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Abstract—We consider a two-user multiple-access wiretap
channel that undergoes ergodic block fading. In this scenario,
there are two users are communicating with a base station in the
presence of an eavesdropper, who has access to the communica-
tions through a multiple-access channel. We assume independent
fading for each block, and that the fading process is ergodic.
We also assume that the channel gains are measured accurately
and are available to each transmitter and the eavesdropper in
advance. We find the sum-rate maximizing power allocations for
this case, and compare this to the instantaneous power control
sum-rate. We also give a numerical solution when we incorporate
cooperative jamming, where a user is allowed to use part of its
power to jam the eavesdropper. In addition, we present an outer
bound to the general multiple-access wire-tap channel, which is
shown to be tight only for the degraded case.

I. INTRODUCTION

Wyner, in [1], defined the wire-tap channel, where there

is a wire-tapper who has access to a degraded version of

the intended receiver’s signal. He found the region of all

possible rate/equivocation pairs, and the existence of a secrecy

capacity, Cs, the rate up to which it is possible to transmit

zero information to the wire-tapper. Reference [2] extended

this result to Gaussian channels. Later, Csiszár and Körner,

[3], generalized Wyner’s results to channels satisfying some

weaker conditions than degradedness.

Gaussian multiple-access wire-tap (GMAC-WT) channels

are considered in [4]–[8], where transmitters communicate

with an intended receiver in the presence of an external wire-

tapper. In [5], [6], we considered the case where the wire-

tapper gets a degraded version of the signal at the legitimate

receiver, and found the secrecy-sum capacity for the collective

set of constraints using Gaussian codebooks and stochastic

encoders. In [7], the general (non-degraded) GMAC-WT was

considered, and an achievable rate region for perfect secrecy

with collective secrecy measures was found. In this work, we

also present an outer bound to this result.

In [9], a Gaussian channel was presented where both the

receiver and transmitter know the instantaneous channel gains.

Given a long-term power constraint and a stationary ergodic

distribution on the channel gains, it was shown that a water-

filling power allocation over the fading states, where transmis-

sion stopped during deep-fades was capacity-optimal. Knopp

and Humblet examined the multiple-access case and showed

that it was optimal for a single-user to be transmitting with a

water-filling power allocation at any given time, [10]. Single-

user wire-tap channels were examined from this perspective in

[11], [12]. It was shown that in this case, the optimal power

allocation is not water-filling, but takes a more complicated

form.

This paper examines achievable sum-rates for the block-

fading Gaussian multiple-access wire-tap channel (GMAC-

WT). For the GMAC-WT, the capacity region is not yet

known, but an achievable rate was given in [5], [6] for the

case where the eavesdropper is a degraded version of the

intended receiver, and generalized in [7]. It was also shown

in [5], [6], that this scheme achieved the sum-capacity for

the degraded GMAC-WT. In this paper, we first give an outer

bound to the sum-capacity of the general GMAC-WT, which

is shown to correspond with the achievable rates only for the

degraded case. We then find the sum-rate maximizing power

allocation for the GMAC-WT and compare it with the sum-rate

maximizing instantaneous power control solution found in [7],

[8]. We then examine the case where we utilize cooperative

jamming, which was proposed in [7]. For this case, we give

partial solutions to the optimal power allocation for some

cases, and show how to find a numerical solution for the

remaining cases. We see that utilizing cooperative jamming

allows us to achieve a secrecy-sum rate close to the outer

bound.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider K = 2 users communicating with a receiver

in the presence of a eavesdropper. Transmitter k = 1, 2
chooses a message Wk from a set of equally likely mes-

sages Wk = {1, . . . ,Mk}. The messages are encoded using

(2nRk , n) codes into {Xn
k (Wk)}, where Rk = 1

n
log2Mk.

The encoded messages {Xk} = {Xn
k } are then transmitted,

and the intended receiver and the eavesdropper each get a

copy Y = Y n and Z = Zn. The receiver decodes Y to

get an estimate of the transmitted messages, Ŵ. We would

like to communicate with the receiver with arbitrarily low

probability of error, while maintaining perfect secrecy of the

transmitted messages. The signals at the intended receiver and

the eavesdropper are given by

Y =
∑K

k=1

√

hM

kXk + NM (1)

Z =
∑K

k=1

√

hW

kXk + NW (2)
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Fig. 1: Equivalent General Gaussian Multiple-Access Wire-Tap
Channel (GGMAC-WT) system model.

where NM,NW are the AWGN, and without loss of generality,

we assume NM,NW ∼ N (0, I) and the following transmit

power constraints:

1

n

n
∑

i=1

X2
ki ≤ P̄k, k = 1, 2 (3)

We use the collective secrecy constraints defined in [4] to

take into account the multi-access nature of the channel.

∆S ,
H(WS |Z)

H(WS)
∀S ⊆ K , {1, . . . ,K} (4)

It was shown in [5] that guaranteeing the secrecy of all

users is sufficient to guarantee the secrecy of all groups of

users, i.e.,
H(WS |Z)
H(WS) ≥ 1 − ǫ ⇒ H(WS |Z)

H(WS) ≥ 1 − ǫ for any

S ⊆ K of users.

Definition 1 (Achievable rates): The rate vector R =
(R1, . . . , RK) is said to be achievable with perfect secrecy

if for any given ǫ > 0 there exists a code of sufficient length

n such that

1

n
log2Mk ≥ Rk − ǫ k = 1, . . . ,K (5)

Pe ≤ ǫ (6)

∆S ≥ 1 − ǫ ∀S ⊆ K = {1, . . . ,K} (7)

where user k chooses one of Mk symbols to transmit according

to the uniform distribution and Pe is the average probability

of error.

III. SUM-RATES WITH ERGODIC FADING

Theorem 1 (Achievable Rates): Let h = (hM

1 , h
M

2 , h
W

1 , h
W

2 )
and dh = dhM

1dhM

2dhW

1dhW

2 . Given a power control policy

{Pk(h)}2
k=1 satisfying
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

Pk(h)p(h)dh ≤ P̄k (8)

we can achieve the secrecy sum-rate

1

2

∞
∫

· · ·
∫

0

[

log

(

ΦM

ΦW

)]+

p(h)dh (9)

where [x]
+

, maxx, 0 and

ΦM = 1 + hM

1P1(h) + hM

2P2(h) (10)

ΦW = 1 + hW

1P1(h) + hW

2P2(h) (11)

The proof of this theorem is very similar to the proofs of the

Coding Theorem in [9] and Theorem 1 in [12], and is therefore

omitted. The only difference is that there are now 4 integrals

to consider for the two-user scenario.

IV. SUM RATE MAXIMIZATION

We are interested in finding the power allocation that will

maximize the achievable sum-rate as described in Theorem 1.

We can write the optimization problem as

max
P1(h),P2(h)

∞
∫

· · ·
∫

0

log

(

ΦM

ΦW

)

p(h)dh (12)

s. t.

∞
∫

· · ·
∫

0

Pk(h)p(h)dh ≤ P̄k, k = 1, 2 (13)

Pk(h) ≥ 0, k = 1, 2 (14)

We can then write the derivative of the Lagrangian as

∂L
∂Pk

=
hM

k

ΦM
− hW

k

ΦW
− λk + µk = 0, k = 1, 2 (15)

Note that we always have 1 + hM

1P1 + hM

2P2 ≥ 1 + hW

1P1 +
hW

2P2 to have non-negative achievable rate. We can also see

that the optimum powers will not violate this since we can just

shut them down for these hk values and achieve higher sum

secrecy rate while obeying the power constraint. As a result,

we can easily see that we have

∂L
∂Pk

= 0 ≤ hM

k − hW

k − (λk − µk)ΦMΦW, k = 1, 2 (16)

λk − µk ≤ hM

k − hW

k

ΦMΦW
≤ hM

k − hW

k (17)

and hence,

Pk = 0 if hM

k − hW

k < λk (18)

We are looking for the case when Pk > 0, i.e. assume

µk = 0. Consider user 1. We can write

λ1h
M

1h
W

1P
2
1 + λ1θ̄1P1 + [λ1ψ1 − θ1] = 0 (19)

where we define

θ1 , hM

1(1 + hW

2P2) − hW

1 (1 + hM

2P2) (20)

θ̄1 , hM

1(1 + hW

2P2) + hW

1 (1 + hM

2P2) (21)

ψ1 , (1 + hM

2P2)(1 + hW

2P2) (22)

Since we are only interested in the non-negative solution,

we can write

P1 =
−λ1θ̄1 +

√

λ2
1θ̄

2
1 − 4λ2

1h
M

1h
W

1ψ1 + 4λ1hM

1h
W

1θk

2λ1hM

1h
W

1

(23)

=
−λ1θ̄1 +

√

λ2
1θ

2
1 + 4λ1hM

1h
W

1θk

2λ1hM

1h
W

1

(24)

and proceeding similarly for user 2, we arrive at

Pk =
−λkθ̄k +

√

λ2
kθ

2
k + 4λkhM

kh
W

kθk

2λkhM

kh
W

k

, k = 1, 2 (25)
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where

θ2 , hM

2(1 + hW

1P1) − hW

2 (1 + hM

1P1) (26)

θ̄2 , hM

2(1 + hW

1P1) + hW

2 (1 + hM

1P1) (27)

ψ2 , (1 + hM

1P1)(1 + hW

1P1) (28)

We note that if the optimum power for user k is positive,

λ2
k

(

2hM

kh
W

kPk + θ̄k

)2
= λ2

kθ
2
k + 4λkh

M

kh
W

kθk (29)

λk(2hM

kΦW)(2hW

kΦM) = 4hM

kh
W

kθk (30)

Ψ , ΦMΦW =
θk

λk

(31)

so that when both users have non-zero optimum power,

θ1
λ1

=
θ2
λ2

= Ψ (32)

Note that if hW

1 = hW

2 = 0, i.e. the no eavesdropper case,

we would have θk = hM

k and this would simplify to

hM

1

λ1
=
hM

2

λ2
(33)

and since we have hM

k drawn according to a continuous distri-

bution, the probability of this event would be zero, implying

that only one user should be transmitting, which is the solution

found in [10]. However, in our case it is possible that the

powers will satisfy this equality. We also easily verify from

(31) that to have Pk > 0, we must have

θk

ψk

>
θk

Ψ
= λk (34)

Since Ψ ≥ ψk ≥ 1, k = 1, 2, if θk ≤ 0, we cannot have

Pk > 0. We can also write the above result as:

P1 > 0 iff
hM

1

1 + hM

2P2
− hW

1

1 + hW

2P2
> λ1 (35)

P2 > 0 iff
hM

2

1 + hM

1P1
− hW

2

1 + hW

1P1
> λ2 (36)

WLOG, let
hM
2

hW
2

<
hM
1

hW
1

and consider the four possibilities:

A. hM

1 − hW

1 < λ1, h
M

2 − hW

2 < λ2

We showed earlier that P1 = P2 = 0.

B. hM

1 − hW

1 ≥ λ1, h
M

2 − hW

2 < λ2

We showed earlier that in this case P2 = 0. Hence, we have

P1 > 0, and we can find P1 from (25) which simplifies to:

P1 =
1

2





√

(

θ1
hM

1h
W

1

)2

+
4

λ1

θ1
hM

1h
W

1

− θ̄1
hM

1h
W

1



 (37)

=
1

2

√

(

1

hW

1

− 1

hM

1

)2

+
4

λ1

(

1

hW

1

− 1

hM

1

)

− 1

2

(

1

hW

1

+
1

hM

1

)

(38)

(38) is the solution given in [11], [12] for the single user case,

also found by setting hW

2 = hM

2 = 0. This solution, as noted

in [11], is not the standard water-filling solution. However, in

the high SNR regime, in the sense that 1
λ1

≪ 1
hW
1

− 1
hM
1

, we

have

P1 =
1

2





√

(

θ1
hM

1h
W

1

)2

+
4

λ1

θ1
hM

1h
W

1

− θ̄1
hM

1h
W

1



 (39)

≈ 1

2





√

(

θ1
hM

1h
W

1

)2

+
4

λ1

θ1
hM

1h
W

1

+
4

λ2
1

− θ̄1
hM

1h
W

1



 (40)

=
1

2

[

θ1
hM

1h
W

1

+
2

λ1
− θ̄1
hM

1h
W

1

]

(41)

=
1

λ1
− 1

hM

1

(42)

which is the well-known water-filling solution, [9]. Note that

if hW

1 → 0, this is always true.

C. hM

1 − hW

1 < λ1, h
M

2 − hW

2 ≥ λ2

This can be treated the same way as the previous case. We

have P1 = 0, and

P2 =
1

2





√

(

θ2
hM

2h
W

2

)2

+
4

λ2

θ2
hM

2h
W

2

− θ̄2
hM

2h
W

2



 (43)

=
1

2

√

(

1

hW

2

− 1

hM

2

)2

+
4

λ2

(

1

hW

2

− 1

hM

2

)

− 1

2

(

1

hW

2

+
1

hM

2

)

(44)

D. hM

1 − hW

1 ≥ λ1, h
M

2 − hW

2 ≥ λ2

In this case, it is easy to see that at least one user must

be transmitting. We first examine the conditions and power

allocations when both users should be transmitting:

We can write (32) as

λ2[h
M

1(1 + hW

2P2) − hW

1 (1 + hM

2P2)]

= λ1[h
M

2(1 + hW

1P1) − hW

2 (1 + hM

1P1)] (45)

which gives us

P2 =
λ1

λ2

(hM

2 − hW

2 ) − (hM

1 − hW

1 )

hM

1h
W

2 − hM

2h
W

1

− λ1

λ2
P1 (46)

P1 =
(hM

2 − hW

2 ) − λ2

λ1

(hM

1 − hW

1 )

hM

1h
W

2 − hM

2h
W

1

− λ2

λ1
P2 (47)

which can also be written as

λ2P2 + λ1P1 =
λ1(h

M

2 − hW

2 ) − λ2(h
M

1 − hW

1 )

hM

1h
W

2 − hM

2h
W

1

, Λ (48)

Note that we cannot have positive P1, P2 if

1) hM

1h
W

2 − hM

2h
W

1 > 0 and
hM
1
−hW

1

hM
2
−hW

2

≥ λ1

λ2

.

2) hM

1h
W

2 − hM

2h
W

1 < 0 and
hM
1
−hW

1

hM
2
−hW

2

≤ λ1

λ2

.

which means that our assumption that both users transmit is

wrong, and only one user should actually be transmitting.
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WLOG, assume
hM
1

hW
1

≥ hM
2

hW
2

. Consider
hM
1
−hW

1

hM
2
−hW

2

≥ λ1

λ2

. Assume

user 2 is the transmitting user and user 1 is silent, i.e.
hM
1

1+hM
2

P2

−
hW
1

1+hW
2

P2

≤ λ1 and hM

2 − hW

2 > λ2. Then, we can write

hM

1(1 + hW

2P2) − hW

1 (1 + hM

2P2) ≤ λ1(1 + hM

2P2)(1 + hW

2P2)
(49)

θ2
λ2

= Ψ ⇒ hM

2 − hW

2

λ2
= (1 + hM

2P2)(1 + hW

2P2) (50)

Combining the two, we get

hM

2 − hW

2

λ2
≥ hM

1(1 + hW

2P2) − hW

1 (1 + hM

2P2)

λ1
≥ hM

1 − hW

1

λ1
(51)

which violates the assumption that
hM
1
−hW

1

hM
2
−hW

2

≥ λ1

λ2

. Thus, we

see that only user 1 should be transmitting in this case.

We then consider the case
hM
1
−hW

1

hM
2
−hW

2

< λ1

λ2

.

Substituting (47) into (31), after some algebra we can write

(λ1h
M

2 − λ2h
M

1)[(hM

1 − hW

1 ) + (hM

1h
W

2 − hM

2h
W

1 )P2]

× (λ1h
W

2 − λ2h
W

1 )[(hM

1 − hW

1 ) + (hM

1h
W

2 − hM

2h
W

1 )P2]

= λ1(h
M

1h
W

2 − hM

2h
W

1 )2[(hM

1 − hW

1 ) + (hM

1h
W

2 − hM

2h
W

1 )P2] (52)

and since (hM

1 − hW

1 ) + (hM

1h
W

2 − hM

2h
W

1 )P2 > 0, we get

[(hM

1 − hW

1 ) + (hM

1h
W

2 − hM

2h
W

1 )P2]

=
λ1(h

M

1h
W

2 − hM

2h
W

1 )2

(λ1hM

2 − λ2hM

1)(λ1hW

2 − λ2hW

1 )
(53)

which gives

P2 =
λ1(h

M

1h
W

2 − hM

2h
W

1 )

(λ1hM

2 − λ2hM

1)(λ1h
W

2 − λ2h
W

1 )
− hM

1 − hW

1

hM

1h
W

2 − hM

2h
W

1

(54)

as we cannot have

P2 =
hW

1 − hM

1

hM

1h
W

2 − hM

2h
W

1

< 0 (55)

Similarly, substituting (46) into (31), we can write

(λ2h
M

1 − λ1h
M

2)[(hM

2 − hW

2 ) − (hM

1h
W

2 − hM

2h
W

1 )P1]

× (λ2h
W

1 − λ1h
W

2 )[(hM

2 − hW

2 ) − (hM

1h
W

2 − hM

2h
W

1 )P1]

= λ2(h
M

1h
W

2 − hM

2h
W

1 )2[(hM

2 − hW

2 ) − (hM

1h
W

2 − hM

2h
W

1 )P1] (56)

giving us either

P1 =
hM

2 − hW

2

hM

1h
W

2 − hM

2h
W

1

(57)

or

P1 =
−λ2(h

M

1h
W

2 − hM

2h
W

1 )

(λ1hM

2 − λ2hM

1)(λ1h
W

2 − λ2h
W

1 )
+

hM

2 − hW

2

hM

1h
W

2 − hM

2h
W

1

(58)

where it is easily verified that (57) corresponds to (55) and

does not satisfy (48). Thus, P1 is given by (58).

We note that it will be optimal for both users to transmit iff

hM

2 − hW

2

λ2
≥ (hM

1h
W

2 − hW

1h
M

2)2

(λ1hM

2 − λ2hM

1)(λ1h
W

2 − λ2h
W

1 )
≥ hM

1 − hW

1

λ1
(59)

V. SUM RATE MAXIMIZATION W/ COOPERATIVE JAMMING

We denote the transmission power of user k as Pk and

jamming power of user k as Qk. Then, the instantaneous sum-

rate achievable is given by:

1

2
log

(

1 + hM

1(P1 +Q1) + hM

2(P2 +Q2)

1 + hM

1Q1 + hM

2Q2

)

− 1

2
log

(

1 + hW

1 (P1 +Q1) + hW

2 (P2 +Q2)

1 + hW

1Q1 + hW

2Q2

)

(60)

We can write the optimization problem as

max
P1(h),P2(h)

∞
∫

· · ·
∫

0

log

(

ΦM + φM − 1

ΦW + φW − 1
· φ

W

φM

)

p(h)dh (61)

s. t.

∞
∫

· · ·
∫

0

(Pk(h) +Qk(h)) p(h)dh ≤ P̄k, k = 1, 2

(62)

Pk(h) ≥ 0, k = 1, 2 (63)

Qk(h) ≥ 0, k = 1, 2 (64)

where

φM = 1 + hM

1Q1 + hM

2Q2 (65)

φW = 1 + hW

1Q1 + hW

2Q2 (66)

and P1, P2, Q1, Q2 are functions of h even if this is not

explicitly shown.

We first show that dividing power is suboptimal, i.e., the

optimum power allocation should not have Pk, Qk > 0. We

prove this using contradiction. Assume the optimum power

allocation is P∗,Q∗, and for user 1, P ∗
1 , Q

∗
1 > 0. Note

∂ φW

φM

∂Q1
=
hW

1φ
M − hM

1φ
W

φM2 (67)

=
hW

1 − hM

1 − (hM

1h
W

2 − hM

2h
W

1 )Q2

φM2 (68)

the sign of which does not depend on Q1. Consider a power

allocation such that P1 = P ∗
1 − π, Q1 = Q∗

1 + π. Then,

P1 +Q1 = P ∗
1 +Q∗

1 and ΦM+φM−1
ΦW+φW−1 does not change. If (68)

is positive, any π > 0 causes an increase in the achievable

sum-rate, and jamming with the same sum power is better.

If (68) is negative, then any π < 0 increases the sum-rate,

and transmitting with the same sum power gives a higher

rate. If this quantity is zero, the sum-rate does not depend

on Q2, and we can set it to 0. Thus, we see that the optimal

allocation will have either Pk > 0 or Qk > 0, but never

both. Note that this also implies that we must have φW

φM ≥ 1,

or else a power allocation that gives the same sum power to

transmission would achieve a higher rate.

We can then write the derivative of the Lagrangian with

respect to the transmit power of user k as

∂L
∂Pk

=
hM

k

ΦM + φM − 1
− hW

k

ΦW + φW − 1
− λk + µk = 0 (69)

Noting that we must have
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ΦM + φM − 1

φM
≥ ΦW + φW − 1

φW
(70)

to have a non-negative secrecy rate. We can then write

λk − µk =
hM

k

ΦM + φM − 1
− hW

k

ΦW + φW − 1
(71)

≤
φW

φM h
M

k

ΦW + φW − 1
− hW

k

ΦW + φW − 1
(72)

≤ φWhM

k − φMhW

k

φM
(73)

≤ φWhM

k − φMhW

k (74)

and as a result, if φWhM

k − φMhW

k < λk, we must have µk >
0 ⇒ Pk = 0. Now consider the jamming powers:

∂L
∂Qk

=
hM

k

ΦM + φM − 1
− hW

k

ΦW + φW − 1
− hM

k

φM
+
hW

k

φW
− λk + νk

(75)

Using (69) in (75), we get

−h
M

k

φM
+
hW

k

φW
+ νk = µk (76)

If a user is jamming, we must have νk = 0, µk ≥ 0. Hence,

hW

k

φW
≥ hM

k

φM
(77)

Since we should not have both users jamming at the same

time (in which case the achievable rate is 0 and we should

stop any transmission), this implies that for the jamming user,

hW

k

hM

k

≥ 1 + hW

kQk

1 + hM

kQk

⇒ hW

k ≥ hM

k (78)

Thus, if a user has hW

k > hM

k, then we necessarily have
hW

k

φW >
hM

k

φM and as a result µk > 0, indicating that user is

not transmitting, as expected. If both users have hW

k ≥ hM

k, no

user transmits or jams. We see that

• A user will not be transmitting if φWhM

k − φMhW

k < λk.

• A user will not be jamming if φWhM

k − φMhW

k > 0 (or

equivalently hM

k ≥ hW

k .)

If, for both users we have hM

k ≥ hW

k , neither user will be

jamming, and we can find the solutions from Section IV.

We would like to find out when the solution takes the form

if one user transmitting and the other jamming. Without loss

of generality, assume P1 > 0, Q2 > 0, i.e. when user 1 is

transmitting and user 2 is jamming. We can re-write (75) as:

hW

2h
W

1P1φ
M(ΦM + φM − 1) − hM

2h
M

1P1φ
W(ΦW + φW − 1)

= λ2φ
MφW(ΦM + φM − 1)(ΦW + φW − 1) (79)

We then need to have the following two equations simulta-

neously satisfied:

hM

1

ΦM + φM − 1
− hW

1

ΦW + φW − 1
= λ1 (80)

hW

2h
W

1/φ
W

ΦW + φW − 1
− hM

2h
M

1/φ
M

ΦM + φM − 1
=
λ2

P1
(81)

Although so far we have not been able to find a simple

close-form expression for this case, we see that for a given

jamming power Q2, user 1’s power is found from (25) with

Q2 instead of P2. We note the following two observations for

cooperative jamming:

1) Cooperative jamming effectively reduces the transmis-

sion threshold for the active user. Since φW ≥ φM,

we see that the condition to transmit is relaxed from

hM

k − hW

k ≥ λk to φW

φM h
M

k − hW

k ≥ λk.

2) A user only jams if its main channel gain is lower than

that of its eavesdropper channel gain.

VI. SUM-CAPACITY UPPER BOUND FOR MAC-WT

We find a bound for the sum-rate of the general K-user

MAC-WT such that the received signal Y is conditionally

independent of the wire-tapper signal Z given XK, where

XK = (X1, . . . ,XK) and the codewords are of length n. In

other words, consider the joint distribution

p(x1, .., xK , y, z) = p(y|x1, .., xK)p(z|x1, .., xK)p(x1, .., xK)

where for the MAC-WT, p(x1, .., xK) =
∏K

k=1 p(Xk).

We start with a strong secrecy constraint in the sense of

[13]. Let WS = {Wk}k∈S be the set of secret messages in

the subset S ⊆ K of users. For any ǫ > 0

H(WK|Z) ≥ H(WK) − ǫ (82)

We will show that H(WS |Z) ≥ H(WS) − ǫ for any

S ⊆ K. The proof is by contradiction. Assume otherwise,

i.e. H(WS |Z) < H(WS) − ǫ:

H(WS) − ǫ+H(WSc |Z)

> H(WS |WSc ,Z) +H(WSc |Z) (83)

= H(WK|Z) (84)

≥ H(WK) − ǫ (85)

= H(WS) +H(WSc) − ǫ (86)

and hence, we must have

H(WSc |Z) > H(WSc) (87)

which is not possible. Hence, H(WS |Z) ≥ H(WS)−ǫ. Then,

n
∑

k∈K
Rs

k = H(WK) (88)

≤ H(WK|Z) + ǫ (89)

(a)

≤ H(WK|Z) + ǫ+ nǫ′n −H(WK|Y,Z) (90)

= I(WK;Y|Z) + nǫn (91)

=

n
∑

i=1

I(WK;Yi|Yi−1,Z) + nǫn (92)

=
n
∑

i=1

H(Yi|Yi−1,Z) −
n
∑

i=1

H(Yi|WK,Y
i−1,Z) + nǫn

(93)
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(b)

≤
n
∑

i=1

H(Yi|Zi) −
n
∑

i=1

H(Yi|WK,XK,i,Y
i−1,Z) + nǫn

(94)

(c)
=

n
∑

i=1

H(Yi|Zi) −
n
∑

i=1

H(Yi|XK,i) + nǫn (95)

≤
n
∑

i=1

H(Yi|Zi) −
n
∑

i=1

H(Yi|XK,i, Zi) + nǫn (96)

=

n
∑

i=1

I(XK,i;Yi|Zi) + nǫn (97)

(d)
= n

1

n

n
∑

i=1

I(XK,Q;YQ|ZQ, Q = i) + nǫn (98)

= nI(XK,Q;YQ|ZQ, Q) + nǫn (99)

= n (H(YQ|ZQ, Q) −H(YQ|XK,Q, ZQ, Q) + ǫn) (100)

(e)

≤ n (H(YQ|ZQ) −H(YQ|XK,Q, ZQ) + ǫn) (101)

= n (I(XK,Q;YQ|ZQ) + ǫn) (102)

where we get

(a) from Fano’s Inequality with H(WK|Y,Z) <
H(WK|Y) < nǫ′n,

(b) by removing conditioning, we have H(Yi|Yi−1,Z) ≤
H(Yi|Zi). Since conditioning reduces entropy, we have

H(Yi|WK,Yi−1,Z) ≥ H(Yi|WK,XK,i,Y
i−1,Z),

(c) as H(Yi|WK,XK,i,Y
i−1,Z) = H(Yi|XK,i) since Yi is

independent of all else given XK,i,

(d) by introducing a new time-sharing variable Q uniformly

distributed on {1, . . . , n},

(e) since conditioning reduces entropy, and YQ is indepen-

dent of all else given XK,Q.

Thus, there exists random variables XK with some joint

distribution satisfying
∑

k∈K
Rs

k ≤ I(XK;Y |Z) + ǫn (103)

A. Gaussian MAC

We write the upper bound on the achievable secrecy sum-

rate starting from (103),

∑K
k=1Rk

(a)

≤ min
p(N1,N2)

max
∏

K
k=1

p(Xk)
I(XK;Y |Z) (104)

= min
p(N1,N2)

max
∏

K
k=1

p(Xk)
H(Y |Z) −H(Y |XK, Z) (105)

(b)
= min

p(N1,N2)
max

∏

K
k=1

p(Xk)
H(Y |Z) −H(N1|N2) (106)

(c)
= min

p(N1,N2)
max

∏

K
k=1

p(Xk)
H(Y − ξZ|Z) −H(N1|N2) (107)

(d)

≤ min
p(N1,N2)

max
∏

K
k=1

p(Xk)
H(Y − ξZ) −H(N1|N2) (108)

(a) where we tighten the outer bound by considering all

noise correlations. Since the capacity of this channel only

depends on the marginal probabilities, its capacity should

be equal to that of the least favorable noise.

(b) Since we can write H(Y |XK, Z) = H(N1|XK, Z) =
H(N1|XK, Z,N2) = H(N1|N2).

(c) since translation does not change entropy. We will let ξ
be the MMSE estimate of Y from Z. Then, Y − ξZ is

the minimum mean squared error of this estimate.

(d) by removing conditioning. This is satisfied with equality

iff Y,Z are jointly Gaussian, making the error a Gaussian

independent of Z. Since the marginals would then be

Gaussian, and each of Y,Z are sums of random variables,

all Xk must then also be Gaussian.

We proceed in a way similar to [14]. Taking Y,Z to be

jointly Gaussian (with a specified covariance matrix), we write

Y = ξZ + η (109)

where η ∼ N
(

0, σ2
η

)

and

ξ =
σY Z

σ2
Z

(110)

σ2
η = σ2

Y − ξ2σ2
Z =

σ2
Y σ

2
Z − σ2

Y Z

σ2
Z

(111)

Let

KN1N2
=

[

1 ν
ν 1

]

(112)

KY Z =

[

1 +
∑

k h
M

kPk ν +
∑

k

√

hM

kh
W

kPk

ν +
∑

k

√

hM

kh
W

kPk 1 +
∑

k h
W

kPk

]

(113)

We then have,

σ2
η =

(1 +
∑

k h
M

kPk)(1 +
∑

k h
W

kPk)

1 +
∑

k h
W

kPk

−
(

ν +
∑

k

√

hM

kh
W

kPk

)2

1 +
∑

k h
W

kPk

(114)

and we can thus write from (108)

K
∑

k=1

Rs
k ≤ min

ν : |ν|≤1
max
P≤P̄

1

2
log
(

σ2
η

)

− 1

2
log
(

1 − ν2
)

(115)

= min
ν : |ν|≤1

max
Pk≤P̄k,∀k

1

2
log f(P, ν) (116)

where

f(P, ν) ,
σ2

η

1 − ν2
(117)

Since the logarithm is a monotonically increasing function,

we can equally find the powers that

min
ν : |ν|≤1

max
Pk≤P̄k,∀k

f(P, ν) (118)

We first maximize over the transmit powers:

∂f

∂Pj

=

[
√

hM

j (1 +
∑

k h
W

kPk) −√hW

j

(

ν +
∑

k

√

hM

kh
W

kPk

)]2

(1 − ν2) (1 +
∑

k h
W

kPk)
2

(119)

and we see that for all ν,P, we have
∂f(P,ν)

∂Pj
≥ 0. Thus,

maximum powers always maximize f(P, ν), regardless of ν.
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Now optimizing over ν, we have

∂f(P, ν)

∂ν
=

−2
(
∑

k

√

hM

kh
W

kPk

) (

ν2 − ζν + 1
)

(1 − ν2)2 (1 +
∑

k h
W

kPk)
(120)

where

ζ =

∑

k h
M

kPk +
∑

k h
W

kPk +
∑

k h
M

kPk

∑

k h
W

kPk
∑

k

√

hM

kh
W

kPk

−
∑

k

√

hM

kh
W

kPk (121)

and we can find the possible optima as:

ν1,2 =
ζ ±

√

ζ2 − 4

2
(122)

It can be easily shown that ζ ≥ 2 and that we will always
have ν1ν2 = 1, so only ν∗ will satisfy the constraint |ν| ≤ 1.

Also, we can easily verify that f is convex in ν for |ν| ≤ 1.

Substituting into (116):

K
∑

k=1

Rs
k ≤ 1

2
log

(

1 +
(ζ − 2ν∗)

(
∑

k

√

hM

kh
W

kPk

)

1 − ν∗2

)

− 1

2
log

(

1 +
∑

k

hW

kPk

)

Using the fact that 1 + ν∗2 = ζν∗, we have

ζ − 2ν∗

1 − ν∗2 =
ζν∗ − 2ν∗2

ν∗(1 − ν∗2)
=
ν∗2 + 1 − 2ν∗2

ν∗(1 − ν∗2)
=

1

ν∗
(123)

and we also see that 0 < ν∗ ≤ 1. Hence we have,

Theorem 2:

K
∑

k=1

Rs
k ≤ 1

2
log

(

1 +
∑

k

√

hM

kh
W

k

ν∗
Pk

)

− 1

2
log

(

1 +
∑

k

hW

kPk

)

(124)

where ν∗ is the solution in (122) satisfying 0 < ν∗ ≤ 1.

Corollary 2.1: When the channel gains are standardized as

in [6], [7], we have:

K
∑

k=1

Rs
k ≤ 1

2
log

(

1 +
∑

k

√
hk

ν∗
Pk

)

− 1

2
log

(

1 +
∑

k

hkPk

)

(125)

where ν∗ is found from (122) with

ζ =

∑

k Pk +
∑

k hkPk +
∑

k Pk

∑

k hkPk
∑

k

√
hkPk

−
∑

k

√

hkPk

(126)

For the degraded case, the standardized gains are h1 =
. . . = hK = h, and we can easily verify that ζ =

√
h + 1√

h
,

and hence ν1 = 1√
h

and ν2 =
√
h, giving:

K
∑

k=1

Rs
k ≤







1
2 log

(

1+
∑

k
Pk

1+h
∑

k
Pk

)

, if h < 1 ⇒ ν∗ =
√
h

0, if h ≥ 1 ⇒ ν∗ = 1√
h

(127)

in accordance with [6]. Note that in general we have a gap of

Γ = I(XK;Y |Z) − [I(XK;Y ) − I(XK;Z)] = I(XK;Z|Y )
between the achievable secrecy sum-rate and the upper bound.

This gap disappears as shown for the degraded case since

XK → Y → Z implies I(XK;Z|Y ) = 0.

In Figures 2–3, we plot these achievable rates and the outer

bound above as functions of the standardized channel gains

when when P̄1 = 10, P̄2 = 5.

Similarly, we can extend this upper bound given in Theorem

2 to the ergodic fading scenario to get:

Theorem 3: With a power control policy P1(h), P2(h) as

described in Theorem 1, the sum-rate obtainable is limited by

∞
∫

· · ·
∫

0

1

2
log

(

Φ̄M(ν∗)

ΦW

)

(128)

where Φ̄M(ν) = 1 +

√
hM
1

hW
1

ν
P1(h) +

√
hM
2

hW
2

ν
P2(h), and

ν∗(h,P(h)) for a given P can be found from (122).

VII. NUMERICAL RESULTS

The secrecy sum-rate maximizing power allocation with

fading is such that we use higher transmission powers when

channel conditions are more favorable, i.e., high main channel

gains, low eavesdropper channel gains, and cease transmission

when channel conditions are unfavorable, i.e., the main chan-

nel gain is not better than the eavesdropper channel gain by a

certain threshold. The power allocations in this case, however,

do not have a simple water-filling interpretation as in the case

without secrecy constraints. Yet, for really favorable channel

conditions, the power allocation approximates the standard

water-filling solution. With cooperative jamming, a user facing

unfavorable channel conditions can jam the eavesdropper (with

more power used for jamming when the eavesdropper channel

is much stronger), and allow the other user to transmit by

effectively lowering the threshold that the difference of that

user’s main and wiretapper channel gains must exceed.

We then examine an upper bound on the secrecy sum-

rate for fixed channel gains. Comparing Figure 2 and Figure

3, we note that the outer bound given by Theorem 2 and

the achievable region with cooperative jamming given in [7,

Theorem 2] are loose when both users have good eavesdropper

channel gains (high standardized channel gains). The bound

is also somewhat loose when both standardized gains are very

low. However, for the degraded case, when h1 = h2, we see

that the outer and inner bounds coincide exactly, giving the

sum-capacity found in [5].

We also considered independent Rayleigh fading for all

channels where the power gains hM

1 , h
M

2 , h
W

1 , h
W

2 obey exponen-

tial distributions. Letting the mean gain for the main channels

to be 1, we plot the achievable ergodic rates and outer bound

in Figure 4 as a function of the mean eavesdropper channel

gain. The dashed lines represent instantaneous power control,

where we impose the same maximum power constraint on each

fading block. The solid lines represent ergodic fading case,

where we maintain a long-term average power constraint. The

lines denoted by ▽ show achievable rates, the lines denoted
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Fig. 2: Upper bound on the secrecy-sum rate as a function of
standardized channel gains hk = hW

k /hM

k .
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Fig. 3: Achievable secrecy sum rate w/ cooperative jamming as a
function of standardized channel gains hk = hW

k /hM

k .

by ∗ represent achievable rates with cooperative jamming, and

the lines denoted by △ show the outer bounds. We see that the

outer bounds and achievable rates for both instantaneous and

ergodic power control are close when the eavesdropper channel

is weak, but drift apart as the eavesdropper channel gets

stronger. Cooperative jamming improves the achievable se-

crecy sum-rate most when the eavesdropper channel is strong,

as it is possible to more effectively jam the eavesdropper.

VIII. CONCLUSIONS

In this paper, we examined the block-fading Gaussian

Multiple-Access Wire-Tap Channels (GMAC-WT). We pro-

vided achievable regions and outer bounds to the block-

fading GMAC-WT. We gave the sum-rate optimizing power

allocations for the GMAC-WT. We showed that the optimum

power allocation does not have a simple water-filling inter-

pretation as opposed to the standard GMAC. In addition,

there are certain cases where unlike GMAC, it is optimal

for both users to transmit. We then gave a solution when we

incorporate cooperative jamming, and note that cooperative

jamming is useful when one of the transmitters has a better

eavesdropper channel than its main channel, and furthermore

the other transmitter has a main channel that is better than its
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Fig. 4: Inner and outer bounds as a function of mean eavesdropper
channel gain hW .

eavesdropper channel by a certain margin that is lower than

the non-jamming case. We gave numerical results showing

the achievable rates and outer bounds in a Rayleigh fading

setting, and showed that cooperative jamming provides a clear

improvement in the achievable rates.
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