­
lus parameter on appearance.

When testing others, the instru ctions given to the observer are crucial. They are so
crucial that if a published experiment relies on the method of adjustment, then the
discussion section should convince the reader that the instructions used indeed bear
on the aspect of perception that is the nominal topic of the paper. Ma tching instruct­
ions are particul arly easy for observers to und erstand and are the most commonly
used. In the matching paradigm , there are two objects, a standard and a test, and the
observer is asked to adjust the test object to 'match' the standard. The criterion for
matching is all import ant-what one asks the observer to do and what the observer
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actually does are not at all the same thing-and should not only be conceptually
clear, but also, if at all possible, perceptually salient. For this reason, a particularly
effective matching instruction is 'nulling'. This applies to cases where one presumes
that the observer understands what the stimulus 'ought' to look like when it is 'undis­
torted ' or 'neutral' and adjusts it to achieve that appearance. For example, adjusting a
patch to eliminate any colour or motion or pattern; or adjusting a line to be straight.

Consider the influence of form on brightness and how it might be quantified by
brightness matching . Benary (1924) and Adelson (1993) showed that the brightness
of a surface depends on the perceived object structure. They presented two fairly
similar images made up of contiguous uniform patches arranged to produce different
three-dimensional interpretations: one patch in one image was adjustable, and the
observer was asked to adjust its luminance to match the brightness of a particular
patch in the other image. To explain brightness, as opposed to lightness, Adelson
asked his observers to 'judge the shade of ink on the page' rather than make any
inference about the surfaces of the objects portrayed.

In an effective use of the nulling technique, Cavanagh and Anstis (1991) employed
motion nulling to measure the contribution of colour to the perception of motion.
They showed observers a rightward-moving luminance grating superimposed on a
leftward-moving chromatic grating. The observers adjusted the contrast of a second
luminance grating , moving leftward in phase with the chromatic grating, to null the
motion of the entire pattern. The difference between the contrasts of the leftward
and rightward luminance gratings is then a measure of the contribution of colour to
perceived motion.

5.4 Classification
At present, three kinds of classification are widely used: yes/no, two-alternative forced
choice (2afc), and identification. Each task asks the observer to reply to a query: 'Did
you see it?' (yes/no); 'Was the signal in the first or in the second interval?' (2afc); or
'Which signal was it?' (identification). All three call for the observer to classify stimuli
(or their subjective responses). Those 2afc tasks that present a signal and a blank on
each trial are said to be 'detection' tasks. In a 'discrimination ' task, the signal is
added to a constant background stimulus that appears in both intervals. Yes/no, 2afc,
and identification all have their special niches, and all three tasks have been used to
measure thresholds and convincingly establish important scientific conclusions. All
other things being equal, however, readers who value their time will use identification
if possible, otherwise 2afc, and yes/no only as a last resort.

5.4.1 Yes/no
If one must, then with some effort a frequency of seeing curve can be measured,
which plots the probability of saying 'yes' to the question- 'Did you see itT-as a
function of a stimulus parameter (e.g. contrast). Unfortunately, the observer in a
yes/no experiment can 't avoid introducing an internal subjective criterion in deciding
whether each faint ambiguous percept deserves a 'yes' or a 'no'. The observer's per­
sonality , the instructions, and other experimental details may all affect the internal
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criterion, and thereby thresho ld. This tho rny problem has been thoroughly ana lysed
and various remedies have been devised, of which we endorse only one, though it is
by far the most time-consuming. Theory of signal detectab ility shows that the fre­
quency of seeing or 'hit rate' is unin formative unless one also measures the fa lse­
alarm rate, i.e. the pro bability of saying 'yes' when a blank is present ed. By
systematically changing the instructi ons one can push the observer 's criterion up or
down, and measure both the hit and false-alarm rates at each criterion level. This
yields an ROC (receiver-operating characteristic) graph of hit vs. false-alarm rate,
parameterized by the (unknown) internal criterion. The area under the ROC curve is
an excellent measure of the visibility of the signal (Swets and Pickett, 1982). The
ROC curve can be obtaine d more quickly by asking the observer to give a l -to-S
confidence rating instead of merely saying yes or no, but this still entai ls a substa n­
tial effort on the par t of the experimenter to collect and analyse the results to obtain
the ROC area.

5.4.2 Two-alternative forced choice
The 2afc task gives the observer one of two stimulus arra ngements and asks the
observer to identi fy which it is. The advantage of the 2afc task is that it can be
designed to avoid criter ion effects by present ing a symmetric unbia sed choice.
Typically, this is achieved by having two stimulus arra ngements both conta ining,
say, a signal and a blank, which differ solely by the interchange of signal and blank.
One might present the signal in a first interval and the blank in a second interval, or
vice versa (randomly), and ask the observer in which interval the signal was pre­
sented (,two-interval forced choice' ). Or one might present them simultaneously, side
by side, and ask the observer on which side the signal is. Under mild theoretical
assumptions, the measured propo rtion correct will equal the RO C area described in
the previous section (Gr een and Swets, 1974; Nachmias, 1981), thus obtaining a
similar result with much less effort.

This is an excellent technique. It s only drawback is that , because the observer has
only two alterna tives and thus will be right half the time even if the signal is invisi­
ble, a relatively large number of trials (about 60) is required to obtain a good thresh­
old estimate. For great est efficiency in 2afc tasks one should use a sequential
estimation procedur e (described below) to adjust the signal strength systematically
and estimate thre shold directly. Or, with somewhat more effort , one can measure the
prop ort ion correct as a function of signal strength (the 'psychometric' function). In
each trial, one strength value is presented from a fairly small numb er (usually 5 or 7)
that span the performan ce range (50-100 %). Then the threshold for any level of per­
formance can be read off the psychometric functi on . The shape of this functi on, like
the shape of the ROC curve, can also be used to infer the distributions of internal
stimulus representations on which decision processes operate (see Grah am, 1989).
However, usually you will ju st want to know threshold.

5.4.3 Identification
An even more efficient method is to present one of man y signals and ask the
observer to identify it. How many? Simulations show that four (or more) alternati ves
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suffice to achieve a high efficiency accruing from minimizing the chance of blind
guessing (Pelli et al., 1988). Theoretical consideration of the ideal observer suggests
that, in order to obtain a steep psychometric function (to estimate threshold quickly),
the signals should all have approximately equal contrast energy and similar, pairwise
cross-correlation (van Trees, 1968). Of course, observers must learn to identify the
signals. Experiments involving the identification of foreign and novel alphabets show
that observers learn to identify new symbols quickly, requirin g only 2000 trials to
attain the same threshold for letter ident ification as fluent readers of the alphabet
(Pelli et al., 1998). The observer 's responses implicitly divide the high-dimensional
stimulus space into many regions (one per kind of response) separated by category
boundaries . In princip le, these category boundaries are subjective and movabl e, like
the observer' s internal criterion in the yes/no task, but , on the one hand, theoretic al
under standing of the high-dimensional case is still wantin g (Ashby, 1992), so there is
nothing one can do about it, while, on the other hand , the problem is less worri ­
some, because high prob abilities of correct identification are not attainable by blind
guessing.

5.4 .4 Sequenti al estimation: QUEST
Given that the experimenter is willing to run a reasonable number of trials (e.g. 40),
and has some prior knowledge of the psychometric function and its parameters, one
would like an efficient procedure for threshold estimation-a procedure for running
each trial at whatever signal strength would contribute most to minimizing the vari­
ance of the final threshold estimate. Such a procedur e combines the experimenter's
prior knowledge and the observer's responses on past trials in choosing the signal
strength for the next trial, and, at the end, estimating threshold. The best current
procedure is called ZEST (King-Smith et al., 1994), but QUEST (Watson and Pelli,
1983), which is nearly as efficient, can be implemented by a tiny C program, which
we present below.

The only unkn own is threshold, which is treated as a rand om variable, X, to be
estimated. The experimenter supplies an initial guess, by specifying the mean and SO
of a Gaussian probability density functio n. For the reader's convenience, we supply a
one-line simulation of an observer with threshold tA ctual, so the program can be run
on its own. To run a real experiment , that line must be replaced by code that pre­
sents a stimulus (at intensity x) and collects the observer's response (I if right, 0 if
wrong). After each respon se, the probability density function, q, is upd ated by
Bayes's rule. Each trial is placed at x, the current maximum-probability estimate of
threshold, i.e. the mode. The final threshold estimate is also the mode.
# in cl ud e <mat h . h>
#in c lu d e <std i o. h>
Hi ncl ude <stdl ib. h >
#define DIM 4 00
#define DIM2 (2 *DIMl
#define GRAIN 0 .01
#define x i ( i) (( ( i) -DIM / 2) *GRAINl
#de fine xii ( iil « ( i i ) -DIM 2 /2 ) *GRAI N)
#defin e ii x (x ) ( i n t ) (O .5 +DI M2 /2+ (x ) /GRAI N)
voi d mai n (v o i d)
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float p [DIM2+11 . s(2) [DI M2+ 1 ) , q [DI M+l);
i nt i. i i,trial sDes i red~4 0, k, imode, right;

double be ta =3. 5 ,d elta =O. Ol ,gamma= O.5 ; j * parame ters of psychometric
func tio n '*I

do uble x , t Gu e s s =- 2 . 0 , t Gue s s SD=4 . 0 , t Ac t ua l ;
ch a r wrongRigh t (2 ) ( ]={~wrong·.- right ·). str ing( 6 4 ];

f o r( i i= O; ii <=DI M2;ii+ + ) {
p [ii ] =d elta* gamma+ ( l-d elta )* ( l - ( l -gamma)*exp ( -pow (l O,beta *x ii (i i) l J;
s{Dl [DI M2-i il = l o g (l- p ( i i ]) ;
s[l) [ DI M2- ii l = ! o g (p[ i il ) ;

)

fo r (i =Oii<= DIMii+ + ) (
x= xi (i l/tGuessSD ;
q [i )=-O .5 *x *x;

)

pri nt f{- Estimat e th res hold:- ) ;
get.s ( s t r i n g 1;
ssca nf (str i ng . - %lf M,&tGuess l ;
printf ( -S peci fy tru e thresho ld o f simulated ob s erv er :-);
gets (string ) ;
sscanf (str ing , ·' l f - ,&tAc t ua l ) ;
for(k =l;k <=trial sD e si r e d ; k ++) (

fo r( i rnode=O,i =O;i<= DI M;i ++)if( q [i » q[i mo de )) im o de= i;
x=x i (i rnode l +t Gu e s s;
/ * to tes t a rea l obse rve r , * /
/ * r ep l a c e t he n ex t li ne with your experim en tal task * /
r i ght=p [ iix (x -t Actual) ] > rand ( ) / (RAND_MAX+l .O);
pri ntf{"Tria l %3d at %4 .1f is %s\n -,k, x,wro ngRight[rig ht ]);
fo r ( i =O; i<=DIM ; i++) q [i J +=5 [r i g h t ] [i -i mode +DI M2/2 J i

}

f o r {i mo de=O,i=O ;i<=DI M; i ++ ) i f (q[ i] >q[i mo de ) i mo de= i ;
x =xi (i mod e) +tGuessi
p rin t f ( nFi nal (mode ) thr e s ho ld estimate is %4 . 1 f \ n - , x ) ;

5.5 Reaction time
Thresho ld is the stimulus strength required for a specified prohahility of correct deci­
sion. We typically assume that the observer is making a simple decision about a single
elementary stimulus. In many practical situations, however, people do not respond on
the basis of a single elementary decision, but only after making multiple decisions
about the many stimuli present in a complex display. Searching for a particular face
in a crowd is a familiar example. Thresholds could be found for ta sks like this, but
often the interest is in different types of questions than threshold measures answer. A
researcher might be interested in measuring how long it takes to perform a task , or in
analysing the theoretically more challenging question of how the component decisions
leading up to a task response are distributed in time (Sternberg, 1969). Response times
can be measured in any task, but one must not forget to measure response accuracy at
the same time, because of trade-off s between the two (e.g. McElree and Dasher , 1989).
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Devilish details
Ha ving decided on a task , implementing it can bring a flood of new question s. Some
are easy, e.g.: 'How many thr eshold estima tes?' Eno ugh to make the standard error
sma ll. Many oth er questions are harder, with answers tha t depend on details of your
theory and experiment. The issues includ e practice, who trigge rs the tr ial (experi­
menter or observe r), cueing (to warn of impendi ng stimulu s), manner of respon se
(butto n, speech) , allowing the observe r to not respond ('l blinked and missed it' ),
feedback (' right ') , and frequency of rest breaks. In general , you should look for the
easies t way to ob tain a convincing answer to your experi mental question . You 'll
want to be very sure that the task is obviou s to the ob servers. Counting on the
ob server 's intelligence to figure out wha t the tas k really is invites huge individual dif­
ferences in the results that are prob ably unr elated to the perceptu al questions you are
really interested in.

References
Adelson, E. H. (1993). Perceptual organization and the judgment of brightness. Science, 262,

2042-4.
Ashby, F. G . (J992). Multidimensional models of perception and cognit ion. Lawrence Erlbaum,

Hillsdale, NJ.
Benary, W. (1924). [The influence of form on brightness contrast, translated in Ellis, 1938)

Beobachtungen zu einern Experiment tiber Helligkeitskontrast. Psy cholog ische Forschung , 5,
131-4 2.

Cavanagh, P. and Anstis, S. (199 1). The contribution of color to motion in normal and color-
deficient observers. Vision Research, 31, 2109-4 8.

Ellis, W. D. (1938). A source book of gestalt psychology . Harcourt , Brace, and Co., New York.
Graham, N. V. S. (1989). Visual pa ttern analysers, Oxford: Oxford University Press.
Green, D. M. and Swets, J. A. (1974). Signal detection theory and psy chophysics. Krieger,

Huntington , NY .
King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. c., and Supowit, A. (1994).

Efficient and unbiased modifications of the QU EST threshold method: theory, simulations,
experimental evaluation and practical implementation. Vision Research, 34, 885- 912.

McElree, B. and Do sher, B. A . (1989), Serial position and set size in short -term memory: Time
course of recognition. Journal of Experimental Psy chology : General, 118, 346-7 3.

Nac hmias, J. (1981). On the psychometric function for contrast detection. Vision Research, 21,
215-23.

Pelli, D. G. and Farell, B. (1995). Psychophysical methods. In Handbook of optics (2nd edn),
Vol. l ted. M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe), pp. 29.1- 29.13.
McGraw-Hili, New York.

Pelli, D. G., Robson, J. G., and Wilkins, A. J. (1988). The design of a new letter chart for
measuring contrast sensitivity. Clinical Vision Sciences, 2, 187- 99.

Pelli, D . G., Bum s, C. W., Farell, B., and Moore, D . C. (1998). Identifying letters. Vision
Research (In press.)

Sternberg, S. (1969) . The discove ry of processing stages: extensio ns of Donder's method.
In A ttention and perf ormance II (ed. W. G. Koster), pp. 276-315. North-Holland,
Amsterdam.

135



5: Psychophysical methods , or ho w to mea sure a threshold, and why

Swets, J. A . and Pickett, R. M. (1982) . Evaluation of diagnostic systems : methods f rom signal
detection theory . Academic Press, N ew York.

Van Trees, H. L. (1968). Detection , estimation, and modulation theory . Wiley, New York.
Watson, A. B. and Pelli, D. G. (1983). QUEST : a Bayesian adapt ive psychometr ic meth od.

Percept Psychophys, 33, 113--20.

136




