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Kernel methods are among the most successful tools in machine learning and are used in chal-
lenging data-analysis problems in many disciplines. Here we provide examples where kernel
methods have proven to be powerful tools for analyzing behavioral data, especially for identi-
fying features in categorization experiments. We also demonstrate that kernel methods relate
to perceptrons and exemplar models of categorization. Hence, we argue that kernel meth-
ods have neural and psychological plausibility and theoretical results about their behavior are
therefore potentially relevant for human category learning. In particular, we think that kernel
methods show the prospect of providing explanations ranging from the implementational via
the algorithmic to the computational level.

Learning in Humans and
Machines

Researchers in the field of machine learning study algo-
rithms that are able to learn from data. Since learning is
an important aspect of intelligent behavior, machine learn-
ing has become a central aspect of research in artificial in-
telligence. If machines are to behave intelligently in real-
world scenarios they will have to adapt autonomously to un-
certain environments. Modern machine learning is therefore
deeply rooted in probability theory and statistics; fields that
deal with modeling of and reasoning with uncertainty. Ma-
chine learning has some of its roots in cognitive science, too.
Since the clearest examples of learning happen in humans
and animals, early research in machine learning was heav-
ily influenced by ideas from psychology and neuroscience.
Whole subfields of machine learning deal with reinforce-
ment learning (Sutton & Barto, 1998) or learning in artificial
neural networks (Bishop, 1995; Hinton, Osindero, & Teh,
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2006). Biologically inspired algorithms have, however, be-
come less and less popular in machine learning as the theoret-
ical understanding of the statistical aspects of learning pro-
gressed. At the same time, researchers in machine learning
have broadened their interests in applications considerably.
Machine learning algorithms are now successfully applied
in such diverse areas as bioinformatics (Schölkopf, Tsuda, &
Vert, 2004) or collaborative filtering (Marlin, 2004). Many of
these applications are far removed from the core interests of
cognitive scientists. Since the computational constraints that
these applications impose on learning in terms of space, time
and data are very different from the constraints that humans
or animals have, most of the algorithms that are used do not
seem to be psychologically or biologically plausible as mod-
els for human or animal learning. Hence, it is no surprise
that today interactions between researchers interested in ma-
chine learning and researchers interested in human or animal
learning are fewer and less intense as they were during the
heydays of neural networks, be they perceptrons (Rosenblatt,
1958) or parallel distributed processing models (Rumelhart
& McClelland, 1986).

There are, nevertheless, good reasons why cognitive sci-
entists should care about the path that machine learning has
taken in the time since neural networks went out of fash-
ion. First, machine-learning methods are used for challeng-
ing data-analysis problems in many fields and they can be
used for data-analysis in cognitive science, too. Second,
many of the problems that machine-learning techniques try to
address are still similar to the problems that a human learner
faces—even if, on first glance, these techniques do not seem
to be plausible psychological models for learning. If there
is progress in the theoretical understanding of the core prob-
lems of learning in machines this will very likely have an im-
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Figure 1. A perceptron for discriminating two categories A and B is defined by a set of feature detectors ϕ1, ... ϕm. For a stimulus x the
responses for all the feature detectors are calculated and a weighted sum, using weights w1 to wm, is formed. This process is illustrated in
panel (a). Each of the feature detectors is represented by a node in the network. The output node collects the responses of all the feature de-
tectors. If the output is greater than a threshold the perceptron responds with category A otherwise it responds with category B. Graphically,
the perceptron maps all stimuli, for example the four stimuli on the left side of panel (b), to a feature space where the perceptron defines a
linear decision boundary (dashed line on the right). Learning a new category distinction can be accomplished by adapting the weights and
thereby the linear decision boundary. Note that the four stimuli in panel (b) form a XOR pattern that cannot be separated by a linear decision
boundary in the original representation but can be learned after mapping the stimuli to the feature space.

pact on our theoretical understanding of learning in humans,
and vice versa. After all, on the computational level (Marr,
1982) humans and machines both face the same problem:
they ought to learn from data.

During recent years both of these roles that machine learn-
ing can play within cognitive science, data-analysis and
computational-level modeling, have been articulated clearly
in a Bayesian framework (Lee, 2008; Chater, Tenenbaum, &
Yuille, 2006). Here, we will focus on a different set of tech-
niques from machine learning, called kernel methods (Jäkel,
Schölkopf, & Wichmann, 2007; Hofmann, Schölkopf, &
Smola, 2008; Schölkopf & Smola, 2002). Contrary to multi-
layer neural networks, kernel methods are linear methods, in
a way we will describe in more detail below. They combine
the simplicity of linear methods with the flexibility of non-
linear models. We will give some examples where kernel
methods have proven to be powerful tools for analyzing be-
havioral data, especially for identifying features in catego-
rization experiments. We will also show that kernel methods
can naturally be linked to perceptrons and exemplar models
of categorization (Medin & Schaffer, 1978; Nosofsky, 1986).
Hence, we argue that kernel methods have neural and psy-
chological plausibility and theoretical results about their be-
havior are therefore potentially relevant for human category
learning.

Overview of Kernel Methods

There are two complementary views of kernel methods.
In the context of category learning cognitive scientists might
call them the perceptron view and the exemplar view. Imag-
ine a subject is presented with a stimulus and faces the task
of putting this stimulus in one of two categories. The subject
will note certain aspects of the stimulus and map the stim-
ulus to an internal representation using (usually non-linear)

feature detectors. A perceptron is a linear combination of the
extracted features together with a threshold element (Rosen-
blatt, 1958). The feature detectors play an important role
in determining the categorization behavior and the learning
capabilities of the perceptron (see Fig. 1).

Usually, one does not know in advance which feature de-
tectors will be useful for learning a new category. Hence, one
would like to allow a great number of different feature detec-
tors. However, in the extreme, if the number of independent
feature detectors m is greater than the number of stimuli n
that a subject encounters one will have to estimate m param-
eters (the sign and relative importance of each feature detec-
tor) from n < m data points (the stimuli). In this case it seems
hard to learn anything from the training examples. It is nev-
ertheless possible by using a technique called regularization
(see Box 1).

The so-called representer theorem (Schölkopf & Smola,
2002) states that the optimal weights in a regularized learn-
ing problem are a linear combination of the training exam-
ples in feature space. Classic learning rules like the percep-
tron rule or the delta rule share this property. The response
of the perceptron to a stimulus can then be expressed as a
weighted combination of the similarity of the stimulus to the
training exemplars. This is what exemplar models in cogni-
tive psychology do (Kruschke, 1992; Nosofsky, 1992; Jäkel,
Schölkopf, & Wichmann, 2008a) (see Box 2 for details and
Fig. 2 for an illustration of an exemplar model). Hence, the
response of the perceptron in a potentially high-dimensional
feature space can equivalently be expressed as an exemplar
model with a suitably defined similarity measure. The simi-
larity measure is called a kernel in machine learning, hence
the term kernel methods. Interestingly, many similarity mea-
sures that are used in cognitive psychology are kernels in
the machine learning sense (Jäkel et al., 2007, 2008a; Jäkel,
Schölkopf, & Wichmann, 2008b). In particular, radial basis
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functions (RBFs)—for example Gaussians or Laplacians—
are used in models of categorization (Nosofsky, 1986; Kr-
uschke, 1992; Love, Medin, & Gureckis, 2004) and object
recognition (Poggio & Edelman, 1990; Bülthoff & Edelman,
1992). In theoretical neuroscience RBFs are used to model
tuning curves of neurons and there the connection with ker-
nels and regularization theory has long been known (Poggio
& Girosi, 1989; Poggio, 1990; Poggio & Bizzi, 2004).

Kernel Methods for Feature
Identification

A central goal for behavioral scientists is to find out how
the different aspects or features of a stimulus influence be-
havior. For simple tasks and stimuli it is frequently possible
to predict a subjects’ response from the physical properties of
the stimulus. In many laboratory tasks experimenters impose
on participants which features he or she can use to solve the

Figure 2. An exemplar model has a similar structure like a percep-
tron: For a stimulus x it forms a weighted sum, using the weights α1
to αn, of the responses of a set of neurons. The nodes in the network
calculate the similarity k(x, xi) of x with each of the exemplars x1
to xn that were shown during training. This is illustrated in panel
(a). Kernel methods in machine learning do the same. They use
special similarity measures, called kernels. In cognitive psychology
and theoretical neuroscience one often uses so-called radial-basis-
functions (RBFs) as similarity measures, for example Gaussians
or Laplacians. Panel (b) shows the response of such an exemplar
model to the stimuli from Fig. 1. Close to the stimuli from the yel-
low category the response is high and close to the stimuli from the
red category the response is low. Learning in kernel methods means
adapting the contribution of each exemplar to the overall response.

task. This is particularly true for experiments and models of
categorization where the stimuli “wear their features on their
sleeves” (Schyns, Goldstone, & Thibaut, 1998). For natural
categorization tasks, however, there are typically a multitude
of potential features that a subject may be using. Without
knowing the features, or internal representations that subjects
use, it is hard to develop models of how subjects reach a de-
cisions that lead to the observed response.

Over the last years, we and several colleagues used kernel
methods to identify those features that best predict a sub-
ject’s response in psychophysical tasks with natural stimuli
(Wichmann, Graf, Simoncelli, Bülthoff, & Schölkopf, 2005;
Kienzle, Wichmann, Schölkopf, & Franz, 2007; Kienzle,
Franz, Schölkopf, & Wichmann, 2009; Yovel, Franz, Stilz,
& Schnitzler, 2008). Like other black-box methods, these
methods substitute a very hard to analyze complex system—
the complete human observer—with a less complex system
that is sufficiently sophisticated to re-create human decisions
during a psychophysical task but is still amenable to mathe-
matical analysis. The central idea is to use networks of the

Box 1 Perceptrons and Regularization
A perceptron is defined as a weighted sum of the responses of a set
of m feature detectors ϕ1, ..., ϕm (see Fig. 1):

f (x) =

m∑
i=1

wiϕi(x). (1)

If the response f (x) is larger than a threshold, x will be classified as
category A otherwise as B. Learning in a perceptron is understood
as adapting the weights. One can think about learning as the statis-
tical problem of trying to estimate the weights that best predict the
correct category labels for new stimuli.
If the feature detectors are chosen restrictively then there will be
category distinctions that cannot be learned by the perceptron be-
cause the categories cannot be separated by a linear decision func-
tion in the feature space. One restriction is the functional form of
the feature detectors (for example, linear or quadratic in the inputs,
diameter-limited, etc.). Another restriction is the number of feature
detectors. Both of these determine a perceptron’s capabilities. For
example, it is well-known that four points that form an XOR pattern
in a two-dimensional space cannot be separated by a linear decision
function in this space (Nilsson, 1965; Minsky & Papert, 1967).
In order to give the perceptron a lot of flexibility one would like to
allow a large number m, potentially an infinite number, of feature
detectors. In this case, it seems hard to generalize to new, previously
unseen stimuli. Learning—or in statistical terms: estimating—the
weights w1, ..., wm can still be successful, even if the number of
stimuli n is a lot smaller than m, if regularization techniques are
used. The optimal weights are found by trading-off the fit to the
data, that is how well the perceptron replicates all the category la-
bels on the training examples, with the magnitude of the weights.
This extra constraint reduces the effective dimensionality of the
learning problem. By using regularization techniques it is possi-
ble to use high-dimensional feature spaces and, in many cases, still
be able to generalize. Similar techniques for trading-off model fit
with a penalty term are used in model selection. For more details
see (Jäkel et al., 2007; Hofmann et al., 2008; Schölkopf & Smola,
2002).
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kind shown in Fig. 1 and Fig. 2 as a statistical model to pre-
dict the category responses provided by human subjects. In
this way a network is used to re-create the internal decision
space of individual human subjects.

For example, this approach was used to predict observers’
categorization responses when indicating the gender of hu-
man faces shown repeatedly during a gender categorization
task (Wichmann et al., 2005). The human category re-
sponses, male or female, are systematically different from
the actual gender of the faces shown. In the simplest case
a perceptron (as shown in Fig. 1) is used and restricted to
linear features ϕ1, ..., ϕm. The goal is to find the weights of
the network that best predict the category responses of the
subjects. Since the network calculates a linear combination
of the features and a linear combination of linear functions is
a linear function, this is equivalent to trying to find the best
linear feature. In the gender categorization example the best
linear feature that can be calculated from the pixel values as
inputs is itself an image that puts most weight on the pixels
that best predict subjects’ responses. If the stimuli consist
of 256x256 pixel images a learning algorithm will have to
estimate as many weights. Since the number of stimuli that
one is able to show to participants in an experiment is usu-
ally smaller than this, it is important to use regularization
techniques (see Box 1).

There are other methods that try to find the stimuli that
best predict responses, for example the so-called bubbles
technique (Gosselin & Schyns, 2001; Dupuis-Roy, Fortin,
Fiset, & Gosselin, 2009) or classification image methods
(Ahumada & Lovell, 1971; Abbey & Eckstein, 2006) that are
closely related to reverse-correlation as used in single-cell
physiology (Marmarelis & Marmarelis, 1978; Neri & Levi,
2006). In contrast to the approach described above, these
methods disrupt or at least change the stimulus dramatically:
either stimuli are embedded in visual noise in case of “tradi-
tional” classification images or they are severely windowed
in case of the bubbles technique. Also, generalizations of
these methods to non-linear features or even combinations of
non-linear features are not straightforward.

Recently, Kienzle et al. (2007, 2009) showed one natural
extension of our approach to identifying non-linear features
of a certain form. This work also illustrates that kernel meth-
ods are, of course, not limited to predicting subject’s behav-
ior in standard categorization tasks. In the study, subjects’
eye-movements were tracked while viewing natural images.
Small image patches around each fixation were extracted and
compared to equally big image patches from the same images
that were not fixated. The goal was to identify the features
in an image patch that lead an observer to fixate it. Using an
exemplar model (as shown in Fig. 2 and explained in Box 2)
with a Gaussian kernel—that is, an RBF-network—fixations
on new images were predicted in terms of weighted similar-
ities to previous fixations. The resulting network could ef-
fectively be approximated by an RBF-network with just four
nodes. This smaller network can be interpreted as extracting
the similarity to four distinct stimuli as non-linear features
and led to four neurophysiologically very plausible features
(Fig. 3 illustrates how the method works).

Box 2 Kernel Methods and Exemplar Models
The so-called representer theorem assures that the optimal weights
for the regularized learning problem (see Box 1) can be expressed
as a linear combination of the training examples x1, ..., xn:

wi =

n∑
j=1

α jϕi(x j). (2)

Also many classic learning rules (for example, the perceptron rule
or the delta rule) guarantee that the weights at each step during
learning are always expressible in this form. Plugging this form
of the weights into the definition of the perceptron (see Box 1) and
reordering terms one obtains

f (x) =

n∑
j=1

α j

m∑
i=1

ϕi(x)ϕi(x j). (3)

Let us define a shorthand k(x, y) for the sum over the features:

k(x, y) =

m∑
i=1

ϕi(x)ϕi(y). (4)

This symmetric function is defined on pairs of stimuli x and y and
it is called a kernel. It calculates the inner product of x and y in
feature space. Intuitively speaking, the inner product measures the
similarity between x and y. The response of the perceptron is then
equivalently written as

f (x) =

n∑
j=1

α jk(x, x j), (5)

a weighted sum of the similarities to the exemplars x1, ..., xn (see
Fig. 2). This function is linear in the weights α j. As in the percep-
tron, learning in this representation can be understood as estimat-
ing weights. In cognitive science such a model is called an exem-
plar model (Kruschke, 1992; Nosofsky, 1992; Jäkel et al., 2008a).
Hence, each set of feature detectors defines a natural similarity mea-
sure k such that any perceptron can equivalently be expressed as an
exemplar model. It is often more natural to define the similarity
k between stimuli directly, rather than defining a large set of fea-
ture detectors first. In these cases the exemplar formulation of the
perceptron can be more useful (and computationally more efficient,
too). Under certain conditions on k, that is k has to be a positive
definite kernel, it is guaranteed that k can be expressed as an inner
product between feature vectors (similar to (4), but with a poten-
tially infinite number of features) and therefore an exemplar model
using k has an equivalent formulation as a perceptron. A common
way of regularizing the solution in kernel methods is by the norm
of the weight vector in the feature space. It can be shown that even
in the infinite dimensional case, this norm can be evaluated using
the kernel. For more details see (Jäkel et al., 2007; Hofmann et al.,
2008; Schölkopf & Smola, 2002).

Kernel Methods as
Computational Models

Ultimately, we need models that are neurally and psy-
chologically plausible. We also want to understand how a
model solves the problem that a subject faces in an exper-
iment. Models in cognitive science are hence often catego-
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Figure 3. One way to estimate non-linear features was suggested by Kienzle et al. (2009): As an example consider their problem of
predicting for a 13x13 image patch whether it is likely to be a saccade target or not. Formally, this is a categorization problem, too. Panels
(a) to (d) illustrate how the method works in principle. Panel (a) depicts a set of image patches that have (yellow) or have not (red) been
saccade targets for a set of training patches in a high-dimensional image space. The yellow-to-red gradient in the background and the
contour lines represent the response of a kernel method with a Gaussian kernel after having been trained on the training patches. The
resulting network is shown on the left of panel (d). Panel (b): In a second step gradient descent is performed repeatedly with different
starting points on the function that the trained network implements. In this case, four extrema (crosses) were identified. Panel (c): Using the
positions of the extrema a network with four kernels centered on the extrema is constructed in order to approximate the original network.
Note the change in the contour lines compared to panel (b). Panel (d) shows the original network (left) and its approximation (right). The
features that were recovered in this example are neurophysiologically plausible: The more similar an image patch is to a center-surround
structure (z3 and z4) and the less similar it is to a ramp (z1 and z2) the more likely it will be a saccade target. This figure is adapted from
Kienzle et al. (2009).

rized according to Marr’s levels of explanation: the computa-
tional, the algorithmic, and the implementational level (Marr,
1982). Kernel methods are related to RBF networks on the
implementational level and exemplar models on the algorith-
mic level. Hence, we think that theory developed for kernel
methods in machine learning is of great interest to cogni-
tive scientist because it potentially offers explanations on the
computational level. In this triangle of related models and
methods from machine learning (kernel methods), cognitive
psychology (exemplar models), and theoretical neuroscience
(RBF networks) we see the prospect of bridging Marr’s lev-
els. The role that machine learning could play in this en-
terprise is clear: help us to better understand what learning

is, what the core problems are, and how models of human,
animal, and neural learning solve these.

In a categorization task, like gender categorization, a sub-
ject has to solve a categorization problem and the same prob-
lem can be given to a machine classifier, for example a kernel
machine as shown in Fig. 2. Instead of using the network as
a statistical model for a subject’s responses, by training it on
the subject’s responses as in the research discussed in the pre-
vious section, one can train the network on the same inputs
and the same feedback that a subject is given during category
learning—as is usually done in cognitive modeling. Instead
of providing a statistical model for the subject’s responses
one treats the subject as trying to statistically model the data
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Box 3 Questions for Future Research
• There is a large literature on feature selection in machine learning, especially in conjunction with kernel methods (Guyon & Elisseeff,
2003). Also, there are attempts to learn the kernel, that is the similarity measure, without making strong assumptions (Bousquet & Herrmann,
2003; Lanckriet, Cristianini, Bartlett, Ghaoui, & Jordan, 2004). Hence, there are many more methods that could potentially be useful for
identifying the features, or corresponding similarity measures, that best predict subjects’ responses. Furthermore, in many situations a
human category learner has to learn the right features—or alternatively the right similarity measure—at the same time as he or she learns the
categories (Schyns et al., 1998). Machine learning methods could provide us with hypotheses on how a human learner might achieve this.
• A major concern for exemplar models in cognitive science is whether all stimuli have to be stored in memory. Often the same categoriza-
tion performance can be achieved with a smaller network that does not remember all exemplars (that is, most of the exemplars have a zero
weight). Such solutions are called sparse in machine learning and statistics. For feature identification, we also want a solution that is sparse,
so we can interpret the results. In the methods described here we obtained sparseness by approximating the original network by a smaller
network with different nodes (see Fig. 3). There are other ways to achieve sparseness, for example by reduced-set metods (Schölkopf &
Smola, 2002). Different regularization mechanisms also lead to different degrees of sparseness (Weston, Elisseeff, B., & Tipping, 2003), as
exploited in the Lasso (Hastie, Tibshirani, & Friedman, 2009) and recently in the field of compressive sensing (Candes & Wakin, 2008).
• One major advantage of kernel methods is that the same techniques can be used irrespective of what the kernel is. Here, we have mainly
considered radial basis functions because of their psychological and neural plausibility. However, polynomial kernels have some plausibility,
too (Jäkel et al., 2007) and they can potentially be used for identifying critical features via Wiener and Volterra Theory (Franz & Schölkopf,
2006). There are also kernels that can deal with non-vectorial stimuli, like strings, trees or graphs (Hofmann et al., 2008). Such kernels
might be useful for modelling categorization of interestingly structured stimuli, like sentences or visual objects. Of particular interest in this
context are recursively defined kernels (Haussler, 1999; Smale, Rosasco, Bouvire, Caponnetto, & Poggio, 2008).
• A lot of theoretical work in cognitive science and machine learning has focused on either supervised or unsupervised learning, that is
scenarios where either the category labels for all of the stimuli or for none of the stimuli are provided. However, in the real world only some
of the stimuli might be labeled. This scenario is called semi-supervised learning in machine learning (Chapelle, Schölkopf, & Zien, 2006)
and such scenarios can be studied in human category learning, too (Zhu, Rogers, Qian, & Kalish, 2007; Vandist, De Schryver, & Rosseel,
2009). Similarly, a category label might refer to one of several possible stimuli. Imagine a parent uttering the word dog when there are
plenty objects in a scene and a child does not know which of these the parent refers to. This scenario is called multiple instance learning in
machine learning (Andrews, Tsochantaridis, & Hofmann, 2003).

he or she observes. Using the tools-to-theories heuristic
(Gigerenzer, 1991) the computational problem that the sub-
ject tries to solve can be formalized in the same way that it is
formalized in machine learning.

At the computational level, most experimental tasks are
set up as a two-category problem. As in machine learning,
the problem of learning a new category distinction in an ex-
periment can be conceptualized as a matter of generalization.
In this view, the computational problem that a learning al-
gorithm tries to solve is to generalize well. If a subject is
confronted with a previously unseen stimulus will this stim-
ulus be categorized correctly? Kernel methods with regular-
ization techniques are one particularly well-understood way
of assuring a good generalization performance (Schölkopf &
Smola, 2002). Since kernel methods are related to exemplar
models and RBF networks one may hope that insights from
machine learning can be transferred to cognitive psychology
and theoretical neuroscience. However, how much poten-
tial for cognitive science one sees in such an approach—that
has yet to be spelled out in detail—crucially depends on how
one assesses the relevance of exemplar models and RBF net-
works for cognitive science in the first place.

Exemplar models are not only discussed as models for
categorization but also as models for perceptual expertise,
object recognition, or automaticity (Palmeri, Wong, & Gau-
thier, 2004; Palmeri & Gauthier, 2004). As classic psy-
chological models, exemplar models are specified on the
algorithmic level. Exemplars are stored in memory and
a new stimulus is compared to old stimuli before a re-
sponse is made (Medin & Schaffer, 1978). While this ba-
sic idea links exemplar models and kernel methods (Ashby

& Alfonso-Reese, 1995), exemplar models also account for
additional aspects of behavioral data, like attention shifts,
learning curves, and response times (Nosofsky, 1986; Kr-
uschke, 1992; Palmeri, 2001). Despite the success of ex-
emplar models in fitting data from a large number of lab-
oratory experiments, there are many effects in the catego-
rization literature—especially those involving background-
knowledge, rule-based categories, and abstraction—that go
beyond the capabilities of basic exemplar models (Murphy,
2002). Some of these effects seem to require the specification
of additional mechanisms on top of a simple exemplar model
(Heit, 1994; Lamberts, 1994; Nosofsky & Johansen, 2000;
Rodrigues & Murre, 2007) or the postulation of multiple cat-
egorization systems (Ashby, Alfonso-Reese, Turken, & Wal-
dron, 1998) and hybrid models of which exemplar models are
a subpart (Erickson & Kruschke, 1998; Denton, Kruschke, &
Erickson, 2008).

Since exemplar models lack abstraction mechanisms they
are often contrasted with prototype models. Even for those
laboratory experiments that have traditionally been consid-
ered to provide good evidence for exemplar effects there
has been some debate about whether the data can be mod-
eled without prototype abstraction (Smith & Minda, 1998,
2000; Nosofsky & Zaki, 2002; Navarro, 2007). This de-
bate sometimes obscures, however, that prototype models
and exemplar models are almost identical in all but one re-
spect: the choice of representatives. Recent modeling efforts
have blurred the distinction between the two types of mod-
els. There are models that allow for multiple prototypes and a
continuum of abstractions (Love et al., 2004; Edelman, 1998;
Rosseel, 2002; Vanpaemel & Storms, 2008) and there are
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models that reduce the number of exemplars (De Schryver,
Vandist, & Rosseel, 2009). These models are similar in
spirit to the approach that is illustrated in Fig. 3: find a set
of stimuli smaller than the set of all training exemplars but
equally representative of the category (or category distinc-
tion) in question. Furthermore, due to the correspondence
between perceptrons and exemplar models that is explained
in Box 2 the simplest exemplar model can be seen as a pro-
totype model in a suitable feature space—at least formally
(Jäkel et al., 2007). In any case, exemplar models have been
and still are extremely important as a well-developed null-
hypothesis and a theoretical starting point for all research on
categorization.

Part of the attractiveness of exemplar models, in our view,
is that linking them to the implementational level seems
straightforward, since they can be expressed as neural net-
works (Kruschke, 1992). An exemplar is represented by a
pool of neurons. The similarity of this exemplar to other
stimuli is implemented by the tuning curves of the neurons.
Stimuli that are similar to an exemplar will make the cor-
responding neurons fire but at a lower rate. Tuning curves
thus implement the kernel. The response of the animal is ob-
tained by integrating excitatory and inhibitory responses for
many pools of neurons. Related ideas have long been dis-
cussed in the object recognition literature as neurally plau-
sible mechanisms where it may be possible to link the neu-
ral level with the computational level (Poggio & Edelman,
1990; Bülthoff & Edelman, 1992; Poggio, 1990; Poggio &
Bizzi, 2004). These studies motivated electrophysiological
work looking for respective tuning curves (Logothetis, Pauls,
& Poggio, 1995). More recently, multidimensional psycho-
logical spaces and attention shifts that have been crucial as-
pects of models in cognitive psychology have been investi-
gated electrophysiologically, too (Palmeri & Gauthier, 2004;
Sigala & Logothetis, 2002; Beeck, Wagemans, & Vogels,
2001).

The Future of Kernel Methods in
Cognitive Science

In a recent series of papers, we have spelled out explicitly
the relationships between certain kernel methods in machine
learning and common exemplar models in cognitive science
(Jäkel et al., 2007, 2008a, 2008b). These studies provide
groundwork for transferring insights from kernel methods
to exemplar models. At the moment the role for machine
learning in the enterprise of bridging Marr’s levels of expla-
nation for categorization models remains admittedly promis-
sory. We think, however, that there are some promising di-
rections to take.

If one accepts that at the computational level humans as
well as machine learning algorithms try to generalize well,
then cognitive scientists will be able to make use of the
wealth of theory on generalization that has been developed
in machine learning (Vapnik, 2000; Devroye, Györfi, & Lu-
gosi, 1996). In fact, there are already attempts to use insights
on generalization for understanding human category learn-
ing (Jäkel et al., 2008a; Love et al., 2004; Briscoe & Feld-

Box 4 Glossary
Generalization: The response of a learner to previously unseen
stimuli. Generalization is a crucial aspect of learning. For exam-
ple, in categorization the correct category labels for a set of training
stimuli can be learnt by heart. Successful learning of a category
should therefore also manifest itself in correct categorization of new
stimuli.
Kernel: Intuitively speaking, a kernel measures the similarity of
two stimuli. Many of the similarity measures used in psychological
models are kernels in the machine learning sense. Formally, a so-
called positive definite kernel is a function of two arguments that
represents an inner product (dot product) in some feature space.
Learning: In machine learning, the term learning is often used
to mean estimating parameters in a model. The estimation prob-
lem often takes the form of an optimization problem, in which case
learning amounts to finding the optimal parameters.
Radial-basis-function (RBF): A function that depends on the
distance of a stimulus to a reference stimulus. Usually the distance
is given by a norm on a vector space. This is analogous to tuning-
curves where the response of the neuron depends on the “distance”
of the stimulus to the characteristic stimulus of the neuron. For
example, a Gaussian RBF is an exponential function of the squared
Euclidean distance between the stimulus and a reference stimulus.
Likewise, an exponential of the city-block distance is sometimes
called Laplacian (but so is an exponential of the Euclidean dis-
tance).
Regularization: A technique to deal with high-dimensional es-
timation problems where the amount of data is not sufficient to ef-
fectively estimate all the parameters. Regularization imposes addi-
tional constraints on the parameters, for example a preference for
small parameter values.
Training Data: In order to get a realistic estimate of a learning
algorithm’s generalization performance the available data is split up
into a training and a test set. During training the learning algorithm
is given the training data, however the generalization performance
is measured on new data, the test set, that the algorithm has never
seen before.
Weights: In a linear model the parameters are often referred to
as weights because the output is a weighted combination of the re-
sponse of the feature detectors.

man, 2006). We believe that future work will have to bridge
the gap between concrete learning algorithms and the com-
putational problem of generalization (Bousquet & Elisseeff,
2002; Poggio, Rifkin, Mukherjee, & Niyogi, 2004). It could
be useful if concrete and successful suggestions for learning
algorithms in the literature on human category learning, such
as ALCOVE (Kruschke, 1992), could be backed up by a for-
mal analysis of their generalization performance—so that it
becomes clear that they actually solve the problem that the
learner faces. More suggestions for future research can be
found in Box 3.

We have shown that kernel methods can be useful for
identifying features in categorization tasks. We have further
argued that there is great potential for transferring insights
from kernel methods to human category learning. More gen-
erally, one could hope that increased interest in kernel meth-
ods from cognitive scientists could increase cross-talk be-
tween theoretical neuroscience, cognitive psychology, and
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machine learning. While it is exciting to see that all three
fields converge on similar ideas, it is important to note that
these developments were not independent of each other. In
addition to sharing intuitions on categorization and similar-
ity, researchers across fields share influences from the early
days of artificial intelligence and cognitive science. The pop-
ularity of these ideas may also partly be explained by the fact
that kernel methods are linear methods and are therefore sim-
ple enough to be handled with widely- and well-understood
mathematical tools. This does not have to be a disadvantage.
Kernel methods are promising tools for cognitive scientists
because they are simple enough to be analyzed thoroughly
but at the same time they are powerful enough to tackle real-
istic learning problems.
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