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Abstract The determination of P- and S-wave arrival times is important for a variety
of seismological applications including earthquake detection and seismic tomography.
The method is based on the continuous wavelet transform of the waveforms. Unlike
Fourier transform, the basis functions are localized in time and frequency, therefore,
wavelet transform is suitable for analysis of nonstationary signals. For detecting the
P-wave arrival, the wavelet coefficients are calculated using the vertical component
of the seismogram. In the case of the S-wave arrival, we take advantage of the polari-
zation of the shear waves, and cross examine the wavelet coefficients from two hori-
zontal recordings. In addition, shear-wave splitting, the time delay of polarized Swaves,
can be measured using real and imaginary wavelets. Because these steps can be auto-
mated, application of the technique can easily generate a large database of shear-wave
splitting measurements for studies of anisotropy.

Introduction

Many applications in seismology such as earthquake hy-
pocenter determination (e.g., Billings et al., 1994; Engdahl
et al., 1998; Horiuchi, 2003; Bondár and Storchak, 2011),
source mechanism analysis (e.g., Hardebeck and Shearer,
2002), seismic tomography (e.g., Zhao et al., 1992), and hy-
drocarbon reservoir imaging (Oye and Roth, 2003) require
accurate picks of compressional- and shear-wave arrivals.
Various seismological organizations have been relying mainly
upon human experts to manually pick seismic phase arrivals of
interest or review picks that have been automatically deter-
mined (e.g., Willemann and Storchak, 2001). However, the
deployment of dense arrays such as the USArray (e.g., Le-
vander and Nolet, 2013) that generates large amounts of data
make manual picking and reviewing impractical. Furthermore,
manually picked phases are neither errorless nor objective.
Their accuracy is influenced by factors such as signal-to-noise
ratio (SNR), shape of waveform onset, sample rate, filter, and
misidentification. For example, Douglas et al. (1997) com-
pares precision of P-wave picks, and estimates that the errors
are 0.1 s for explosions and 0.5 s for teleseismic earthquakes.
Diehl et al. (2009) argue that phase detection by network an-
alysts include significant numbers of mispicks (i.e., picking of
incorrect arrivals) and inconsistencies in error assessment.
Zeiler and Velasco (2009) show considerable differences, both
random and systematic, that exist in phase picks performed by
different institutions. They estimate the average root mean
square (rms) error between institutions to be 0.43 s for P
waves and 5.53 s for S waves for events within regional dis-
tances (0°–30°). In particular, the average time difference for
the Sg-wave arrival is 8.33 s. They also note a bias for the

manual analyses to tend toward late picks (Zeiler and Valasco,
2009).

Although over the years a significant number of different
approaches to automate phase picking have been proposed,
the development of robust and accurate automatic algorithms
that perform satisfactorily for various situations such as source
type, distance, noise level, and instrument, remain a nontrivial,
active field of research (e.g., Withers et al., 1998). For P-wave
arrival, most strategies are based upon the fact that the seismo-
gram changes dramatically with the phase arrival. Allen
(1978) has introduced the concept of the characteristic func-
tion, that is, a function that is evaluated over segments of seis-
mogram and identifies changes that correspond to the arrival
of the seismic phase of interest. Characteristic function is typ-
ically calculated after the seismogram is band-pass filtered
within narrow windows around the expected signal. Such
functions can be the absolute value (Allen, 1982; Baer and
Kradolfer, 1987), energy and frequency (Panagiotakis et al.,
2008), or the envelope (Earle and Shearer, 1994). One of the
first and often-used algorithms utilizes the ratio of short-term
average over the long-term average, STA/LTA, as a character-
istic function (e.g., Allen, 1978, 1982; Baer and Kradolfer,
1987). In addition to these changes, polarization information
and coherency between SH and SV waves can be used in
an algorithm for detection of S-wave arrivals (e.g., Amoroso
et al., 2012).

More recently, Persson (2003) has argued that seismic
waves are non-Gaussian, and as such, higher order statistics
should be used to characterize waveforms. A variety of such
methods have been developed using attributes such as kurtosis
and skewness (e.g., Saragiotis et al., 2002; Galiana-Merino
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et al., 2008; Küperkoch et al., 2010; Lois et al., 2013; Baillard
et al., 2014). Detectors based upon autoregressive-Akaike in-
formation criteria are another category of picking algorithms,
and they are usually combined with STA/LTA analysis to ob-
tain the initial detection of P or S onset (e.g., Maeda, 1985;
Leonard and Kennett, 1999; Sleeman and van Eck, 1999;
Leonard, 2000; Zhang et al., 2003). Artificial neural networks
are also used (e.g., Dai and MacBeth, 1995, 1997; Wang and
Teng, 1995; Mousset et al., 1996) which can be combined
with high-order statistics, such as skewness, kurtosis, and their
time derivatives (Gentili and Michelini, 2006). Taylor et al.
(2011) used a novel approach by lifting the time series into a
high-dimensional space with the time-delay embedding tech-
nique and graph theory to parameterize the resulting phase
space.

Wavelet transform is another approach that is suitable for
analysis of nonstationary signals. There are two types of
wavelet analysis: the discrete wavelet transform (DWT) and
the continuous wavelet transform (CWT). The DWT permits a
compact representation of a signal, and is useful in signal com-
pression and noise reduction (e.g., Akansu et al., 2010). It has
been applied for phase picking, for example, three-component
seismogram analysis to detect both P and S phases using am-
plitude and polarization (Anant and Dowla, 1997). In contrast,
the CWT is the redundant counterpart of DWT. The wavelet
coefficients are correlated to one another in the CWT (this
is not the case in the DWT) resulting in an improved resolution
of features localized in frequency or in time. Thus, this redun-
dancy makes the CWT more suitable for applications such as
signal detection or feature extraction (e.g., Kumar and
Foufoula-Georgiou, 1997). For example, Tibuleac and Herrin
(1999) have applied CWT to regional earthquake recordings to
detect multireflected postcritical shear waves within the crust.
Similarly, Karamzadeh et al. (2013) combine the CWT and a
characteristic function of stacked envelopes of the signal at
different scales for phase detection.

In this work, we take advantage of the continuous wave-
let transform properties and define characteristic functions to
detect P- and S-wave arrivals. The algorithms provide onset
times and estimates of the quality and the robustness of the
picks. The approach presented here does not require any filter-
ing or processing of the seismograms. In addition, the algo-
rithms automatically adapt to the characteristics of the arrival
to treat different types of signal onset behavior (e.g., sharp or
emergent). The output of the algorithms also includes fre-
quency dependent picks which can be used to assess fre-
quency content to the phase arrival and possible body-wave
dispersion. Finally, we present a variant of the method that
automatically measures shear-wave splitting.

Method

This section provides a brief overview of the back-
ground theory of continuous wavelet transform and describes
its application to the automatic phase-picking problem.

Continuous Wavelet Transform

Wavelet transform is a popular approach that allows
unfolding of a signal into both time and frequency domains.
It is used in many applications such as signal analysis, fluid
mechanics (e.g., Daubechies, 1992; Farge, 1992; Hudgins
et al., 1993; Akansu et al., 2010), image processing, commu-
nication systems, and geophysics (e.g., Lilly and Park, 1995;
Kumar and Foufoula-Georgiou, 1997; Mallat, 1999; Tibuleac
and Herrin, 1999; Grinsted et al., 2004; Walker, 2008; Akansu
et al., 2010; Karamzadeh et al., 2013). Similar to the Fourier
analysis, it is based on the expansion of functions in terms of
basis functions, but the wavelet basis functions are localized in
time and frequency, allowing the locality in the signal being
analyzed to be retained. For example, if a function is locally
smooth, the wavelet coefficients vary smoothly over different
scales with similar amplitudes. On the other hand, if the func-
tion contains a discontinuity or a singularity, only the coeffi-
cients in the vicinity of that feature have large amplitudes. This
property enables better representation of nonstationary signals.

Wavelets are zero-mean functions (implemented as the
“admissibility condition”), and they are characterized by
their localization in time and frequency (Farge, 1992). The
wavelets are not necessarily orthogonal, but various wavelet
families satisfy the orthogonality condition such as “Daube-
chies” and “Symlets” (e.g., Daubechies, 1988, 1992; Walker,
2008). The localization of the wavelet in time and scale de-
termines the resolution of the wavelet transform in time and
frequency.

The continuous wavelet transform of a function f�t�,
which depends upon time t, is defined as the inner product
between the function and the wavelet family ψ that yields the
wavelet coefficients C (Grossmann and Morlet, 1984; Dau-
bechies, 1988, 1992; Heil and Walnut, 1989; Farge, 1992),
that is,

C�λ; τ� � hψλτjfi �
Z ∞
−∞

f�t�ψ�
λ;τ�t�dt; �1�

in which ψλ;τ�t�≡ 1��
λ

p ψ�t−τλ � denotes the wavelet function
(also known as mother wavelet), and * indicates the complex
conjugate operation. The parameter λ represents the scaling
factor and it is a positive real number that controls the dila-
tion (λ > 1) or contraction (λ < 1) in time. Parameter τ con-
trols the translation in time. A wavelet function must satisfy
the admissibility condition, that is, if ψ is integrable, it has
zero mean, or

Z ∞
−∞

ψ�t�dt � 0: �2�

Equation (1) indicates that the wavelet transform can be
described practically as a series of cross-correlation opera-
tions between the wavelet at different scales and the signal
being analyzed. Consequently, it is desirable to have a wave-
let function that reflects the features of the signal or the wave-
form (e.g., Torrence and Compo, 1998). Sharp changes and
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steps are better represented with boxcar-like wavelets, such
as the Haar wavelet (e.g., Daubechies, 1988, 1992; Walker,
2008), whereas complicated waveforms should be modeled
with similarly oscillatory wavelet functions. A useful prop-
erty of some wavelet families that can be utilized for this pur-
pose is the number of “vanishing moments” that dictates the
complexity or oscillatory behavior of a given wavelet (e.g.,
Daubechies, 1988, 1992; Farge, 1992; Butzer et al., 1994).
To examine the behavior of higher order derivatives of a
function, the mother wavelet should be insensitive to the
lower order variations of the function, that is, it should satisfy
the condition (Farge, 1992; Butzer et al., 1994)

Z ∞
−∞

ψ�t�tmdt � 0; �3�

in which m is the number of vanishing moments, and is the
upper limit of the order of the derivate of the signal to be
ignored. This implies that the wavelet coefficients are zero
for signals that can be described as polynomials of degrees
up to m − 1. Based on this concept, a wide range of wavelet
families can be derived from the mother-wavelet function by
changing the number of vanishing moments m. For example,
using the Daubechies wavelet family, members with various
vanishing moments can be generated (Fig. 1).

If the function f�t� is discrete, equation (1) becomes a
summation, practically a convolution operation of the signal
with the scaled and normalized wavelet kernel. The wavelet
functions are normalized to have unit energy at each scale,
allowing direct comparison between the wavelet transforms
and between transforms of different time series (e.g., Tor-
rence and Compo, 1998).

Algorithm for the Detection of Compressional-Wave
Arrivals

For the compressional-wave arrival, only the vertical
component of the seismogram is considered. The arrival of
the first compressional wave produces sudden change in the
amplitude, the phase, and the frequency content of the re-
cording, and the continuous wavelet transform allows the
detection of these changes by decomposing the signal as a
function of time and scale (Fig. 2). At the P-wave onset time,
the CWT coefficients are expected to increase simultaneously
over a range of scales, assuming that the body waves are non-
dispersive.

The first step in the CWTanalysis is to define an analysis
time window. A window centered at the theoretical P arrival
time tP is selected with a length that is at least the time differ-
ence between the theoretical P and S arrival times, that is,
tS − tP in which tS is the expected S-wave arrival time. The
next step is to determine the wavelet that is appropriate for
the waveform under consideration. For example, an abrupt
onset is best identified using a sharp wavelet. A rough mor-
phological analysis attempts to identify the sharpness of the
arrival using the envelope of the seismogram for two partially

overlapping windows. The first window, the signal window,
is defined with respect to the time of occurrence tm of the
maximum envelope amplitude. It starts at tm − k1�tS − tP�
and ends at tm. The parameter k1 is a value set by the user,
so that this window includes maximum amplitude as well as
the onset of the arriving wave (Fig. 3). The second window, the
noise window, starts earlier at time tm − k0�tS − tP� and ends
at time tm − k2�tS − tP�, in which k0 and k2 are parameters set
by the user with a condition k0 > k1 > k2. This window
should mostly contain noise and possibly the very beginning
of the wave arrival (Fig. 3). A line is fit to the envelope of each
noise and signal window using the least-squares method. For
the signal window, the slope calculation includes a weighting
scheme based upon the amplitude of each point of the en-
velope, that is, the most important point is the one that cor-
responds to the peak amplitude. For the noise window, all
points are of equal importance. When the P-wave arrival is
sharp, the slopes of these two lines differ significantly, but
when it is emergent, the difference in slopes is small (Fig. 3).
The difference in the slopes is quantified by

q � �q1 − q0�q−11 ; �4�

in which q0 and q1 are the slopes of the lines of the noise and
the signal window, respectively. Parameter q1 is always pos-
itive, whereas q0 can be negative or positive, depending upon
the type of the arrival and the noise characteristics of the seis-
mogram. High q values are associated with abrupt arrivals
and low q values indicate emergent arrivals. Based upon
the value of q and the SNR, a wavelet (e.g., different vanish-
ing moments) is selected for the analysis of the signal (e.g.,
Table 1).

After the wavelet for the analysis is selected, the CWTof
the waveform is calculated using different scales and time

(a)

(c)

(e)

(b)

(d)

(f)

Figure 1. (Left) Mother wavelets used in this study and (Right)
the corresponding amplitude spectra. (a) Symlet with one vanishing
moment. (b,c,d,e) Daubechies wavelet with 1, 3, 6, and 12 vanish-
ing moments, respectively. (f) Gaussian wavelet of order 2. The
solid and dashed curves are the real and imaginary components,
respectively.
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offsets. The CWT coefficients are both positive and negative,
but the important information, for the purpose of this algo-
rithm, is the abrupt change in the amplitude. To enhance the
changes in amplitudes, 2D range filter in scale-time space is
defined and applied to the CWT coefficients. At a given time
and scale, the filtered value is calculated as the difference be-
tween the maximum and minimum CWT coefficients within
the rangewindow. The length of the timewindow is set slightly
longer than the expected P-wave period; a long window enhan-
ces long-period signal and vice versa. This operation implicitly
introduces smoothing in time and scale, filtering out potentially
isolated features and increasing the statistical significance of
the peaks (Torrence and Compo, 1998). Furthermore, to fo-
cus on the detection of the onset of a wave arrival, the range
filter window is defined asymmetrically in time, that is, the
filter uses more coefficients of later times than the prior times

(e.g., Table 1). This approach helps to capture the increase in
the amplitude of the coefficients that occurs immediately
after the onset of the P-wave arrival. The coefficients are then
normalized with the maximum value at each scale. After the
application of the range filter, the following quantity is
calculated at each scale

Mi � sign�c�i − c−i ��c�i − c−i �2; �5�
with

c−i � 1

n

Xi

j�i−n
Cj and c�i � 1

n

Xi�n

j�i�1

Cj; �6�

in which Cj is the filtered wavelet coefficient at time j, i is
the target time index, and n is the predetermined window
length. The parameter Mi gives a measure of the difference
between average filtered CWT coefficients before (c−i ) and
after (c�i ) the ith time, and keeps track of the relative ampli-
tudes between c−i and c�i . Large positive and negative values
of Mi indicate abrupt changes in the CWT coefficients with
amplitude increase and decrease, respectively, and small val-
ues of Mi imply no significant change in the amplitude.
Ideally, Mi reaches a maximum value at the P-wave onset
time. At each scale, therefore, the onset time is chosen as
the time when a maximum in Mi occurs for the first time
with a value that is above a given threshold. This threshold
is set to be a fraction of the peakMi value for each scale. This
fraction is determined using the filtered CWT coefficients,
1 − �Cs − Cn�=Cs, in which Cs and Cn are the averages of
the CWT coefficients over the time window for which Mi

values are obtained, and for a noise window prior to Mi cal-
culation, respectively. This parameter controls how close to
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Figure 2. Synthetic examples of the behavior of the continuous wavelet transform to changes in (a) amplitude, (b) phase, and (c) fre-
quency. Top panels show the synthetic data in time domain and bottom panels show wavelet spectrum obtained using Daubechies wavelet
with three vanishing moments (Fig. 1c). (a) White Gaussian noise that is amplified by a factor of 4 beyond time index 250. (b) Harmonic
oscillation that exhibits a phase discontinuity at time index 250. (c) Harmonic oscillation that changes frequency at time index 250. The color
version of this figure is available only in the electronic edition.

(a) (b)

Figure 3. Schematic representation of the analysis of the arrival
type that is performed to select the appropriate wavelet. Examples of
(a) sharp and (b) gradual arrivals. For each example, raw (thin black
curve), its envelope function for noise (thick black curve) and signal
(thin gray curve) windows, and corresponding slopes obtained us-
ing the noise (black dashed line) and signal (gray dashed line) win-
dows are displayed. Different types of wavelets (upper left corner)
are selected based upon the slopes. The color version of this figure
is available only in the electronic edition.
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the peak Mi time the picked time should be; for a noiseless
case, that is, when the fraction is zero, a pick is selected to be
the first maximum in Mi value, and for a noisy case, that is,
when the fraction is large, a pick is selected close to the peak
Mi time. Bounds on the fraction value can be specified by the
user to ensure that it is neither 0 nor 1. This procedure is
repeated for all scales, and the final P-wave onset time is
computed as a weighted average of the individual picks from
different scales. The weighting value is determined by the
product of the SNR and the peak coefficient amplitude around
the P-wave arrival at each scale. This averaging scheme
exploits the multiscale resolution of the CWT domain, and
emphasizes the frequencies for which the SNR is high.

The statistics of the picks obtained at different scales
provide a measure of the robustness of the final pick and
associated errors. For example, the minimum and maximum
picked times provide the extreme error bounds. Another use-
ful measure is the standard deviation of these picks. In this
work, we use the weighted unbiased standard deviation as an
estimate of the uncertainty of the arrival time. Nevertheless,
higher order statistics can be used to further assess the un-
certainty. For example, the skewness of the picks can provide
insight into the symmetry of the pick distribution around the
final picked time.

Algorithm for the Detection of Shear-Wave Arrivals

Shear-wave arrival detection is, in general, more diffi-
cult than the detection of the P-wave arrival, because the
S waves arrive within the coda of P and other phases. This
problem becomes severe in the case of emerging S-wave
arrivals in which the wave onset is hidden in the background
noise, resulting in picks that are often late. One advantage of
the S-wave analysis, on the other hand, is that the S-wave
motion is 2D; hence it allows simultaneous analysis of the
two horizontal seismograms to produce robust detection
of the S-wave arrival. The first stage of the S-wave detection
algorithm is similar to the P-wave counterpart. A window is
selected around the S-wave theoretical arrival time with the
window length that is at least the theoretical time difference

between the P- and S-wave arrivals. For reasons that are dis-
cussed later, the adaptive wavelet selection is skipped, and
one fixed wavelet is used. The CWT is calculated for both
horizontal recordings.

At the S-wave onset time, the coefficients of the CWTare
expected to increase in absolute values over a wide range of
scales assuming that the wave is nondispersive. In contrast to
the P-wave arrival, this change should occur coherently on
the two horizontal seismograms. To identify this localized
similarities in time and scale, the wavelet cross spectrum
F�λ; τ�, is calculated as (Hudgins et al., 1993; Torrence and
Compo, 1998)

F�λ; τ� � L�C�
1�λ; τ�C2�λ; τ��; �7�

in which C1 and C2 are the CWT of the two signals that de-
pend upon scale λ and time τ, whereas L is a smoothing op-
erator in time and scale. Some of the advantages of the cross
examination of waveforms with wavelet cross spectrum are
demonstrated in Figure 4. In this synthetic example, Ricker
wavelet (i.e., the negative normalized second derivative of a
Gaussian function) is used to represent the S-wave arrival em-
bedded in white Gaussian noise. The input S waves include a
phase difference of π radians on two horizontal directions. The
wavelet cross spectrum calculated using Symlet-1 wavelet
(Daubechies, 1992) is sparse with zero coefficients every-
where except for the time and frequency range of the synthetic
S-wave arrival that is clearly represented as a region of high
anticorrelation value (Fig. 4).

After the cross spectrum is calculated, a range filter is
applied in a similar manner as with the P-wave algorithm.
For the detection of the S-wave arrivals, however, the sign of
the cross-spectrum coefficients is not important. Therefore,
the range filter is designed to bring out regions of high cross-
correlation amplitudes (either positive or negative). The
filtered coefficients are normalized with the maximum ampli-
tude, and then a characteristic function is examined at different
scales. This characteristic function monitors the behavior of
the average values of cross spectrum before and after a given
time, that is, for a given scale,

Table 1
Summary of Parameters Chosen for P-Picking Algorithm

P Wave

q Any >0:95 (0.8, 0.95] (0.5, 0.8] ≤0:5
SNR (dB) >34 >10 ≤10 ≤34

Wavelet db1 db3 db6 db12
Range filter window length along scales 1 3
Range filter window length along time (pts) 3 11 21 1
Detection threshold (upper/lower) 0.01 0.25 0.01 0.1

The type of wavelet and the range filter applied on the wavelet coefficients are determined based upon the
value of q (equation 4) and signal-to-noise ratio (SNR). The wavelets are all Daubechies wavelets with
varying number of vanishing moments, for example, db3 indicates Daubechies wavelet with three
vanishing moments. The continuous wavelet transform is performed with 40 wavelets ranging in scale
between 2 and 128.
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Ni � f�i − f−i ; �8�
with

f−i � 1

n

Xi

j�i−n
Fj and f�i � 1

n

Xi�n

j�i�1

Fj; �9�

in which Fj is the filtered cross-spectrum value at time index
j, and the index i corresponds to the evaluation time. In the
case of S waves, the difference in the values between two win-
dows is used instead of the square of the difference considered
for the P-wave arrival (equation 5). Similar to the P-wave al-
gorithm, one pick from each scale is obtained using the first
local maximum of Ni that exceeds a given threshold. The
threshold is determined using the same average cross-spectrum
coefficients as for the P-wave case. Assuming the S waves to
be nondispersive, the final S-wave onset time is calculated as a
weighted average of these individual estimates. The weights in
this case are defined by the difference of the average cross-
spectrum coefficient before and during the S-wave arrival.
The statistics of the picks at various scales can be used to es-
timate the uncertainty of the final pick, and the weighted un-
biased standard deviation is used.

Data, Algorithm Setup, and Applications

We apply the automatic picking algorithm to data re-
corded by the High Sensitivity Seismograph Network (Hi-
net) of Japan (Fig. 5; e.g., Okada et al., 2004). This network
consists of more than 750 stations distributed throughout the
Japanese islands, and extremely short-period instruments
(channel code EH) are installed inside boreholes at depths
that are typically more than 100 m below ground. The wave-
form is digitized at 1000 samples per second, and the data are

made available with sampling frequency of 100 Hz and 27 bit
resolution (Okada et al., 2004).

We select parameters and apply the automatic algorithms
to the Hi-net recordings of a deep, regional earthquake. A deep
event is chosen, because surface waves that arrive close to the
S-wave arrival times at regional distances are not excited, and
the arrival times of P and S waves are sufficiently separated.
Furthermore, the Hi-net data exhibit a wide range of disparate
behaviors due to strong heterogeneities (e.g., subducting slab)
beneath Japan. Even from a single deep event, we observe
traces that contain strong high-frequency signals with emer-
gent onset and those that are mostly of low frequency with
sharp onset (Figs. 6 and 7). This data set, therefore, is a good
example to demonstrate the effectiveness of the algorithms.

Once the target region/stations and types of earthquakes
are determined, various parameters must be chosen for the
automatic algorithms. Specifically, a user must select a data
signal window, fractional parameters k0, k1, and k2 that are
used to define windows for the envelope slope calculation,
the smoothing operator L for shear-wave detection, the type
of wavelets to be used, and how they are selected based upon
the data, the 2D range filter, the window for the Mi and Ni

calculations, and the thresholds for detecting the onset time.
For the P-wave analysis, the fractional values k0, k1, and

k2 chosen are 0.09, 0.04, and 0.01, respectively, for the

Figure 4. Synthetic example of seismogram wavelet cross spec-
trum. Ricker wavelet is used to represent the S-wave arrival with an
average phase difference of π between the two horizontal compo-
nents (top and middle rows). The wavelet cross spectrum (bottom
row) shows a sharp region of negative coefficients, mostly between
scales 10 and 20. The color version of this figure is available only in
the electronic edition.

Figure 5. Distribution of 775 High Sensitivity Seismograph
Network (Hi-net) stations (triangles) that are available as of 1 July
2014. The two earthquakes used in the arrival-time picking exam-
ples are indicated by the two stars labeled 070614 (deep event on 14
June 2007) and 111107 (shallow event on 07 November 2011). The
earthquake used in the splitting example is indicated by a star with
label 030302 (depth of 127 km on 02 March 2003), and the F-net
station AMM is indicated by a rectangle. The color version of this
figure is available only in the electronic edition.
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determination of the sharpness of the waveform onset. The q
value that quantifies the sharpness is used in conjunction with
the SNR to choose the number of vanishing moments between
1 and 12 (Table 1). Seismograms with small values of q (emer-
gent arrivals) are modeled with high vanishing moments
(more oscillatory wavelet), and those with high values of q
(sharp arrivals) are decomposed using wavelets with low van-
ishing moments (more step-like wavelets). The wavelet family
chosen for the P-wave analysis is the Daubechies wavelet
family (Fig. 1b–e). The Daubechies are used in a broad range
of applications as they are orthogonal, compact, and easily
specified with vanishing moments (e.g., Daubechies, 1988,
1992; Mallat, 1999; Vonesch et al., 2007; Walker, 2008). The
2D range filter that is applied to coefficients of CWT is defined
with variable lengths in the time and scale domains. The
length is set between 1 and 21 samples in time based upon the
value of q and the SNR (Table 1). The scale dimension of the
range filter is set to three except when the SNR is high. When
the ratio is above 34 dB, the scale dimension is ignored, and

filtering is performed only over time. The time window for
evaluation of Mi (equation 5) starts at the smaller of 3.5 or
0:4�tS − tP� seconds before the time of interest, and ends
at the smaller of 4.0 or 0:4�tS − tP� seconds after the time
of interest. The scale-dependent threshold for obtaining picks
at each scale is bound to be no smaller than 0.01 of the peak
Mi value for all traces. The upper limit for the fraction is set to
be 0.25 for traces with SNR below 34 dB and 0.01 for traces
with SNR equal to or greater than 34 dB (Table 1).

For the S-wave analysis, the signal time window is se-
lected to be 50% of the time between S and P arrivals, that is,
0:5�tS − tP�. We find that wavelets that are well localized in
time and have a small number of vanishing moments yield
sharp changes in the wavelet cross spectra, and that wavelet
type does not alter the detection ability, that is, a single wave-
let is adequate for most cases. Therefore, the Symlet-1 wave-
let (Fig. 1a; Daubechies, 1992) is chosen for the S-wave
algorithm. It is poorly localized in the frequency domain;
hence, the resolution in scale is poor. Consequently, the scale

(a) (b) (c)

Figure 6. Three examples of P-wave arrival picks at (a) IKNH, (b) KTUH, and (c) SNWH stations of the Hi-net array. The top row shows
the vertical component of the seismogram centered at the theoretical P-wave arrival time. The middle row shows the continuous wavelet
transform (CWT) coefficients, and the bottom row shows the same coefficients after the application of the range filter. White curves represent
the detection function, normalized for each scale. Triangles mark the pick times at each scale. The final P-onset time is shown with the vertical
line. The wavelets used are Daubechies with (a) one and (b,c) three vanishing moments. The color version of this figure is available only in the
electronic edition.

(a) (b) (c)

Figure 7. Three examples of S-wave arrival picks at (a) AYKH, (b) HMMH, and (c) ASGH stations of the Hi-net array. The top row
shows the two horizontal seismograms centered on the theoretical S-wave arrival time. The middle row shows the corresponding wavelet
cross spectrum, and the bottom row shows the filtered version of the cross spectrum. White curves represent the detection function, nor-
malized for each scale. Triangles mark the pick times at each scale. The final S-wave onset time is shown with the vertical line. The color
version of this figure is available only in the electronic edition.
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dimension is not considered in the smoothing operators on
the cross-wavelet coefficients (equation 7) or the range filter.
The extent of the smoothing operator (equation 7) in time is
set to 0:03�tS − tP� seconds (Table 2). The window for theNi

calculation (equation 8) is centered on the S-wave theoretical
arrival time and spans 40% of the tS − tP time. The detection
threshold is bound to be between 0.1 and 0.99 of the peak Ni

amplitude at each scale.

Examples

As an example, we choose a magnitude 5.1 earthquake
that occurred on 14 June 2007 at 15:03:14 UTC. According
to the Japan Meteorological Agency (JMA), this event is
located at latitude 30.876° N, longitude 137.687° E, and a
depth of 507.2 km (see Data and Resources). It is recorded
by most of the stations of the Hi-net array. When there is a
clear arrival with high SNR such as at the station IKNH
(Fig. 6a), the picks show minimum amount of scatter at dif-
ferent scales. For the example at station KTUH (Fig. 6b), the
higher frequency Pwave is visible at scales smaller than 40, but
scales above 60 are dominated by noise. Such low-frequency
noise that is of comparable amplitude to the high-frequency
P-wave signal is clearly separated by the multiresolution char-
acteristics of the wavelet domain. Individual picks up to a scale
of about 40 are consistent, associated with the P-wave arrival.
At larger scales, the energy of the P arrival is small, and the
picks show scatter, reflecting the background noise. These
picks associated with noise do not contribute significantly to
the final onset-time estimate, because the SNRs at these scales
are low, and the individual picks are weighted down in the final
average calculation. Lastly, when a waveform arrives with low
SNR, it becomes difficult to manually pick the onset (Fig. 6c).
However, for scales with sufficient SNR, an appropriate final
pick can be obtained. The three examples shown in Fig. 6a–c
give P-wave arrival-time estimates of 96:04� 0:28,
86:03� 0:77, and 103:33� 0:24 s, respectively.

The application of the S-wave detection algorithm
shows similar results (Fig. 7). When there is a clear S-wave
arrival, a region of high positive cross-spectrum coefficients
is apparent (Fig. 7a). The picks at various scales are relatively
consistent with one another, and the final pick corresponds
well to visually observable onset of the S-wave arrival. Even

when the SNR is poor, cross-spectrum coefficients remain
small prior to the S-wave arrival and increases sharply when
the wave arrives (Fig. 7b). The individual picks at different
scales are also consistent, with the exceptions at a few larger
scales that are noise-related. Because both the amplitude of
the coefficients and the SNR are small at these large scales,
small weights are assigned to these picks, and they do not
have much effect on the final arrival-time estimate. Lastly,
when an arrival of the S wave is emerging, the onset time is
difficult to identify from visual examination of the seismograms
(Fig. 7c). However, in the wavelet cross-spectrum domain, the
S-wave arrival produces a sharp initiation of a region of nonzero
coefficients. The sign of the cross-correlation amplitude varies
along scales, and individual pick times show scatter, but the
onset time can be estimated objectively and automatically. The
S-wave arrival times selected for stations AYKH (Fig. 7a),
HMMH (Fig. 7b), and ASGH (Fig. 7c) are 150:58� 0:43,
139:05� 2:18 and 151:46� 2:10 s, respectively. The uncer-
tainty in AYKH station (Fig. 7a) is particularly small, reflecting
the sharp and clear arrival of the S phase. At the other two sta-
tions, the estimated uncertainties are considerably larger. At the
HMMH station (Fig. 7b), the high uncertainty arises mainly
from two picks at large scales that are significantly earlier than
the rest. Although these outliers have small influence on the
final pick, they strongly affect the uncertainty estimate, because
calculation of weighted unbiased standard deviation involves
squared distances from the average, that is, large deviations are
weighted heavily. At the ASGH station (Fig. 7c), the picks at
different scales are scattered, reflecting the ambiguity of the
onset time due to an emergent arrival and resulting in a large
uncertainty estimate.

To assess the effectiveness of the automatic algorithms,
we compare the picks with those that are made manually. Of
the 757 stations that are available for this deep earthquake,
some noisy records and arrivals are difficult to identify, re-
ducing the manually picked times to 750 and 679 for P- and
S-wave arrivals, respectively. Seventy percent of the auto-
matic P-wave picks are within 0.28 s of the manual picks,
and 85% are within 0.54 s (Fig. 8a). Assuming Gaussian dis-
tribution of the differences, the mean is −0:06 s and the stan-
dard deviation is 0.53 s (Fig. 9a). The data are, however, fit
poorly with this Gaussian distribution. In particular, the peak
of distribution around 0 s is significantly underpredicted by
the Gaussian model. A better fit is obtained using the Stu-
dent’s t distribution that reproduces a narrow peak with broad
tails (Fig. 9a). The parameters of the Student’s t distribution
are mean of 0.00 s, standard deviation of 0.19 s, and 1.45
degrees of freedom. For S waves, 70% of the automatic picks
are within 1.02 s of handpicked times, and 85% are within
1.66 s (Fig. 8b). The mean and standard deviation of the data,
assuming Gaussian distribution, are 0.01 and 1.71 s, respec-
tively. However, as with the P-wave data, the distribution is
better modeled with the Student’s t probability density func-
tion with mean of 0.12 s, standard deviation of 0.12 s, and
1.62 degrees of freedom. The Student’s model still underes-
timates the peak amplitude of the S-wave pick distribution,

Table 2
Summary of Parameters Chosen for S-Picking

Algorithm

S Wave

Smoothing window length along scales 1
Smoothing window length along time (s) 3% of tS − tP
Range filter window length along scales 1
Range filter window length along time (s) 3% of tS − tP
Wavelet sym1

The Symlet wavelet with one vanishing moment (sym1) is used
for the S-wave analysis. The continuous wavelet transform is
performed with 36 wavelets ranging in scale between 4 and 220.
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but characterizes the distribution much better than the Gaus-
sian (Fig. 9b). These statistics show good agreement between
manual and automatic picks. The rms differences are 0.53 and
1.71 s for P and S picks, respectively. The rms differences in
picks between institutions are 0.43 s for P-wave picks and
5.53 s for S-wave picks (Zeiler and Valasco, 2009). Hence,
our approach produces S-wave picks that show substantially
better agreement with manual picks than between institutions.
On the other hand, the differences observed for the P-wave
picks, is slightly larger than interinstitutional difference.

To test if the parameters of the algorithms set for a deep
earthquake can be used for other sources, we apply the
scheme to a shallow earthquake without changing any of the
preset values (Table 1). The event chosen is a magnitude 4.5
earthquake that occurred on 07 November 2011 at 14:41:59
UTC. The JMA catalog lists its location as latitude 36.900° N,
longitude 139.381° E, and a depth of 3.4 km. Data for this
event are available from 769 stations of the Hi-net array, and
the automatic algorithms are applied and compared with
manual picks. Seventy percent of the automatic P-wave picks

are within 0.25 s of hand-selected times, and 85% are within
0.53 s (Fig. 8c). Gaussian fit to the distribution of differences
between manual and automatic picks provides mean and
standard deviation of−0:13 and 0.49 s, respectively (Fig. 9c).
As with the previous example, the distribution is fit better by
the Student’s t distribution with mean of 0.01 s, standard
deviation of 0.16 s, and 1.31 degrees of freedom (Fig. 9c).
These statistical results indicate that the performance is com-
parable to the previous example using a deep source. For
S-wave picks, 70% of the automatic picks are within 1.23 s,
and 85% are within 2.01 s from manual picks (Fig. 8d).
Gaussian and Student’s t distribution give the same mean of
−0:36 s, but standard deviations are 1.36 and 0.83 s, respec-
tively. The degrees of freedom for the Student’s t distribution
are 2.63 (Fig. 9d). These results show slightly larger discrep-
ancies between automatic and manual picks compared to the
results using data from the deep earthquake. This can be
attributed to simultaneous arrival of different phases, in par-
ticular, surface waves that produce coherent signal on the two
horizontal components of the seismogram. Similarly, the in-
cidence angles of the compressional waves and their coda
generated by such a shallow event are not vertical, resulting
in coherent signal on two horizontal components, further
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Figure 8. Normalized cumulative number of the stations as a
function of absolute difference between automatic and manual picks
(jdtj) for (a) P-wave and (b) S-wave arrivals from the analysis of the
deep earthquake of 14 June 2007. (c) and (d) are the same as (a) and
(b), respectively, except for the analysis of the shallow earthquake
of 07 November 2011. The dashed curves show the level of resid-
uals at 70% and 85%.
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Figure 9. Probability density histograms of the difference be-
tween automatic and manual picks and corresponding fits using nor-
mal (dashed curve) and Student’s t (solid curve) distributions for the
(a) P- and (b) S-wave analyses of the deep earthquake. (c) and
(d) are the same as (a) and (b), respectively, except for the analyses
of the shallow earthquake. The color version of this figure is avail-
able only in the electronic edition.
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interfering with the determination of S-wave arrival time.
Nonetheless, the discrepancy between manual and automatic
picks is small and suggests that the set of parameters chosen
for deep sources can be applied successfully to shallow
sources.

Thus far, we have assumed P and S waves are nondis-
persive to obtain a single arrival time. Although body waves
are generally not dispersive, there have been observations of
considerable dispersion (e.g., Correig, 1991; Devilee et al.,
2003; Furumura and Kennett, 2005). The algorithms pre-
sented in this manuscript are suitable for retrieving disper-
sion information, or frequency dependence of arrival times,
by keeping track of individual picks along different scales
(Fig. 10). However, it should be noted that the wavelet trans-
form of the signal unavoidably introduces artifacts at the
edges of the wavelet spectrum due to the finite signal length
and incomplete localization of the wavelet in time. The re-
gime of significant artifacts is estimated using the “cone of
influence” (Torrence and Compo, 1998; Grinsted et al., 2004)
that shows the decorrelation time for a single spike in the sig-
nal at each scale. Any scale-dependent signal that is beyond
this cone of influence can be interpreted as dispersion effect,
and the artifact can be taken into account when evaluating the
statistical significance of the measured dispersion. This artifact
can also be suppressed using longer time window around the
arrival of the signal of interest. For measurements of disper-
sion, selection of the wavelet for wavelet transform also be-
comes important. For example, the Symlet-1 wavelet used for
S-wave detection is poorly localized in frequency and thus has
significant leakage over scales, making dispersion measure-
ment more challenging.

Measurement of Shear-Wave Splitting

Shear-wave splitting can be measured using well-
established techniques such as rotation correlation method
(e.g., Ando et al., 1983; Fukao, 1984; Bowman and Ando,
1987; Levin et al., 1999). However it is also possible, by se-
lecting a complex wavelet, to obtain a direct measurement of
the phase difference between the two horizontal components
from the complex argument of the wavelet cross spectrum.

The algorithm to measure shear-wave splitting is practi-
cally identical to that presented in the previous section, ex-
cept that the cross-wavelet spectrum (equation 7) becomes
complex when the mother wavelet chosen for the analysis is
complex. In this case, the cross-wavelet power is given by
jF�λ; t�j, and the relative phase difference of the signals in
time and scale is obtained using the complex argument
arg�F�λ; t��. The amplitude information of the cross-wavelet
power spectrum can be used for automatic selection of the
region of interest that is, time and scale at which the S-wave
arrives. The average phase of the wavelet cross spectrum
within this region provides an estimate of the phase differ-
ence between the two horizontal recordings. Conversion of
phase difference to time delay, a quantity conventionally
used as a measure of shear-wave splitting, requires an esti-
mate of the period of the S wave which can be readily ob-
tained by the type of basis wavelet and the scale of the peak
amplitude in the power of the wavelet cross spectrum. If T is
the estimated period of the wave, the delay time is calculated
as δt � δφ × T=�2π�, in which δt is the delay time and δφ is
the measured phase difference. We demonstrate this ap-
proach in the following two examples. For the basis complex
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Figure 10. Well-dispersed P-wave signal and its dispersion characteristics. (a) Vertical component recorded at YMKH station of the Hi-
net array from the deep earthquake of 14 June 2007. The time window is selected around the expected P-wave arrival time. (b) CWT of the
seismogram. (c) Filtered coefficients. White curves show the variation of the detection function normalized for each scale. White triangles
mark the pick at each scale. The P-onset time (vertical line) is calculated as the weighted average of the individual picks. (d) Dispersion
diagram showing the pick time and the corresponding apparent speed as a function of scale and the associated center frequency. The intensity
of the circles shows the importance of each pick that is, dark circles are associated with larger weights used to calculate the arrival time. The
color version of this figure is available only in the electronic edition.
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wavelet, Gaussian wavelet of order 2, that is, the second
derivative of the complex Gaussian function, is used (Fig. 1f).

As a first example, we generate two synthetic seismo-
grams using a tapered harmonic function of period T � 4:6 s
with 1 s time delay, that is, one trace is offset from another by
one second (Fig. 11). White Gaussian noise is added to both
signals with SNRs of 7.3 dB (low-noise case) and 0.6 dB
(high-noise case; Fig. 11a,b). In both cases, the arrival of the
S wave is clearly identified in the amplitude spectrum, and a
region of interest can be defined based upon 50% and 90% of
the peak amplitude. In the example where the noise level is
low (Fig. 11a), the phase difference is calculated by taking
the average within these regions, and based upon the 50%
and 90% of the peak amplitude, they are −62:4° and −63:9°,
respectively. Using the scale where the peak amplitude in the
amplitude spectrum occurs, the period is estimated to be
4.785 s. If we use the 90% contour, the time delay is 1.01 s
that reduces to 0.97 s when the contour level is lowered to
50%. Even when the noise level is increased so that the target
signal is difficult to discern by eye (Fig. 11b), the wavelet
analysis performs well, and recovers delay times of 1.07
and 1.05 s using 90% and 50% contour levels, respectively.
These analyses show that the delay time is successfully re-
covered by the automatic algorithm, and when noise is not
correlated on the two components, shear-wave splitting can
be obtained even using noisy recordings.

As a second example, we apply the method to real data
recorded at the AMM station that is part of the Full Range
Seismograph Network of Japan (Fig. 5; Okada et al., 2004).
We choose a magnitude 4.2 earthquake that occurred on
02 March 2003 at 20:01:00 UTC with the hypocenter at
27.695° N, 127.374° E, and 127.0 km depth (JMA catalog,
see Data and Resources). The station AMM in the Ryuku
region is within 1° of the earthquake, and the S-wave incident

angle is nearly vertical, maximizing energy on the two hori-
zontal components. Furthermore, previous studies have an-
alyzed anisotropic signals observed at this station (e.g., Long
and van der Hilst, 2005), providing reference values to which
the results of the automatic algorithm can be compared.

The two horizontal seismograms recorded at the AMM
station exhibit clear S-wave arrival with time delay (Fig. 12a).
The region of interest can be easily identified in the ampli-
tude spectrum, and delay time is determined using the phase
information. However, shear-wave splitting measurements
are typically characterized by the fast-splitting direction and
the delay time, rather than delay time alone (e.g., Long and
Silver, 2009). To obtain an estimate of the fast-splitting direc-
tion, we implement an additional step. Assuming a uniform
anisotropy, the waveforms recorded on two horizontal compo-
nents become most similar when they are rotated to the fast-
splitting direction, that is, at this angle, the two waveforms
have highest correlation with the delay-time offset. Therefore,
we perform a grid search over rotation angles in the horizontal
plane. For each rotation angle, the delay time is first deter-
mined, and the waveforms are shifted by this delay time to
determine maximum value of the amplitude cross spectrum.
The rotation angle that gives the largest amplitude, corre-
sponding to most similar waveforms in two horizontal direc-
tions, can be interpreted as the fast-splitting direction.

This additional step is demonstrated in Figures 12 and 13.
At a given angle (e.g., 48°), the wavelet analysis of the two
horizontal recordings is performed to obtain the delay time
(e.g., 0.68 s; Fig. 12a). The waveforms are then shifted by this
delay time, and the wavelet analysis is performed again
(Fig. 12b). Because correction has been made for the delay
time, the resulting phase difference should be zero, and the
quantity of interest is now the maximum value of the ampli-
tude spectrum. This is repeated for different rotation angles
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Figure 11. Synthetic examples for determining the time delay between two horizontal seismograms. The top row shows the synthetic
waveforms and the corresponding particle motion (inset). The middle row shows the amplitude spectrum normalized by the maximum value,
and the bottom row displays the complex argument of the wavelet cross-spectrum coefficients. The contours correspond to 50% and 90% of
the peak amplitude of the coefficients. Two different noise levels are considered, (a) 7.3 dB and (b) 0.6 dB. The color version of this figure is
available only in the electronic edition.
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(Fig. 13), and the plot of the peak amplitude spectra shows
two local maxima (Fig. 13a). One maximum corresponds to
waveforms that are correlated and another corresponds to
waveforms that are anticorrelated. These two types are iden-
tified by examining the phase difference (Fig. 13b), that is,
when the associated phase difference is close to π, the maxi-
mum is due to anticorrelation, and is disregarded. Based
upon this criterion, the fast-splitting direction is observed to
be between 49° and 52° with inferred delay time of 0.64 to
0.68 s (Fig. 13c). Both fast direction and delay time are in
good agreement with previous results for this particular sta-
tion, a fast-splitting azimuth of 46° and a delay time of 0.65 s

(Long and van der Hilst, 2005). The above algorithm is ob-
jective, and as long as the noise is not coherent on two com-
ponents being considered, it can automatically determine the
splitting parameters even with noisy seismograms.

Discussion and Conclusions

The algorithms presented in this manuscript for auto-
matically picking P- and S-wave arrivals perform at a level
that is comparable to that of human analysts. Working in the
wavelet domain allows multiresolution analysis of the wave-
form, and provides the means to distinguish the phase arrival
from random or systematic noise. In particular, the S-wave
arrival can be identified using the wavelet cross spectrum of
the horizontal components even when the noise level is high.
Although not implemented for this article, the effectiveness
of the algorithm can be improved by rotating three-compo-
nent seismograms into the QRT coordinates based upon the
incidence angle (e.g., Jepsen and Kennett, 1990). It will help
isolate P- and S-wave arrivals on one or two components and
reduce coherent noise.

In this work, we attempt to keep the number of param-
eters that require tuning as low as possible. However, further
optimization of parameters can increase the performance of
the algorithms by adapting to specific problem of interest.
For example, the scale dimension of the range filter should
correspond to the frequency content of the signal, and this
knowledge can be implemented in the form of wavelet selec-
tion to improve detection. Similarly, the time window around
the theoretical arrival time should be modified based upon
the type of application and the expected difference between
observed and theoretical arrival times. Choosing a larger
window increases the ability to capture arrivals that are
unusually late or early, but increases the chance of misiden-
tifying some later or earlier phase as the target phase. For the
onset-time detection, threshold at each scale can be fine-
tuned according to the specific noise characteristics of the
application. The source properties can also be taken into con-
sideration. For example, recordings of volcanic tremor show
highly oscillatory arrival with emerging onset (e.g., Schick,
1981). For such data, using wavelets with high number of van-
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Figure 12. (a, top) Horizontal components recorded at the F-net
AMM station rotated by 48° to identify the fast-splitting direction.
(a, middle) Amplitude of the wavelet cross-spectrum coefficients.
The coherent region shown by 50% and 90% contours constrains
the S-wave window. (a, bottom) Phase of the complex wavelet
cross-spectrum coefficients showing the phase-difference between
the two signals. Time zero corresponds to the expected S-wave
arrival time. (b, top) Horizontal components after the time-delay
correction is applied. (b, middle) Wavelet cross-spectrum amplitude
for the corrected seismograms. (b, bottom) Wavelet cross-spectrum
phase information for the corrected components. The color version
of this figure is available only in the electronic edition.
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Figure 13. Determination of the fast-splitting direction and delay time of S waves recorded at the AMM station. The two vertical lines
indicate the maximum coefficient values that correspond to phase difference of 0 (solid line) and π (dashed line), respectively. (a) Peak
amplitude before (dashed curve) and after (solid curve) the delay-time correction as a function of rotation angles of the horizontal compo-
nents. (b) The phase difference at the peak amplitude before (dashed curve) and after (solid curve) the delay-time correction. (c) The delay-
time correction inferred from the phase difference at various rotation angles. The color version of this figure is available only in the electronic
edition.
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ishing moments as basis functions would be preferable. In the
case of arrivals of teleseismic signals at a dense array, it is
worth investigating the improvement in performance by replac-
ing ordinary mother wavelets with customized wavelets, such
as stacked waveforms, to generate the basis functions that are
similar to the observed signal. This practice may also be fruitful
in exploration applications where the morphology of the first
arrival does not vary significantly along different receivers.

In addition to the onset time and the associated uncer-
tainties, the analysis in the wavelet domain can be used to
retrieve information such as the dominant frequency of the
arrival and strength of dispersion. For example, frequency-
dependent pick times can be utilized to derive frequency-de-
pendent sensitivity kernels required in seismic tomography
by determining the first Fresnel volume around the ray path.
Because the algorithms described in this article are applied to
raw seismograms, the frequency information is unbiased (ex-
cept for the instrument response) and is data driven, as opposed
to picking algorithms that require a priori narrow band-pass
filtering of the waveform.

Finally, we demonstrate that the continuous wavelet
transform approach is also suitable for developing an auto-
matic algorithm for measuring the shear-wave splitting. To ob-
tain phase information, the basis wavelet must be complex,
and amplitude and phase coefficients of complex wave spectra
are analyzed to generate information such as the fast-splitting
direction and the delay time. The results obtained for the sta-
tion AMM are consistent with a previous study, and the au-
tomatic implementation of the method will lead to compilation
of a large database of shear-wave splitting measurements.

Data and Resources

Seismograms used in this study have been collected and
made available by the National Research Institute for Earth
Science and Disaster Prevention in Japan. The locations of
the earthquakes used in this work are obtained from the Ja-
pan Meteorological Agency (JMA; http://www.jma.go.jp;
last accessed August 2014).
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