
Virtual Data StructuresDoaitse Swierstra1 and Oege de Moor21 Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, TheNetherlands2 Programming Research Group, Computing Laboratory, 11 Keble Road, Oxford OX1 3QD,United Kingdom
1 IntroductionThe purpose of this paper is to demonstrate a number of techniques which may be used incalculating algorithms for sequence-oriented problems. It may be considered as a furtherstep in the development of a programming method which started with [5]. The basicobservation underlying this method is that algorithms can be the result of a systematicdevelopment, in which all design decisions and applied insights are clearly identi�able.One might even claim that the essence of an algorithm is its derivation, and not theprogram text that results from such a derivation.Originally the theory for algorithm derivation was presented in an imperative set-ting, using predicate calculus as the main tool for reasoning about the various steps in aderivation. A complicating factor has been that, in deriving a program, the designer hasto cope with two di�erent formalisms and an often intricate relationship, namely betweenthe programming language itself and the formalism for reasoning about the program un-der development. Unfortunately, the rich expressiveness of the predicate calculus, whichhas been used for the latter, has not forced algorithm developers to express themselvesin more structured and more abstract ways. As a result this approach can still be con-sidered as fairly ad hoc, although various attempts have been made to merge the twocomponents of the formalism [10].In [7] a more calculational style of program development has been advocated, in whichthe program itself, instead of appearing as a side-e�ect of a derivation, is the subject oftransformations. The idea is that the process of developing an algorithm consists of asequence of transformations, starting with an ine�cient speci�cation, which may evenbe nonexecutable, and resulting in an executable, e�cient program. In [2] this processhas been demonstrated to be e�ective, introducing the so-called Segment DecompositionTheorem, which captures many instances of the design steps replacing a constant by avariable and strengthening the invariant, which are well known from the imperative school[6]. The relative success of this approach lies in a well-chosen combination of a notation forfunctions, which lends itself to easy manipulation, and the introduction of higher orderfunctions which enables a more abstract view of many algorithms. As a result of thiswork the insight has come that control constructs like maps, �lters and reductions, which

2 Doaitse Swierstra and Oege de Moorwere originally used in a a sequence oriented setting, could be formulated more abstractlyby making use of the concept of a homomorphism. Homomorphisms naturally come intoexistence when one generalises reduce over lists (corresponding to looping over an arrayin an imperative setting) to any inductively de�ned type. Generalisations of other oft-occurring control structures, i.e. recursion patterns, has led to a wealth of other classesof morphisms; an overview is given in [9].The way data structures are considered has shifted in recent years from a more im-plementation and representation oriented view towards an algebraic view. Within the�eld of transformational functional programming, the beginning of this shift was markedby the identi�cation of the Boom[4]-hierarchy (\boom" is also the Dutch word for tree),which shows clearly the algebraic relationship between binary trees, sequences, bags andsets. This hierarchy is established by starting from the signature describing binary trees,and subsequently adding laws to this signature:JV ::= 2 : � [�] : A ++ : JV� JV;where we are assuming that A is the base type over which the structures are de�ned andthat the following law holds for the unit element 2:2++ s = s++2 = sIf ++ satis�es no further laws, JV is the data type of unlabelled binary trees. Otherdata types can be obtained by postulating further laws. One thus obtains the hierarchysummarised below:associativity (x++ y) ++ z = x++ (y ++ z) sequencescommutativity x++ y = y ++ x bags or multisetsidempotency x++ x = x setsThe structure of this paper is as follows. In Sect. 2 we will introduce the class ofproblems that is the subject of this paper. In Sect. 3 we will introduce the conceptswhich are necessary to understand the derivations to be given in Sect. 5. In Sect. 4 wewill introduce the concept of a virtual data structure, which allows one to optimise certainfunction compositions. The importance of this optimisation is that one can reason at thelevel of function composition as long as possible, only eliminating intermediate results inthe �nal transformation step.In this paper there is no separate section on notation. This re
ects our view that atthe current state of research, there is no such thing as a �xed notation. Indeed, part ofthe research is to discover which concepts are worth a notation of their own, and whatnotations are useful in �nding derivations. For this reason notation will be introduced onthe
y.The calculus used in this paper will be rather informal. Current active research inthis area has provided a formal underpinning of the presented notation, and of the lawsformulated using the notation. These foundations are however not the subject of theresearch described here; the interested reader is referred to [1][11]. A reader feeling thata proper understanding of functional programming is lacking is referred to [3].At the end of this section we want to stress that most of the techniques we arepresenting here have been known for a long time in the area of compiler construction,

Virtual Data Structures 3and as such belong to the tool-box of most compiler writers. It is the di�erent use andformulation of these concepts which makes them applicable in a calculational style ofprogram derivation. Where appropriate we will indicate such correspondences.2 The Problem ClassIn this paper we study problems of the following form:f = compose= � property� � generator ; (1)where � denotes function composition. The generator is a set-valued function that gen-erates candidates for a solution. For each of these candidates a property is computed(hence the � symbol, which indicates that the function is supposed to be applied toeach element of the sequence, bag or set which is returned by the generating part), and�nally all these intermediate results are used in computing the �nal value, by makinguse of a so-called reduction in combination with the binary function compose. Hence ifgenerator.x = f a0; a1; : : : ; an g thenf.x = (property.a0)compose(property.a1)compose(property.a2) : : : (property.an) :A typical generator is the function segs, which returns all contiguous subsequences ofits arguments: segs.x = fyj9u; v : u++ y ++ v = xg :Other examples of generators areinits.[a0; a1; : : : ; an] = f []; [a0]; [a0; a1];: : : ;[[a0; a1; : : : ; an]] gsplits.[a0; a1; : : : ; an] = f ([]; [a0; a1; : : : ; an]);([a0]; [a1; a2; : : : ; an]);: : : ;([a0; a1; : : : ; an�1]; [an]);([a0; a1; : : : ; an]; []) g :For example the following speci�cation says that a sequence is ascending:asc = ^= � (� � ("=�#=))� � splits ;where "= computes the maximum value of a sequence, by reducing it with the maximumoperator ", and #= the minimum value. The functions splits is de�ned bysplits.x = fhu; viju++ v = xg :The � operator takes two functions as its arguments and returns a function which appliesthese functions to both components of its argument and returns the pair of the two results,i.e.: (f � g).hx; yi = hf .x; g.yi :

4 Doaitse Swierstra and Oege de MoorThese pairs are subsequently each subjected to a comparison (�), and �nally the conjunc-tion of all these comparisons is taken (^=). In words, this would mean that we consider asequence ascending if, whichever the way a sequence has been split in two, the maximumvalue of the left part is always at most the minimum value of the right part.Another property that might occur in our generic speci�cation is that a sequence isbalanced: (= 0) � += ;which describes that the sum of the elements should be equal to zero. Yet a third exampleof a property is low: (�) � h"=;#i;which indicates that the maximum value of a structure should be less than its size,returned by the function #. We have used hf; gi.x = hf .x; g.xi.A further useful operator we will use is the �lter /, which takes as its left operand apredicate, applies this function to all elements of a structure, and returns the structurecontaining all elements which satisfy the predicate. So the speci�cation of a functionwhich computes the length of the longest ascending sequence might be written as:lup = "= � #� � asc / � subs :3 Design StepsIn this section we discuss a strategy for solving problems of the aforementioned kind;in doing so we will show how di�erent design decisions may lead to totally di�erentsolutions, which are not easily related without taking their derivations into consideration.The strategy consists of both the identi�cation of a number of decision points where adesign decision has to be taken, and the identi�cation of the alternatives between whicha choice may be made.As we will see these decision points are described in a rather blunt way, using informalphrases like pick the right one. It will not always be immediately clear what will be theright choice, and learning what will be the right choice is a matter of experience, trial anderror. Keep in mind, however, that once we have found the right path, it will be possible toclearly indicate which decisions have been taken, and probably even why those decisionseventually turned out to be successful. In this respect the process of deriving more andmore algorithms resembles the process of putting up maps at the branches in a highlystructured maze; a more useful approach than putting up maps in a
at desert withoutany landmarks.3.1 Algebraic ViewsThe Concept of a View. When giving an algebraic speci�cation of an abstract datatype, it is easily overlooked that such a description is not unique. Most programminglanguages only provide a single built-in construct for a speci�c class of data types, andthus favour only one speci�c algebraic view. Often it is possible to provide a di�erentview, containing di�erent operations and di�erent laws. What makes two di�erent viewsequivalent is that it is possible to express the operations of one view in the operations

Virtual Data Structures 5of the other view and vice versa, and that the laws obeyed by these mapped operationsremain valid in the target view.The choice of an algebraic view resembles the choice for a speci�c context free gram-mar in describing a language. There may be many grammars describing the same lan-guage, as there are many views describing the same data. The parsing process correspondsin this case to a conversion from one view, i.e. a list of characters with some structure, intoa value of the initial data type of another view, in this case described by the grammar.Possible Views. In this paragraph we will discuss some useful views on sequences. Westress however that the number of alternatives is almost unbounded, and that having alibrary of such possible views at hand is quite a useful tool in deriving algorithms.Most functional languages take the cons view for granted in which sequences over Aare elements of the following initial data type for which we will reserve the word list:CV ::= 2 : � �̀ : A� CV :Equally acceptable, and well known views are provided by the join view:JV ::= 2 : � [�] : A ++ : JV� JV ;the snoc view: SV ::= 2 : � a� : SV� A ;the labelled tree view:LTV ::= 2 : � � � � � � : LTV� A� LTV ;and the spine view: SPV ::= 2 : � �: SPV� (LTV� A) ;which is a mixture between the labelled tree view and the snoc view. In [13] some examplesof views and the conversions between them may be found. In the sequel we will encountersuch a conversion.We will now introduce our �rst decision point.Algebraic View: Inspect what algebraic view the program is supposed to accept,and decide whether it is useful to convert the data into a di�erent view.In the example derivations we will encounter some criteria on which such a decision mightbe based. Notice however that this observation is not a very deep one; it is just a di�erentway of expressing that we store the input to be treated into a convenient data structure,which is a common step in program design.

6 Doaitse Swierstra and Oege de MoorCatamorphisms. The views introduced in the previous parts may all be consideredas the de�nitions of initial algebras, where the operators may be considered as term-constructors. Since we will encounter many (uniquely de�ned) homomorphisms from suchinitial algebras into other algebras we will give them a special name, i.e. catamorphisms,and introduce a special notation for such morphisms. Since such a catamorphism isuniquely de�ned by the algebra that is its codomain, we will denote them by summingup the operators associated with the codomain between banana-brackets.As an example consider the function length, which computes the length of a list, andwhich might be de�ned as follows:length.(a �̀ x) = 1 + (length.x)length.2 = 0 :In our notation this function, which is a catamorphism from lists to the algebra ofintegers, may be written as (j0; (1+̂)j), where (1+̂) is the operator corresponding to the�̀ -constructor and 0 the operator corresponding to the 2-constructor. In this notationthe +̂ is a so-called lifted operator which is de�ned by (f+̂g).hx; yi = (f .x) + (g .y),and 1 is the constant function always returning 1. We will use the expression
= asan abbreviation for catamorphisms of the form (j1
;
j) operating on CV or SV, when(1otimes;
) is a monoid.As a �nal notion in this section we de�ne the so-called accumulation ==, which maybe expressed in terms of reductions and inits by:�== = �=� � inits : (2)The concept is important in the derivation of many programs, since its use in generalintroduces a considerable reduction in the complexity of the program. So it is the casefor lists that the left hand side of (2) may be computed in O(n) steps, whereas a naiveimplementation of the right hand side will take O(n2) steps. That this is indeed the casemay be deduced from the following alternative, but equivalent, de�nition of ==:�== = �2 � (jh1�; [1�]i; ~�j)ha; bi~�c = ha� c; ba� (a� c)i :3.2 Algebraic lawsOnce a speci�c algebraic view has been chosen, there is often a further choice to be made.Due to the algebraic laws associated with the view, there may exist freedom in the way avalue is represented, and thus the conversion from the given data type into the requireddata type is a non-deterministic function (or relation). The laws de�ne equivalence classesof terms, and any element of such a class might be chosen. Depending on the furtherfunctions which will be applied to the representation, it may be worthwhile to make useof the available freedom to choose a speci�c element from the class.Here we will discuss shortly some of the laws associated with the di�erent views.There are no laws associated with CV and SV views on sequences: the representation ofa sequence as a list is unique, and the associativity of the ++-operator is heavily usedwhen converting from the join-view to the cons- or snoc-view. When representing bags

Virtual Data Structures 7in CV however we will get the following additional law, representing the translation ofthe law of commutativity as formulated in JV in the previous section.a �̀ (b �̀ x) = b �̀ (a �̀ x) ;and the following law for representing the idempotency of set union:a �̀ (a �̀ x) = (a �̀ x) :A similar line of reasoning holds for LTV, where we have assumed that every nextlaw is used in the context of the laws introduced earlier, i.e. the formulation of the lawof commutativity makes use of associativity:associativity : (x � a � y) � b � z = x � a � (y � b � z)commutativity : x � a � y = y � a � xidempotency : 2 � a � 2 � a � y = 2 � a � yand for the spine-view, assuming the corresponding laws for LTV part are introducedaccordingly:associativity : (x � hk; ai) � hl; bi = x � h(k � a � l); bicommutativity : (x � hk; ai) � hl; bi = (x � hk; bi) � hl; aiidempotency : (x � hl; ai) � hl; bi = x � hNil � a � Nil � b � liWe will conclude this part with formulating our second decision point:Algebraic Laws: Inspect what algebraic laws apply to the chosen view, and makeuse of these laws to pick useful elements from congruence classes of terms.As a guideline in choosing the right element one may inspect properties of the generatorsand further functions in the expression at hand.One may compare this freedom of choice with the use of an ambiguous context freegrammar, giving rise to several di�erent parse trees for a given sentence. So a grammarmight contain a production of the form:< expr >::=< expr >< operator >< expr >;and a parser might use the priorities of the operators to return a parse tree which re
ectsthe intended meaning of the expression.3.3 GeneratorsOnce a speci�c view has been chosen and a special element within this view for repre-senting the value at hand, there is still choice left in picking a convenient function forgenerating the candidates for further processing. This choice is surprisingly rich.In [2] only a two views are considered, i.e. CV and SV. Neither of these views haslaws associated with it, and a single form of generating segments is studied, leading tothe aforementioned segment decomposition theorem.

8 Doaitse Swierstra and Oege de MoorThe generator used for generating all segments may be de�ned as:segs = ++= � tails� � inits (3)inits.(xa� a) = (inits.x)a� (xa� a)inits.2 = 2a�2 (4)tails.(a �̀ x) = (a �̀ x) �̀ (tails.x)tails.2 = 2 �̀ 2 ; (5)which corresponds to summing the segments up by grouping them according to com-mon end-points. Unfortunately, in this de�nition neither inits nor tails is expressed as acatamorphism, and thus we provide a di�erent set of de�nitions which are:inits.(a �̀ x) = 2 �̀ ((a�̀)� � inits.x)inits.2 = 2 �̀ 2 (6)tails.(xa� a) = ((a�a)� � tails.x)a�2tails.2 = 2a�2 : (7)A di�erent approach for generating the tails in SV and CV, which will be useful in�nding a di�erent solution for the problem of the maximum segment sum, is to removeall initial segments from a sequence:tails = ++= � *X� � hid; initsi (8)with: *X� .hl;mi = (l �)�.m ;where � is de�ned by (a ++ b) � a = b and provided of course that the list l containsonly proper pre�xes of m, which is indeed the case in (8).For JV there are several approaches too for summing up all segments, e.g.:segs.2 = 2 �̀ 2segs.(x++ y) = segs.x++ segs.y ++++�.(tails.xXinits.y) :This generator makes it easy to identify all segments which span a speci�c point inthe sequence. Of course the function mapping the input into this view should selectthat representation where the point to be inspected �rst ends up highest in the termrepresenting the sequence in JV. A useful generator corresponding to LTV is de�ned asfollows; segs.2 = 2 �̀ 2segs.(x � a � y) = segs.x++ segs.y ++ (a�)�.(tails.x X inits.y) (9)where a� hu; vi = u++ [a] ++ vThe advantage of this view is that it may be used to separate out those segments whichhave a speci�c element in common, again assuming of course that a useful representativehas been chosen.We will now formulate our last decision point.

Virtual Data Structures 9Choice of generator: Choose a useful generator. This choice depends primarilyon the chosen view, and on further functions to be applied to the result of thechosen generator.We �nally want to note that in providing the di�erent generators we have used the JVfor representing the generated segments. One should keep in mind however that, whenconsidering these segments as a bag, similar choices are to be made for these intermediatedata structures.4 Virtual Data StructuresIn this section we will introduce an important transformation, which enables us to con-struct a link with the imperative style of programming. Through the abundant use offunction composition in functional programs, many data structures are �rst constructedand immediately afterwards inspected and destroyed by the next function to be applied.In many implementations it will, by using lazy evaluation in the machine model,not be the case that the data structure is ever completely present in memory. In thesemodels the constructing phase and the destructing phase act like coroutines, with theconstructing phase producing the next part of the data structure only when it is neededby the destructing phase. This phenomenon is also present when using the pipe constructin the Unix operating system. One process is �lling the pipe, as if it were writing on a�le, and another process is reading from the pipe as if it were a �le. The complete �le,however, is never present as such. It is to be noticed that this technique may introduce aconsiderable space optimisation, but does not reduce the number of computation steps.A simple example of this phenomenon may be found in the following program, whichsums the integers from 1 to n:a upto b = a �̀ (a+ 1) upto b; if a � ba upto b = 2;otherwisesum.1.n = +=.(1 upto n) :In this example �rst a list of integers is constructed, and in the next step this list isconsumed by the catamorphism +=. If one would translate this algorithm directly intoan imperative program this would give rise to two loops: one for constructing the list,and one for iterating over the constructed list. It would be hard to imagine someonereally programming it like this, because every programmer would immediately merge thetwo loops into one, and not construct the list at all. This shows a remarkable di�erencebetween the two styles of programming. In the functional style one would use a number ofhigher order constructs, in this case function composition, to construct an algorithm outof existing components, whereas the imperative programmer would write this programfrom scratch. The question which now arises is whether it is possible to keep the eleganceof the functional style, while achieving the e�ciency and compactness of the imperativestyle.When a catamorphism is applied to a constructed data structure the optimisationis straightforward: substitute the operators of the catamorphism directly into the datastructure building algorithm, at those places where the operators of the initial algebra

10 Doaitse Swierstra and Oege de Moorof its domain contribute in constructing the result. As a result it is not the input forthe catamorphism which is constructed, but the result of applying the catamorphism tothis input. Since this transformation can always be performed, and often there is not aspeci�c point in the derivation at which this transformation is done at best, one is freeto postpone this optimisation until the algorithm derivation has been completed.We will call data structures which have played a catalytic rôle in the derivation ofthe algorithm, but have disappeared from the �nal algorithm virtual data structures .This approach is again well known in the compiler construction world, and corre-sponds to the use of an attribute grammar which has synthesised attributes only. Herethe optimisation may be used in which not the parse tree as such is constructed by theparser, but the computations which were to be performed on the parse tree, are per-formed by the parser directly. In a simpler form this transformation is also known asvertical loop-fusion to imperative programmers.In [14] this process has been dubbed deforestation, indicating how the intermediatetree constructions and reductions have disappeared from the �nal execution trace.5 DerivationsIn this section we will provide a number of derivations of segment based problems usingthe views and choices introduced before. As a �rst example we will present the problemof computing the maximum segment sum [5]. This derivation shows how, using two dif-ferent segment constructors, two completely di�erent derivations may be given. Our �rstderivation is heavily in
uenced by [2]. The second problem we will treat is the computa-tion of the longest low segment. This problem illustrates the advantage of choosing theright algebraic view on lists and has been surprisingly hard to solve when attention iscon�ned to the snoc and cons view.Before delving into the details of these algorithms we will introduce some laws whichwill be used over and over again, and thus deserve a separate introduction. Those inter-ested in the proofs of these indentities may consult [1][11].map-distributivity f� � g� = (f � g)�map-promotion f� � ++= = ++= � f��reduce-promotion
= � ++= =
= � (
=)� .This last law is an instance of the so-called promotion law. The promotion law says thath � �= = �= � h�if h.(a� b) = h.a� h.b and h.1� = 1� :5.1 Maximum Segment SumThe speci�cation for the computation of the maximum segment sum reads as follows:"= � +=� � segsand is an instantiation of the problem class given in (1).

Virtual Data Structures 11Inits/Tails Decomposition. Recall the generic speci�cation (1). The property in themaximum segment sum to be computed for every segment is a catamorphism. Thereforewe start with deriving some properties of such catamorphisms, generalising the += to�=, and the compose operator " to
. This will be done assuming that SV is the chosenview, and segs = ++= � tails� � inits the chosen generator, leading to:mss =
= � �=� � ++= � tails� � inits :We start by moving the ++= part forward:
= � �=� � ++= � tails� � inits= map-promotion =
= � ++= � �=�� � tails� � inits= reduce-promotion =
= �
=� � �=�� � tails� � inits= map-distributivity =
= � (
= � �=� � tails)� � inits= de�ne F =
= � �=� � tails =
= � F� � initsUsing point-wise reasoning we now derive some properties of F. In this calculation weshall accumulate a number of desirable properties of
 and �. These properties becomethe applicability conditions of one of our theorems. Our �rst assumption is that
 and� have unit elements 1
 and 1� respectively.F.(xa� a)= de�nition of F =
= � �=� � tails.(xa� a)= de�nition of tails =
= � �=�.(((a�a)� � tails.x) a� 2)= de�nition of map, reduce on 2 =
=.((�=� � (a�a)� � tails.x) a� 1�)= map distributivity =
=.(((�= � (a�a))� � tails.x) a� 1�)= de�nition of reduction =
=.((((�a) � �=)� � tails.x) a� 1�)= map distributivity =
=.(((�a)� � �=� � tails.x) a� 1�)= de�nition of reduction =(
= � (�a)� � �=� � tails.x)
 1�= assume (�a) factors out of
 =((�a) �
= � �=� � tails.x)
 1�= folding the de�nition of F =((�a) � F.x)
 1�

12 Doaitse Swierstra and Oege de MoorAs similar derivation may be given for the empty case:F.2= de�nition of F =
= � �=� � tails.2= de�nition of tails =
= � �=�.(2a�2)= de�nition of map =
=.(2a� 1�)= de�nition of reduction =1�
 1
= de�nition of 1
 =1�Based on these derivations we may now conclude that, using the binary operatorx � a def= (x � a)
 1�, F may be written as a catamorphism (j1�;�j). Note that thisderivation would not have been possible when using the �rst de�nition of tails, since thisde�nition is not a homomorphism (it is a paramorphism, [8]).Completing the derivation of the segment decomposition schema is now straightfor-ward by using (2). Using these results we have derived the following schema for segmentproblems:
= � �=� � segs =
= � �==where x� a = (x� a)
 1�provided (b
 c)� a = (b� a)
 (c� a) :By now noticing that indeed it is the fact that (b"c) + a = (b + a)"(c + a) we mayconclude that: mss = "= � �==where x� a = (x + a)"1+ = (x+ a)"0:Finally we may substitute the operations of "= in the de�nition of ==, considering this asa virtual data structure, giving:mss = �2 � (jh1�; 0i; ~�j)whereha; bi~�c = ha� c; (a� c)"biwhich corresponds directly to its imperative counterpart, using a single loop and oneadditional variable:a; b; i := 0; 0; 0do i 6= n! a := (a+ x[i])"0; b := b"a; i := i+ 1 od

Virtual Data Structures 13Inits/Inits Decomposition. In this section we will present a di�erent derivation forthe maximum segment problem, starting from the alternative de�nition of tails as givenin (8).We already discussed this generator in Sect. 3.3. Before embarking upon the deriva-tion, it will be expedient to mention two algebraic properties that will be useful in thesequel. We start by noticing:+=.b = +=.((a++ b)� a) = (+=.(a++ b)�+=.a)and consequently: +=� � *X� � hid; initsi= relation between �, + and � = (10)*X� � h+= � id;+=� � initsiA second important observation is:(
= � �==) � � inits = tl �
== � �== ; (11)where tl.(a �̀ x) = x. Using these properties we may now derive:"= � +=� � *X� � hid; initsi= (10) ="= � *X� � h+=;+=� � initsi= de�nition of accumulate ="= � *X� � h+=;+==i= (a� b)"(a� c) = a� (b#c) =(�) � h+=;#= � +==iWe present now the following derivation of mss:mss= inits/inits generator, promotion ="= � ("= � +=� � *X� hid; initsi)� � inits= above derivation ="= � ((�) � h+=;#= � +==i)� � inits= map distributivity ="= � (�)� � h+=;#= � +==i� � inits= hf; gi� = zip � hf�; g�i ="= � (�)� � zip � h+=� � inits; (#= � +==)� � initsi= de�nition of accumulate, property (11) ="= � (�)� � zip � h+==; tl � #== � +==i= product ="= � (�)� � zip � hid; tl � #==i � +==By making the intermediate data structures virtual again, this directly corresponds tothe following imperative program:

14 Doaitse Swierstra and Oege de Moors;m; r := 0;1;�1 funit elements for +;#;"gr; i := 0; 0 finitialise loop and compute tlgdo i 6= n! s := s+ x[i];m := m#s; r := r"(s�m); i := i+ 1 odIn this program we maintain in s the sum of the elements seen thus far, inm the minimumvalue seen thus far, and in r the greatest di�erence between these values seen thus far.Since one is only interested in this di�erence the previous program can be seen as anoptimisation of this program with an extra invariant a = (s�m). An interesting aspect ofthis program schema is that the accumulation of the input data is explicitly maintained.If one tries to solve the computation of the longest balanced segment this generator is auseful starting point.This algorithm resembles the Wall-street approach, where the list of numbers indicatesthe daily changes in the Dow-Jones index, and the question to be answered is what wouldhave been the best time for a one-time investment.5.2 Length of a Longest Low SegmentIn this paragraph we will derive a solution for the problem of computing the length ofa longest low segment. A very similar problem is the computation of a largest rectangleunder a histogram, the solution and derivation of which may be found in [12], and whichmay be compared with the derivation given here.The problem may be stated as follows:llls = "= � #� � low / � segswhere low = (�) � h"=;#iwith (a"f b) = (f .a)"(f .b).We start by noticing �rst that the predicate used in the �lter is monotonic in thesecond component: "= � (a �)/ = (a �)? � "= (12)where the ? is a one-point �lter that either returns its argument, or returns minus in�nity.Let va denote a set of segments with a common maximum element a. We may reason asfollows: "= � #� � low/.va= expand de�nition of low ="= � #� � ((�) � h"=;#i)/.va= maximum of elements of va equals a ="= � #� � ((a �) � #)/.va= move � through / ="= � (a �) � #�.va= (12) =(a �)? � "= � #�.va (13)This suggests that, when summing up the segments by common maximum element, wemight be very e�cient in skipping some of these elements in the generating process, and

Virtual Data Structures 15thereby getting a more e�cient algorithm. We thus will try to push the �lter into thegenerating process. Since we want to sum up the elements by common element we choosethe LTV, with the generator given in (9).Since it furthermore is the case that x 2 segs.y) "= .x � "= .y, it is pro�table to�rst sum up all the segments with a common maximum value, and then the rest of thesegments grouped according to their maximum value.We will now make use of our freedom in choosing an element in LTV which makesthis an easy task. Since the generator introduced in (9) sums up segments by commonelement, it is now su�cient if we have an element in the equivalence class generated bythe associative law, for which it is the case that a label value in the tree is at least themaximum of the label values in the subtrees, i.e. it is a heap.llls:(x � a � y)= de�nition llls ="= � #� � low / � segs.(x � a � y)= unfold de�nition (9) ="#= � #� � low /.(segs.x++ segs.y ++ (a�)�.(tails.x X inits.y))= �lter and reduce promotion, folding llls =(llls.x)"(llls.y)"("= � #� � low / � (a�)�.(tails.x X inits.y))Although this already looks like a catamorphism it isn't one as yet. We now concentrateon the last part, which may be rewritten, assuming that the predicatea = "=.(x++ [a] ++ y) (14)holds: ("= � #� � low / � (a�)� � (tails.x X inits.y)= (13) =(a �)? � "= � #� � (a�)� � (tails.x X inits.y)= map distributivity, (# � (a�) = (1+) � # � ++) =(a �)? � "= � (1+)� � (# � ++)� � (tails.x X inits.y)= promotion: (1 + a)"(1 + b) = 1 + (a"b) =(a �)? � (1+) � "= � (# � ++)�.(tails.x X inits.y)= length is a homomorphism =(a �)? � (1+) � "= � (+ � (#�#))� .(tails.x X inits.y)= map distributivity, map over cross =(a �)? � (1+) � "= � (+)� .(#� � tails.x X #� � inits.y)= addition is monotonic =(a �)? � (1+) � (+).h"= � #� � tails.x;"= � #� � inits.yi= longest tail of x is x, idem for inits =(a �)? � (1+) � (+).h#.x;#.yi= notation =(a �)?(1 + x+ y)Tupling this expression with the computations of #.x and #.y leads now to the followingcatamorphism on a suitably chosen element in the LTV:llls = �1 � (jh0; 0i; f j) � SVintoLTV (15)where f .hhm;xi; a; hn; yii = hm"n"((a �)?(x+ 1 + y)); (x+ 1 + y)i (16)

16 Doaitse Swierstra and Oege de MoorThe only problem which now remains open is to �nd the suitable representation forthe input in LTV-form; this is easily solved by using the well-known algorithm for theconstruction of a heap. The algorithm used corresponds directly to precedence parsing.The only di�erence is that all operators are equal to the empty tree, and the priority ofthe operators is the reverse of what one �nds usual. We thus use SPV as an intermediaterepresentation: svintoltv = SPVintoLTV � SVintoSPV.The transformation of SV into SPV is a straightforward application of parsing, wherethe values in the LTV-parts are always at most their associated value in the pair in thespine: SVintoSPV = (j2; (id	̂h2;�i)j) (17)where (s � ht; vi) 	 (u;w) = v � w ! (s � ht; vi) � hu;wiv � w ! s	 h(t � v � u); wi2	 hu;wi = 2 � hu;wi :The function converting an SPV-value into an LTV-value (maintaining the heap property)is given by SPVintoLTV.s = �1 � �2 � ��1 � (s	 h2;1i) : (18)So we are �nished, and gathering the intermediate results in (15), (17) and (18), weget llls = �1 � (jh0; 0i; f j) � �1 � �2 � ��1 � (h2;1i) � (j2; (id	̂h2;�i)j) :To this result again the virtual data structure optimisation may be applied, e�ectivelypreventing the labelled tree coming into existence at all. In the �nal result only a parsestack is maintained, containing the results and lengths of already processed subtrees, andlabel values which have not found their corresponding right subtree parts.The �nal algorithm now becomes:llls =�1 � (�hh0; 0i;1i) � (j2; (id�̂hh0; 0i;�i)j)where s � hhm;xi; vi � hhn; yi; wi = v � w ! (s � hhm;xi; vi) � hhn; yi; wiv � w ! s� hhm"n"((v �)?(xy1)); xy1i; wiwhere xy1 = x+ y + 12� hhn; yi; wi = 2 � hhn; yi; wi :6 AcknowledgementsThe authors wish to thank Lambert Meertens, Richard Bird, and the participants andlecturers of the Ameland meetings for working together in a cooperative way in devel-oping the calculus employed in this paper. This research was supported by the DutchOrganization for Scienti�c Research, grant NFI 62-518.

Virtual Data Structures 17References1. R.C. Backhouse. An exploration of the Bird{Meertens formalism. Computing Science NoteCS 8810, Department of Computing Science, Groningen University, P.O. Box 800, 9700 AVGroningen, The Netherlands, 1988.2. R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Programmingand Calculi of Discrete Design, volume 36 of NATO ASI Series F, pages 3{42. Springer{Verlag, 1987.3. R.S. Bird and P. Wadler. Introduction to Functional Programming. Prentice{Hall, 1988.4. Hendrik Boom. private communication, 1979. IFIP Working Group 2.1, Jablonna,Warschau.5. E.W. Dijkstra. A Discipline of Programming. Prentice{Hall, 1976.6. David Gries. The Science of Programming. Springer, 1983. 366p.7. L. Meertens. Algorithmics | towards programming as a mathematical activity. In J.W.de Bakker, M. Hazewinkel, and J.K. Lenstra, editors, Mathematics and Computer Science,volume 1 of CWI Monographs, pages 3{42. North{Holland, 1987.8. L. Meertens. Paramorphisms. Technical Report CS-R9005, CWI, Amsterdam 1990. Toappear in Formal Aspects of Computing.9. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas,lenses, envelopes and barbed wire. In FPCA, LNCS. Springer-Verlag, 1991.10. C.C. Morgan. Programming from Speci�cations. Prentice{Hall, 1990.11. M. Spivey. A categorical approach to the theory of lists. In J.L.A. van de Snepscheut,editor, Mathematics of Program Construction, volume 375 of Lecture Notes in ComputerScience, pages 399{408. Springer{Verlag, 1989.12. J.C.S.P. van der Woude. Rabbitcount := rabbitcount - 1. In J.L.A. van de Snepscheut,editor, Mathematics of Program Construction, volume 375 of Lecture Notes in ComputerScience, pages 409{420. Springer{Verlag, 1989.13. Philip Wadler. Views: a way for pattern matching to cohabit with data abstraction. In Proc.14th Symposium of Principles of Programming Languages, pages 307{313. ACM, January1987.14. Philip Wadler. Deforestation: transforming programs to eliminate trees. In H. Ganzinger,editor, ESOP '88 (= Proc. 2nd European Symposium on Programming, volume 300 ofLNCS, pages 345{358. Springer-Verlag, March 1988.

This article was processed using the LaTEX macro package with LMAMULT style

