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Abstract. We present a novel technique to eliminate strong biases in parameter
estimation were part of the data matrix is not corrupted by errors. Problems of
this type occur in the simultaneous estimation of optical flow and the parameter
of linear brightness change as well as in range flow estimation. For attaining
highly accurate optical flow estimations under real world situations as required
by a number of scientific applications, the standard brightness change constraint
equation is violated. Very often the brightness change has to be modelled by a
linear source term. In this problem as well as in range flow estimation, part of
the data term consists of an exactly known constant. Total least squares (TLS)
assumes the error in the data terms to be identically distributed, thus leading to
strong biases in the equations at hand. The approach presented in this paper is
based on a mixture of ordinary least squares (OLS) and total least squares, thus
resolving the bias encountered in TLS alone. Apart from a thorough performance
analysis of the novel estimator, a number of applications are presented.
Keywords. parameter estimation, least squares, dynamic processes, brightness
change, optical flow.

1 Introduction

Many different methods to recover the optical flow exist [3]. In the context of this paper
a gradient based technique for optical flow estimation is used. Here motion computa-
tions are motivated by scientific applications. As such they were extended to parame-
terize the underlying physical processes [6, 12, 13].

In most gradient based techniques the optical flow estimates are obtained by pooling
local constraints over a small spatio-temporal neighborhood in a least squares sense.
This approach does of course assume the parameters of the constraint equations to be
constant throughout the region of support. This assumption can be violated at motion
discontinuities, thus leading astray the estimator presented in this paper. To overcome
this limitation the estimator can readily be extended to robust statistic by means of M-
or LMSOD estimation [1, 6, 8, 11].

Using ordinary least squares (OLS) techniques the temporal derivatives are treated
as erroneous observations and the spatial gradients as error free. This approach will
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lead to biases in the estimates, as all gradients are generally obscured by noise [14].
Under these circumstances the use of a total least squares (TLS) method [20] is the esti-
mator of choice [16]. The local constraints of gradient based optical flow techniques do
generally not incorporate brightness changes. This can of course only be a first approxi-
mation, as brightness changes due to inhomogeneous or fluctuating illumination prevail
in real world scenes. Moreover, in scientific applications these brightness changes may
be induced by physical processes. Hence the parameters of brightness change might
be equally important as the actual optical flow [13]. A number of physically induced
brightness changes as well as those caused by inhomogeneous illumination can be mod-
elled quite accurately by a source term in the constraint equation. Additionally does the
computation of surface motion from range data lead to the same type of constraints [19].
This type of equations can be thought of as multivariate intercept models. The data ma-
trix of such a model for the TLS estimator contains a column of exactly known elements
thus inducing a strong bias in the estimation. This bias can be efficiently eliminated by
mixing the OLS and TLS estimator as outlined in the next section.

2 Mixing Ordinary Least Squares and Total Least Squares

In TLS estimates the parameter vectorpest converges to the true vectorp only for in-
dependently and identically distributed errors in the observations [5, 9, 20]. This means
that all observations should have the same standard deviationσ, which can be achieved
by scaling the data accordingly, an approach also known as equilibration [10, 15, 17].
However, there are instances when one column in the data matrix is knownexactly, that
is it is not subject to any errors. This is the case in intercept models of the form

c + a1x1 + · · ·+ amxm = b, (1)

which will be used in a number of applications introduced in Section 4. Such a model
gives rise to an overdetermined set of equations of the form

(1N ;A)
(

c
x

)
= b, (2)

where1N = (1, . . . , 1)� is the first column of the data matrix and thus exactly known.
The accuracy of the estimated parameters can be maximized by requiring that the

exactly known columns in the data matrix be unperturbed [4, 20]. This can be achieved
by reformulating the TLS problem in a more general form by mixing OLS and TLS:

Definition 1 Given a set of n linear equations with p unknown parameters x

(A1,A2) x = b, with A1 ∈ IRn×p1 ,A2 ∈ IRn×p2 ,x ∈ IRp, b ∈ IRn, (3)

and p1 + p2 = p. The mixed OLS-TLS problem then seeks to minimize

min [(A2, b) p2]
2 (4)

subject to (A1,A2) x = A1x1 + A2x2 = b,

where p =
(
x�,−1

)�
, p2 =

(
x�

2 ,−1
)�

and x =
(
x�

1 ,x�
2

)�
.
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In the specific example of Equation (1)p1 = 1 andp2 = m. Equation (4) can thus
be depicted as first finding a TLS solution on the reduced subspace of erroneous ob-
servations and than choosing from this set the one solution that solves the equations of
unperturbed data exactly.

In the event of all observationsA being known exactly, the OLS-TLS solution re-
duces to the OLS solution, while at the other extreme of only erroneous data the problem
reduces to the TLS problem.

2.1 Implementation of Mixed OLS-TLS Estimator

The implementation of the mixed OLS-TLS estimator is straightforward. The columns
of the data matrixA are permuted by a permutation matrixP in such a way, that the
submatrixA1 contains thep1 exactly known observations, that is

A·P = (A1,A2) , whereA ∈ IRn×p,A1 ∈ IRn×p1 ,A2 ∈ IRn×p2 ,P ∈ IRp×p. (5)

In a next step a QR factorization of the matrix(A1,A2, b) is performed, thus

(A1,A2, b) = Q

(
R11 R12

0 R22

)
, (6)

with Q being orthogonal andR11 upper triangular. The QR factorization is justified
because the singular vectors and singular values of a matrix are not changed by multi-
plying it by an orthogonal matrix [10].

The solution for the sub system of equationsR22p2 = 0 is computed in a TLS
sense, which boils down to an singular value analysis of the data matrixR22 [20].

With the known estimate ofp2 the system of equationsR11p1 + R12p2 = 0 is

solved forp1 by back-substitution. The parameter vectorp =
(
p�

1 ,p�
2

)�
has then to

be transformed back reversing the initial permutations of the columns byp ← P−1p.
The step of permuting the data and parameters can of course be omitted by formulating
the problem in such a way that the constant terms are in the first columns of the data
matrix, as will be done in the remainder of this paper.

3 Comparison of OLS-TLS and TLS

In this section the properties of both the mixed OLS-TLS and standard TLS estimator
shall be analyzed. We make use of the Generalized Brightness Change Constraint Equa-
tion (GBCCE) with constant linear motion and the brightness change modelled with a
source term, that is


−1 gx,1 gy,1 gt,1

−1 gx,2 gy,2 gt,2

...
...

...
...

−1 gx,n gy,n gt,n


 ·




c
δx
δy
δt


 = D · p = 0, with D ∈ IRn×4, p ∈ IR4. (7)

Here n represents the size of the spatio-temporal neighborhood andgi,j the partial
derivative of the grey valueg with respect to the coordinatei at pixel locationj.
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Fig. 1. Comparison of the relative errorEr of the flow magnitude and corresponding angular
errorsEφ. In a the relative ErrorEr of the mixed OLS-TLS estimator is shown and inb the
corresponding angular Error. Respectively, inc andd both Er andEφ are shown for the TLS
estimator.

Following [2] the algorithms were tested on a sinusoidal test sequence. For optical
flow computation it is interesting to study the dependence of the computed optical flow
f = (u, v)� = (dx/dt, dy/dt)� on the noise added to the synthetic sequence. In the
present context it is of equal importance to know how accurate the intensity change
present in the sequence can be detected. To address these issues first a constant inten-
sity change was uniformly added to the sequence. The magnitude of the flow was varied
from no movement (vcorr = 0 pixel / frame) up tovcorr = 10 pixel / frame in 20 steps,
with the direction of the velocity vector along one coordinate axis. Although this is
not a common situation encountered in real world situations, most gradient filters pos-
sess optimum properties along this direction [18]. Hence results presented here give a
lower bound for movement along other directions. The reason for choosing this specific
direction is that the performance of the optical flow computation was to be analyzed in-
dependent of the actual optimization of the gradient filter used. Along other directions
the actual performance of gradient filters can vary significantly and is subject to filter
optimization [18]. The results of this analysis are shown in Figure 1.

The accuracy of establishing an estimate for the parameterc of brightness change
in Equation (7) was examined with the three alternative techniques, namely the mixed
OLS-TLS, the scaled TLS and the plain TLS estimator. Also the accuracy of detecting
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Fig. 2. Comparison of the relative errors in estimating an intensity change at fixed flow magnitude.
In a the intensity change is computed from the mixed OLS-TLS estimator and inb with the TLS
estimator. Shown inc andd are the relative errors in computing the magnitude of the optical
flow |f est| for an increasing level of intensity change for both the mixed (c ) and the TLS (d )
estimators.

the optical flowfest = (uest, vest)� under different flow magnitudes and different in-
tensity changes was inspected. Not all the resulting plots are presented in this paper. In
Figure 2 the relative errors of the intensity changes are shown. It can be seen that the
OLS-TLS estimator presents the most accurate results, while the scaled TLS estimate
is prone to slightly larger errors. The unscaled TLS technique proves to be quite inac-
curate, most notably on higher noise levels. Generally all estimators exhibit the highest
accuracy on large intensity changes. The accuracy of recovering the flow magnitude
proved to be independent of the intensity change in the OLS-TLS estimator and de-
pends linearly on the noise levelσ. The TLS estimate is biased towards higher intensity
changes.

In Figure 3 the performance of OLS-TLS, scaled TLS and TLS are shown in fitting
a line with intersect, where parametera represents the slope of the line and parameter
b the offset. The slope is of course equivalent to the optical flow and the offset to the
source term of intensity change. The great reduction of error of the OLS-TLS estimator
with respect to the TLS can be seen quite nicely. Albeit reducing the bias, the scaled
TLS estimator is still less acurate than the OLS-TLS by roughly 2%.
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Fig. 3. The relative error measureEr for the OLS-TLS and unscaled TLS estimators is shown in
a andb respectively. The same for the scaled TLS estimate inc . The relative difference between
the two OLS-TLS and scaled TLS estimator is shown ind , indicating that the OLS-TLS estimator
still has a better performance than the scaled TLS estimator by roughly2%.

4 Applications

The mixed OLS-TLS estimator was tested on synthetic data in the previous section. In
this section its performance is analyzed on real data. It is difficult to obtain ground truth
data for optical flow with intensity change. To this end ground truth data was recorded
with a range sensor and a structured light system. Correct movement of two objects
(crumbled paper and a toy tiger, see Figure 4) was established by placing them on a
system of linear positioners. Range flow can be estimated by employing the range flow
constraint equation [21], were the depth velocity can be treated as a source term [19].
The relative error of the flow can thus be estimated. Comparing the mixed OLS-TLS
and TLS estimators we obtain:

method Epaper[%] densitypaper[%] Etiger[%] densitytiger[%]
TLS 0.29± 2.88 12.3 6.0± 6.5 16.1

Mixed 0.18± 0.13 22.1 2.1± 2.9 10.0

These findings underline the superior performance of the mixed OLS-TLS estima-
tor. It is evident that the mixed estimator can under some circumstances help to increase
the density of the estimate. As it turns out, choosing correct thresholds for correct es-
timates is less dependent of the specific image sequences at hand, greatly simplifying
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a b c

Fig. 4. Real test sequences:a crumpled sheet of paperb toy tigerc thermographic image of ocean
surface.

the use of this estimator in image processing applications. The reduction of the bias,
evident in the smaller relative ErrorE is remarkable. Only with this reduced bias is it
possible to employ the presented estimator on a number of scientific applications, where
the source term might be an important parameter in the underlying physical processes.

One such process of interest is the heat transfer at the sea surface. It can be shown
that this source term of linear intensity change is equivalent to the total derivative of
the temperature structures recorded from infrared sequences[8]. Such a thermographic
image is shown in Figure 4. From this total derivative with respect to time the net heat
flux at the sea interface can be estimated. Due to this use of thermography coupled
with the estimator presented in this paper both spatially and temporally highly resolved
heat flux estimates at the sea surface could be attained for the first time[7]. Without
the reduction of the bias by the mixed estimator presented in this paper a sufficiently
accurate estimate of the net heat flux would not be feasible.

5 Conclusion

In this paper a mixed OLS-TLS estimator was presented that allows to significantly
reduce the bias in the estimation of the parameters in differential equations with a linear
source term. This type of equation can be used to estimate the optical flow subject to
linear intensity changes in the scene or optical flow from range data. The standard TLS
estimator proved to be too inaccurate for this type of problem. It was shown that it
exhibits a strong bias and thus depends highly on the noise level and intensity change
present in the imagery. By performing a column scaling of the data matrixDnoise,
this bias could be lessened somewhat. The virtual deviation of the exactly known first
column of the data matrix has to be scaled with a variance of at least four orders of
magnitude smaller than that found in the other columns. Numerically more attractive
and also providing the most accurate results is the mixed OLS-TLS estimator presented
in this paper, which is an unbiased estimator under iid Gaussian noise. This results was
verified both on synthetic and real data. These findings emphasize the importance of
this mixed estimator for accurate estimation of optical flow with linear intensity change
or range flow based on range data.
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