
An Adaptive Ensemble of On-line Extreme Learning Machines with Variable Forgetting

Factor for Dynamic System Prediction

Symone G. Soares∗, Rui Araújo

Institute for Systems and Robotics, and Department of Electrical and Computer Engineering,

University of Coimbra, Pólo II, PT-3030-290 - Coimbra, Portugal.

Abstract

A demand for predictive models for on-line estimation of variables is increasing in industry. As industrial processes are time-

varying, on-line learning algorithms should be adaptive to capture process changes. On-line ensemble methods have been shown to

provide better generalization performance than single models in changing environments. However, most on-line ensembles do not

include and exclude models during on-line operation. As a result, the ensembles have limited adaptation capability. Moreover, a

higher performance can be obtained by combining a selected set of most relevant models of the ensemble for the current situation,

rather than combining all the models. This paper proposes a new on-line learning ensemble of regressor models using an ordered

aggregation (OA) technique which is able to provide on-line predictions of variables in changing environments. OA dynamically

selects an optimal size and composition of a subset of models based on the minimization of the ensemble error on the newest

sample. The proposed strategy overcomes the problem of defining the optimal ensemble size, and in most cases it obtains better

performance than aggregating all the models. Models are added or removed for assuring adaptation of the ensemble in changing

environments. Furthermore, this paper proposes and integrates a new on-line Extreme Learning Machine (ELM) neural network

model with variable forgetting factor (FF) using the directional FF method which shows superior performance in industrial applica-

tions when compared to the well-known On-line Sequential ELM (OS-ELM) algorithm. Experiments are reported to demonstrate

the performance and effectiveness of the proposed methods.

Keywords: On-line Extreme Learning Machines; On-line ensemble; Ordered aggregation; Variable forgetting factor;

1. Introduction

Artificial Neural Networks (ANNs) have been widely inves-

tigated to solve problems in time series prediction [1], pattern

recognition [2], and industries in the recent decades [3]. How-

ever, ANNs are rarely used in the industry or in real-time appli-

cations, because the networks need large training time and large

training data to perform well. The reasons are that the network

structure and training parameters need to be carefully chosen;

and the learning phase may take a long time (e.g. back propa-

gation algorithm [4]). Recently, the Extreme Learning Machine

(ELM) has been attracting attention among the scientific com-

munity [5]. ELM is a single hidden layer feedforward ANN [6].

The input weights and biases are chosen randomly, and the out-

put weights are determined analytically by the Least Squares

(LS) method, allowing significant training time reduction when

compared to other models; and demonstrating ability to deal

with non-linear problems and good generalization performance

[7].

Many practical systems, such as industrial plants, exhibit

time-varying behavior, being very difficult for the ELM mod-

els to react to the changes. Recently, ELM models for dynamic

∗Corresponding author

Email addresses: symonesoares@isr.uc.pt (Symone G. Soares),

rui@isr.uc.pt (Rui Araújo)

environments have been proposed. The most popular is the

on-line sequential ELM (OS-ELM) [6]. It can learn samples

on-line using concepts of the Recursive Least Squares (RLS)

algorithm [8]. In [9], it is proposed an On-line Sequential Re-

duced Kernel ELM that is incrementally updated based on the

new samples’ confidence estimation. In [10], an OS-ELM al-

gorithm with Kernels (OS-ELMK), which replaces the hidden

layer mapping in ELM by the kernel function mapping in the

support vector machine, is proposed. OS-ELMK proposes a

decremental mechanism to remove the oldest trained samples

from the model when the number of trained samples exceeds

a threshold. In [11], a forgetting factor (FF) is introduced to

the OS-ELM algorithm. When the FF value is close to 1 more

contribution is given to the old samples, and when the FF value

is close to 0 more importance is given to the recent samples.

Since a fixed value for the FF may not be sufficient to track

all the system dynamics, a variable FF for the OS-ELM is pro-

posed in [12]. The FF is adapted using a gradient (derivative)

descent method, derived from a cost function of the RLS. This

method depends on the appropriate step size and takes too many

iterations to converge to the appropriate FF value. RLS with FF

discounts continuously the old data even when the new data

does not carry sufficient information, producing a phenomenon

known as windup [13]. As a consequence, values of the in-

formation matrix will tend to zero and the model gain will

1

tend to be unbounded, so that the model becomes sensitive to

noises. The directional FF (DFF) method can overcome this ef-

fect [14, 15]. It considers that the data has directions, and the

old samples are forgotten only in some specific directions.

Although, ELM has shown good performance in real-world

applications, recent studies have been shown that a better gen-

eralization performance can be achieved by combining a set of

ELM models rather than using a single ELM model [16, 17].

This technique is known as ensemble learning method. On-line

ensemble algorithms have been shown to be able to improve

the prediction performance in time-varying systems [18, 19].

They can perform a subset of the following strategies: mod-

els’ weights adaptation; models’ parameters adaptation; and/or

new model inclusion over time. Ensembles are classified as

sample-based or batch-based if they are adapted when a sample

or a batch of samples is available, respectively. Most ensem-

bles are batch-based, e.g. the Learn++.NSE [20, 21]. Batch-

based ensembles usually require a long time to wait for a batch,

and when a batch becomes available such data may not reflect

the current state of the process. Sample-based ensembles of-

fer faster adaptivity in changing environments and good per-

formance in applications where variables are measured at low

sampling rates.

Examples of on-line sample-based ensemble algorithms are

the On-line Bagging (OB) [22] and the ensemble of OS-ELM

(EOS-ELM) [17]. They have few mechanisms to track chang-

ing systems, since only the models’ parameters are adapted.

In [23], an ensemble of OS-ELM with a forgetting mecha-

nism (FOS-ELM), which can learn samples one-by-one or in

batches/chunks, is presented. In this approach, each data has

a period of validity, and old data are continuously discarded

from the learning process. As in the OB and EOS-ELM algo-

rithms, only the models are adapted over time. On-line ensem-

bles using a Sliding Window (SW) have been widely adopted

for soft computing applications. In [18], a window slides along

the training data, and when a change is detected by a t-test, a

new model is trained using the data window and included into

the ensemble. Kaneko and Funatsu [24] design an ensemble of

on-line SVM models. During the on-line phase, a new model

is added at a fixed frequency using the current data window. In

[25] the data is partitioned into different subsets using the Fuzzy

C-means cluster algorithm; And each subset is used to train a

Least Squares SVM ensemble component model.

However, all these listed methods do not add and remove

models over time; but the on-line inclusion and removal of

models is an important key for improving ensemble predic-

tion performance. Additive Expert (AddExp) [26], On-line

Weighted Ensemble (OWE) [27] and Dynamic and On-line En-

semble Regression (DOER) [28] add new models when the en-

semble’s error on the newest sample is greater than a threshold,

and remove inaccurate models over time; while Online Accu-

racy Updated Ensemble (OAUE) [29] and Learn++.NSE [21]

add and remove models when a batch is available.

Ensemble pruning strategy is a recent topic for changing en-

vironments. It refers to the technique employed to select a sub-

set of models from the original set of models, and removing

those that are detrimental to the ensemble’s prediction perfor-

mance. In off-line ensembles, a subset of models is usually

selected by Genetic Algorithms [30, 31] or Greedy optimiza-

tions [32] based on the ensemble error and/or ensemble diver-

sity. However, these methods are computationally expensive for

on-line applications, so that other methods should be preferred.

The ordered aggregation (OA) technique uses some measure in

order to produce a decreasing order of the best models for a

given data. In [33] models are ordered according their accura-

cies on a validation data set; while in [34] models are ranked

according to their accuracies and their diversities.

This paper proposes a new on-line sample-based ensemble of

ELM models using OA (termed as OEOA) which is able to pro-

vide on-line prediction of variables in changing environments.

OEOA selects dynamically an optimal subset size of models

based on the minimization of the error of the ensemble on the

newest sample. Then, the models are ordered based on their

on-line prediction errors and the best models of the ordered se-

quence are employed to obtain the ensemble’s output. OEOA

builds an ensemble based on a SW. A new model is trained

(with samples of the current window) and added, if the current

ensemble’s error is higher than a threshold. The error of each

model is obtained using a window that is filled with its predic-

tive errors on the most recent on-line samples. The models’

weights are dynamically assigned according to their prediction

errors. Inaccurate models are removed for assuring adaptation

of the ensemble in changing environments. As a base model for

the ensemble, this paper proposes a new OS-ELM model using

DFF (termed as λDFFOS-ELM) which shows superior accuracy

in industrial applications when compared to the well-known

OS-ELM model. Experiments are reported to demonstrate the

performance and effectiveness of the proposed methods.

The main contributions of this work are: (1) a new on-

line sample-based ensemble of regressor models using OA that

overcomes the problem of defining the optimal ensemble size;

in most cases, the subset model selection obtains better perfor-

mance than aggregating all the models; (2) a new on-line ELM

model using variable FF; results are presented to demonstrate

its performance, effectiveness, and faster adaptation capability

and accuracy; and (3) thorough analysis of the experimental re-

sults using on-line ensembles of the state-of-the-art and OEOA,

revealing that their performances can be significantly improved

using λDFFOS-ELM as the base model in industrial data sets.

The paper is organized as follows. Section 2 presents a back-

ground on ELM models. Section 3 describes the λDFFOS-ELM

algorithm. Section 4 describes the OEOA algorithm. The ex-

perimental results are presented and analyzed in Section 5. Sec-

tion 6 presents concluding remarks.

2. Background

In this section, background of the ELM and the OS-ELM

is introduced. For the sake of simplicity, this paper considers

ELM for regression with one single output.

2.1. ELM

Consider a data set D = {(xt, yt) | t = 1, . . . ,T } with T dis-

tinct samples, where xt ∈ R
r and yt ∈ R. A standard ELM with

2

1 j L

1 r

x1 xr

xt

output layer

a11 aL1

aj1
aLra1r

ajr

b1 bj
bL

β1
βj

βL

hidden

layer

input layer

g(a1,b1,xt) g(aj,bj,xt) g(aL,bL,xt)

fL(xt)

Figure 1: ELM structure.

L ≤ T hidden nodes and activation function g(x) (e.g. sigmoid:

g(x) = 1/(1 + exp(−x))) will be employed, and is mathemati-

cally represented as [35]:

fL(xt) =

L
∑

j=1

β jg(a j, b j, xt) = ot, for t = 1, . . . ,T, (1)

where a j = [a j1, a j2, . . . , a jr]
T is the input weight vector con-

necting the r input nodes and the j-th hidden node, j = 1, . . . , L;

b j is the bias of the j-th hidden node; β j connects the j-th hid-

den node and the output node; and ot is the predicted output.

Figure 1 shows the ELM structure. If an ELM can approximate

the T samples of D with zero error, then Equation (1) can be

written as:

fL(xt) =

L
∑

j=1

β jg(a j, b j, xt) = yt, for t = 1, . . . ,T. (2)

The ELM can be represented as:

Hβ = y, (3)

H =

























g(a1, b1, x1) . . . g(aL, bL, x1)
... . . .

...

g(a1, b1, xT) . . . g(aL, bL, xT)

























T×L

, (4)

β = [β1, . . . , βL]T, and y = [y1, . . . , yT]T, (5)

where β is the output weight vector and y is the output vector.

H is called hidden layer output matrix, where the j-th column

of H represents the j-th hidden node output vector with respect

to all the inputs; and the t-th row of H is the output vector of

the hidden layer with respect to xt.

The input weights and biases are randomly assigned, and the

learning in ELM is based on finding a solution for the vector

β. In most cases, the number of training samples is greater

than the number of hidden neurons (i.e. T > L); so that H is a

nonsquare matrix and there may not exist a β such that Hβ = y.

Such solution for β can be determined using a LS method as:

β̂ = H†y, (6)

Algorithm 1 Learning Algorithm for ELM Models.

Input: a training data set D = {(xt, yt)}
T
t=1

, including L distinct sam-

ples; an activation function g(x); a number of hidden nodes L; (where

L ≤ T);

1. Randomly assign input weights a j and biases b j, j = 1, . . . , L;

2. Obtain matrix H using D and Equation (4);

3. Obtain the output weight β through Equation (8).

where H† is the Moore-Penrose generalized inverse or pseu-

doinverse [36] of matrix H. If the inverse of HTH exists, then

H† can be calculated as

H† = (HTH)−1HT. (7)

Substituting Equation (7) into Equation (6), then β becomes:

β = (HTH)−1HTy. (8)

From Theorem II.1 of Liang et al. [6], if L training samples in

D are distinct, then rank(H) = L, which implies that the inverse

of HTH in (8) exists [37]. The ELM algorithm is summarized

in Algorithm 1.

2.2. OS-ELM

OS-ELM learning consists of two phases: the initialization

phase and the sequential learning phase [6]. In the initializa-

tion phase, an initial training data set, D0 = {(xt, yt)}
T0

t=1
from

a data set D = {(xt, yt)}
T
t=1

(with T0 < T), is considered for de-

signing an initial ELM. In the sequential learning phase, on-line

samples are employed either one-by-one or on batches/chunks

(with fixed or varying size) for on-line retraining of the ELM,

where the (k + 1)-th chunk of data set is given by:

Dk+1 = {(xt, yt)}
t=
∑k+1

l=0 Tl

t=(
∑k

l=0 Tl)+1
, (9)

where k ≥ 0 and Tk+1 is the number of samples in the (k + 1)-th

chunk. The initialization phase is similar to the standard ELM

learning. The initial output weight vector β0 is determined as:

β0 = (HT
0 H0)−1HT

0 y0, (10)

where y0 = [y1, . . . , yT0
]T is the output vector from D0 (or the

initial output vector); and H0 is the initial hidden layer output

matrix obtained with D0:

H0 =

























g(a1, b1, x1) . . . g(aL, bL, x1)
... . . .

...

g(a1, b1, xT0
) . . . g(aL, bL, xT0

)

























T0×L

. (11)

Considering P0 = (HT
0 H0)−1, where P0 is the initial covariance

matrix, Equation (10) can be written as:

β0 = P0HT
0 y0. (12)

Upon the arrival of (k + 1)-th chunk, the new output weight

vector βk+1 is computed using concepts of the RLS algorithm

as follows:

βk+1 = βk + Pk+1HT
k+1(yk+1 −Hk+1βk), (13)

3

Algorithm 2 Learning Algorithm for the OS-ELM Model.

Input: A data set D = {(xt, yt)}
T
t=1

; an activation function g(x); a num-

ber of hidden nodes L; number of samples for the initialization

phase T0, including L distinct samples (where L ≤ T0 < T);

1. Initialization/training phase: Consider a training data D0 =

{(xt, yt)}
T0

t=1
;

(a) Randomly assign input weights a j and biases b j, j =

1, . . . , L;

(b) Calculate H0 using D0 and Equation (11);

(c) Obtain the output weight β0 through Equation (12), where

P0 = (HT
0 H0)−1 and y0 = [y1, . . . , yT0

]T; Set k = 0;

2. Sequential/on-line learning phase: Present the (k+1)-th chunk

Dk+1 defined in Equation (9);

(a) Obtain matrix Hk+1 using Dk+1 and Equation (15);

(b) Set yk+1 using Equation (16);

(c) Obtain Pk+1 and βk+1 using Equations (14) and (13), respec-

tively;

(d) Set k ← k + 1; Go to Step 2.

Pk+1 = Pk − PkHT
k+1(I +Hk+1PkHT

k+1)−1Hk+1Pk , (14)

Hk+1 =



























g(a1, b1, x(
∑k

l=0 Tl)+1) . . . g(aL, bL, x(
∑k

l=0 Tl)+1)

... . . .
...

g(a1, b1, x∑k+1
l=0 Tl

) . . . g(aL, bL, x∑k+1
l=0 Tl

)



























Tk+1×L

,

(15)

yk+1 = [y(
∑k

l=0 Tl)+1), . . . , y∑k+1
l=0 Tl

]T. (16)

For detailed derivation of Equations (13) and (14) paper [6] is

suggested. In order to make rank(H0) = L so that HT
0 H0 is in-

vertible, L distinct samples in are assumed to be used in D0.

When the (k+1)-th chunk contains only one sample, Equations

(13) and (14) can be written using the Sherman-Morrison for-

mula1 as [38]:

βk+1 = βk + Pk+1hk+1(yk+1 − hT
k+1βk), (17)

Pk+1 = Pk −
Pkhk+1hT

k+1Pk

1 + hT
k+1Pkhk+1

, (18)

where hk+1 = [g(a1, b1, x(
∑k

l=0 Tl)+1), . . . , g(aL, bL, x(
∑k

l=0 Tl)+1)].

The OS-ELM algorithm is summarized in Algorithm 2.

3. OS-ELM Model with Variable FF (λDFFOS-ELM)

A new OS-ELM model with variable FF, called λDFFOS-

ELM, is proposed in this section. It is based on the assumption

that a priori selection of the FF may not be able to track all

the system dynamics. The proposed method, λDFFOS-ELM,

incorporates the DFF method, which allows the dynamic and

1(B + uvT)−1 = B−1 − B−1uvTB−1

1+vTB−1u
.

automatic adaptation of the FF depending on the new informa-

tion of the input and output data. The forgetting is made sen-

sitive to direction of the incoming data. Additionally, the DFF

method suppresses obsolete information by modifying only that

piece of the so-far accumulated information which is being in-

novated by the currently incoming data. Moreover, the DFF

method avoids the windup phenomenon [13], since the model

is adapted only if the new data contains new information; and

is useful for systems with time-varying behavior.

Similarly to the OS-ELM algorithm, the λDFFOS-ELM has

two phases: initialization phase and on-line learning phase. In

the initialization phase, a training data set of size T0, D0 =

{(xt, yt)}
T0

t=1
from a data set D = {(xt, yt)}

T
t=1

(with T0 < T), is

used to train an initial model. In the on-line learning phase, on-

line samples from a data set Donline = {(xt, yt)}
T
t=T0+1

are given

incrementally one-by-one for on-line retraining of the model.

In the initialization phase, the initial output weight vector β0

is obtained using Equation (12):

β0 = P0HT
0 y0,

where P0 = (HT
0 H0)−1; y0 = [y1, . . . , yT0

]T (from D0); H0 is

the initial hidden layer output matrix and it is obtained from

Equation (11), where L is the number of hidden nodes; and

β0 = [β1, . . . , βL]T.

In the on-line learning phase, when a new sample (xt, yt) from

Donline is available, it is employed to obtain a new output weight

vector βk+1 (with k ≥ 0 and k = t − T0 − 1) using the RLS with

DFF [14, 39] as follows:

βk+1 = βk +
Pkhk+1

1 + ξk+1

êk+1 , (19)

êk+1 = yt − hT
k+1βk, (20)

ξk+1 = hT
k+1Pkhk+1, (21)

hk+1 = [g(a1, b1, xt), . . . , g(aL, bL, xt)], (22)

where êk+1 is the prediction error on the new sample using vec-

tor βk; ξk+1 is an auxiliary scalar and hk+1 is a hidden layer

output vector. If ξk+1 = 0, then the new covariance matrix Pk+1

is obtained as: Pk+1 = Pk. Otherwise, if ξk+1 > 0, then Pk+1 is

obtained as:

Pk+1 = Pk −
Pkhk+1hT

k+1Pk

ε−1
k+1
+ ξk+1

, (23)

εk+1 = λk −
1 − λk

ξk+1

, (24)

where εk+1 is an auxiliary parameter; and λk is the FF at the

k-th iteration, and it should be initialized as 0 < λ0 ≤ 1. The

smaller the FF, the smaller the influence of the old data to the

current model’s parameters. The FF for the (k + 1)-th iteration

is obtained as [14, 40, 41]:

λk+1 =
{

1 + (1 + ρ)
[

ln(1 + ξk+1) +
(

(υk+1+1)ηk+1

1+ξk+1+ηk+1
− 1
)

ξk+1

1+ξk+1

]}−1
,

(25)

where

ηk+1 = ê2
k+1/γk+1, (26)

4

Algorithm 3 Learning Algorithm for λDFFOS-ELM.

Input: A data set D = {(xt, yt)}
T
t=1

; an activation function g(x); a num-

ber of hidden nodes L; number of samples for the initialization

phase T0, including L distinct samples (where L ≤ T0 < T); λ0;

γ0; υ0; ρ;

1. Initialization/training phase: Consider a training data set D0 =

{(xt, yt)}
T0

t=1
;

(a) Randomly assign input weights a j and biases b j, j =

1, . . . , L;

(b) Calculate matrix H0 using D0 and Equation (11);

(c) Obtain the output weight β0 through Equation (12), where

P0 = (HT
0 H0)−1, and y0 = [y1, . . . , yT0

]T;

2. On-line learning phase: Consider an on-line data set Donline =

{(xt, yt)}
T
t=T0+1

; set t = T0;

(a) While t < T do:

i. Set t ← t + 1; k = t − T0 − 1;

ii. Obtain sample (xt, yt) from Donline;

iii. Obtain vector hk+1 using Equation (22);

iv. Obtain βk+1, êk+1, and ξk+1 using Equations (19)-(21),

respectively;

v. Obtain Pk+1:

Pk+1 =

{

Pk, if ξk+1 = 0,

as Equations (23)-(24), if ξk+1 > 0;

vi. Calculate ηk+1, γk+1, and υk+1 using Equations (26)-

(28), respectively;

vii. Compute λk+1 using Equation (25);

(b) end while

γk+1 = λk













γk +
ê2

k+1

1 + ξk+1













, (27)

υk+1 = λk(υk + 1), (28)

ρ is a positive constant; and ηk+1, γk+1, and υk+1 are auxiliary

parameters. The initial values of γ and υ (i.e. γ0 and υ0) should

be set between 0 and 1. The λDFFOS-ELM learning algorithm

is summarized in Algorithm 3. Similarly to the OS-ELM algo-

rithm, it is assumed that L distinct samples, with L ≤ T0 < T ,

are included among the m samples contained in D0.

It should be pointed out that, since the approaches available

in [14, 40, 41] perform parameter updates on a sample basis,

then the λDFFOS-ELM algorithm can only be adapted at the

sample basis. Additional work is envisaged to develop a new

λDFFOS-ELM algorithm that can also be adapted at the batch

basis.

4. An On-line Ensemble Using Ordered Aggregation

(OEOA)

OEOA designs an ensemble using a SW. It employs the com-

mon assumption that the most recent data provides the best and

most relevant representation of the current state of the process

and of the near-future state; thus only this data should be kept

[29, 42]. A data window of fixed size is kept, and when a new

sample is available, it is added to the window, and the oldest

sample is removed from the window. The data window is em-

ployed to train a new model when the ensemble’s performance

is deteriorating, and to obtain the models’ prediction errors.

The main strategies of OEOA for achieving faster adaptivity in

time-varying environments are: sample-based ensemble which

offers higher performance and faster adaptivity when compared

to batch-based ensembles; models’ weights adaptation; models’

parameters adaptation; and dynamic inclusion and removal of

models.

Firstly, consider a regression problem with a data set D =

{(xt, yt)}
T
t=1

, where xt ∈ R
r and yt ∈ R, and a window’s size

T0 (with T0 < T). Consider an ensemble E with Mmax mod-

els, where E = { f1, . . . , fMmax
} and fm ∈ E represents a model.

OEOA has two phases: creation of an initial pool of Mmax mod-

els, and on-line learning phase. In the first phase, an initial

data window Dt with the first T0 samples of D is employed

to train the initial pool of models. In the second phase, sam-

ples t = T0 + 1, . . . ,T from D are given one-by-one for on-line

prediction and on-line learning. Therefore, for each t, a data

window Dt keeps the most recent T0 samples.

Before introducing the OEOA algorithm, Section 4.1 de-

scribes the models’ characteristics. Then, Section 4.2 details

the OEOA algorithm.

4.1. OEOA Component Models

Each model fm from ensemble E is initially trained with sam-

ples from a data window Dt using the initialization phase of

an on-line supervised learner (e.g. OS-ELM or λDFFOS-ELM).

The main parameters associated to fm are: lifem which denotes

the total number of on-line predictions performed by fm; wm

which is the weight of model fm; and MSEt
m which denotes the

total prediction error of fm at time t.

When a model fm predicts a sample (xt, yt), its prediction er-

ror et
m is determined as et

m = (yt − ŷm
t)2, where ŷm

t is the output

predicted by model fm. At each time t, MSEt
m is obtained as:

MSEt
m =































0, if lifem = 0,
life

m
−1

life
m

·MSEt−1
m +

1

life
m

· et
m, if 1 ≤ lifem ≤ T0,

MSEt−1
m +

et
m

T0
−

e
t−T0
m

T0
, if lifem > T0.

(29)

This approach is similar to one proposed by OAUE [28, 29].

The aim is to estimate the average of the predictive error of

fm on the most recent T0 samples using the Mean Squared Er-

ror (MSE). Equation (29) works like an adaptive MSE. A new

model initially receives MSEt
m equal to 0. As it performs on-

line predictions and the variable life lifem is incremented, the

window of errors is also enlarged up to a maximum width T0. If

lifem > T0 at a time t, the new error et
m is considered to compute

MSEt
m and the old error e

t−T0
m is eliminated in the calculation of

MSEt
m. Note that only errors observed on the on-line phase are

considered to calculate MSEt
m.

4.2. OEOA Algorithm Description

OEOA selects a subset of its models to participate in form-

ing the ensemble prediction. Ensemble model selection usually

5

involves selecting an optimal subset of models by searching the

space of all models’ combinations. However, the computational

complexity of such an approach is exponential in the number

of models: an ensemble with Mmax models involves searching

a space of (2Mmax − 1) non-empty solutions to minimize a cost

function. OEOA sorts models according to their errors obtained

on the on-line predictions to avoid exhaustive search. Then, the

best B models (with B ≤ Mmax) in the ordered sequence are

selected as the optimal subset of models for predicting each in-

coming sample. When the real output is available, the optimal

subset size is determined so as to minimize the ensemble pre-

diction error on the newest sample.

The proposed OEOA method is summarized in Algorithm

4. Factor α controls the inclusion of a new model based on

the prediction error on the newest sample [28, 27], where 0 <

α < 1. An ensemble E = { f1, . . . fMmax
} with Mmax > 1 models

is considered. To avoid the problem of reaching a small size

of the subset of models [43], a variable Mmin was included to

control the minimum size of the optimal subset in the ordered

aggregation, where 1 < Mmin ≤ Mmax.

In Step 2 a pool of Mmax models is created using the initial-

ization phase of a generic on-line supervised learner. The mod-

els are trained using the initial window Dt = {(xt, yt)}
T0

t=1
⊂ D.

When a new sample (xt, yt) is available (Step 5a), the window

slides along the data (Step 5b). This operation adds the new

sample (xt, yt) to the window and excludes the oldest sample

(xt−T0
, yt−T0

) from the window. In Step 5d, the final output of

the optimal subset of B models is given. It is obtained by a

weighted sum of the models’ outputs. This step is performed

using the Algorithm 5, an algorithm that obtains the output pre-

diction based on the ordered aggregation of the best models.

Algorithm 5 obtains a vector of indexes, IXTop =

[ix1, . . . ixQ], of the Q best performing models of the ensem-

ble with respect to the MSEt−1. The MSE values of this subset

of models are kept in vector MSEt−1
Top. Step 3 of Algorithm 5

aims to obtain only the weights of the subset of models. Equa-

tion (30) transforms weights in such a way that a model fm with

MSEt−1
m around the median value receives a weight equal to 1.

Models with MSEt−1
m lower than the median have their weights

exponentially increased, while models with MSEt−1
m larger than

the median have their weights exponentially decreased. There-

fore, more “credit” is given to the models that have high accu-

racy. A model with lifem = 0 created at time t is initialized with

weight equal to 1. This criterion smooths the contribution of a

new model at the time t + 1, the time at which such model will

be evaluated on-line for the first time.

Then, the question is how to determine the optimal subset

size B for the next iteration. B is chosen so as to minimize the

square error on the newest sample (xt, yt):

B = argmin
p=Mmin,...,Mmax

(ǫ p) , (31)

where ǫ p = (yt − ôp)2, and ôp is the output prediction of an

ordered aggregation with the best p models of the ensemble

with respect to the MSEt−1. This strategy may obtain a small

value of B and induce the inclusion of only new models, since

Algorithm 4 Learning Algorithm for OEOA.

Input: A data set D = {(xt, yt)}
T
t=1

; window’s size, T0; an on-line

supervised learner; α, factor to add a new model; maximum and

minimum number of models, Mmax and Mmin respectively, (where

1 < Mmin ≤ Mmax);

Creating a pool of Mmax models:

1. Set E← ∅; t = T0; number of considered best models B = Mmax;

current window Dt = {(xt, yt)}
T0

t=1
⊂ D;

2. for m = 1, . . .Mmax do:

(a) fm ← Obtain a new model trained with Dt using the initial-

ization phase of the on-line supervised learner (e.g. λDFFOS-

ELM);

(b) Set lifem = 0, MSEt
m = 0, and wm = 1;

(c) Include fm into the ensemble: E← E + { fm};

3. end for

4. Build the vector of the MSE of the models:

MSEt = [MSEt
1, . . . ,MSEt

Mmax
];

On-line learning phase:

5. for t = T0 + 1, . . . ,T do:

(a) Receive a new sample (xt, yt);

(b) Slide the window: Dt = Dt−1 + (xt, yt) − (xt−T0
, yt−T0

);

(c) Get models’ predictions ŷt, where ŷt = [ŷ1
t , . . . , ŷ

Mmax
t] and

ŷm
t = fm(xt), for m = 1, . . . ,Mmax;

(d) Obtain the final prediction of the optimal subset:

F(xt)← OutputOEOA(E,Mmax, B,MSEt−1, ŷt);

(e) If Mmin , Mmax, then Determine a new value for B:

Set minError = ∞;

for p = Mmin, . . . ,Mmax do:

i. ôp ← OutputOEOA(E,Mmax, p,MSEt−1, ŷt);

ii. Determine the error as ǫ p = (yt − ôp)2;

iii. if ǫ p < minError,

then Set minError = ǫ p; B = p;

end for

(f) Update the models (for m = 1, . . . ,Mmax):

i. Obtain the error et
m of fm for input xt:

et
m = (yt − ŷm

t)2;

ii. Set lifem ← lifem + 1;

iii. Obtain MSEt
m using Equation (29);

iv. Incrementally retrain model fm using sample (xt, yt) and

using (one iteration of) the on-line learning phase of the

on-line supervised learner (e.g. λDFFOS-ELM);

(g) Build vector MSEt = [MSEt
1, . . . ,MSEt

Mmax
];

(h) if |(F(xt) − yt) /yt | > α

i. f0 ← Obtain a new model trained with Dt using the ini-

tialization phase of the on-line supervised learner;

ii. Set life0 = 0, MSEt
0 = 0, and w0 = 1;

iii. Replace model fz ∈ E by f0: where z =

argmax
n=1,...,Nmax

(

MSEt
n

)

, fz ← f0 and lifez ← life0;

6. end for

a new model fm is initialized with MSEt
m = 0. To prevent this

case and assure stability to the ensemble, Mmin should be large

6

Algorithm 5 OutputOEOA: output prediction based on the or-

dered aggregation of the best models.

Input: Ensemble E; Mmax; Q; MSEt−1; ŷt;

1. Sort the elements of MSEt−1 in ascending order forming

MSEt−1
S ort = [MSEt−1

ix1
, . . .MSEt−1

ixMmax
] and return a vector of in-

dexes IXS ort = [ix1, . . . ixMmax
] which contains the position of

each element of MSEt−1
S ort in vector MSEt−1;

2. Assign to MSEt−1
Top = [MSEt−1

ix1
, . . .MSEt−1

ixQ
] and IXTop =

[ix1, . . . ixQ] the first Q elements from MSEt−1
S ort and IXS ort, re-

spectively;

3. for each m ∈ IXTop do:

wm =























1, if lifem = 0,

exp













−
MSEt−1

m −median

(

MSEt−1
Top

)

median

(

MSEt−1
Top

)













, if lifem > 0;
(30)

4. end for

5. Obtain the output prediction:

ôTop =
(

∑

m∈IXTop
wmŷm

t)
)

/
∑

m∈IXTop
wm;

Output: ôTop;

(> 5). It is worth noting that when Mmin = Mmax no ordered

strategy is employed, and the ensemble has a fixed number of

models, since B = Mmax in all iterations. This strategy is called

as “OEOA without ordering”. In this case, the algorithm has

lower processing time. However, the main advantage of the

“OEOA with ordering” (specifically the main advantage of hav-

ing Mmin , Mmax) is that it is not necessary to tune the ensemble

size (but only Mmin and Mmax), and then the algorithm dynami-

cally selects the optimal ensemble size; and in some cases, this

strategy has higher accuracy when compared to ensembles of

fixed size.

In Step 5f the parameters of all models are updated. All the

models are retrained, keeping the models updated on the current

state of the process. Step 5h evaluates if a new model should

be added. The criterion adds a new model when the absolute

relative error of the ensemble on the newest sample is greater

than α. The new model f0 is trained using the samples from

the current data window Dt; and f0 replaces the least accurate

model of the ensemble. The criterion substitutes the model fz
with the highest error, MSEt

z. A new model created at iteration

t is never excluded by the pruning strategy at the same time t.

5. Experimental Results

In this section, four artificial data sets and five real-world data

sets with time-varying behavior are employed to demonstrate

the predictive performance of λDFFOS-ELM and OEOA over

state-of-the-art approaches. Artificial data sets allow the control

of relevant data set parameters and to perform empirical evalu-

ation of the algorithms in several types of changes. In the tests,

it is used the hyperplane data set proposed in [26], a benchmark

for evaluating algorithms that deal with concept drifts; and the

drifting Friedman’s function proposed by Ikonomovska [44], a

recent benchmark created for evaluating regression algorithms

in changing environments. The real-world data sets enable the

evaluation of the merit of the proposed approaches in real-world

problems, and comparing them with the most recent works in

real-world problems. This paper employs well-known indus-

trial data sets widely used to evaluate algorithms for dynamic

system modeling. The experiments have been performed on

the Matlab environment, running on a PC equipped with an In-

tel Core i7-4700MQ 2.4GHz-3.4GHz processor of 4 cores and

8GB of RAM.

5.1. Data Set Description

Artificial data sets. The hyperplane data set involves noise,

gradual drift and non-recurring drift [26]. It has 10 input vari-

ables, 1 output variable and 2000 samples. The data set has

4 concepts, and 3 concept changes, where each concept holds

500 samples. The Friedman’s function is a benchmark for gen-

erating data [45]. It employs linear and non-linear relations

between input and output variables. The function has a total

of 10 input variables and 1 output. To simulate time-varying

scenarios, 3 data sets with 2000 samples using the Friedman’s

function were produced. The first data set, the local and abrupt

drift data set (Friedman-LA), contains changes in two differ-

ent regions of the input space using 3 points of abrupt changes.

The second data set, the global recurring abrupt drift data set

(Friedman-GRA), simulates global, abrupt, and recurring drifts

using 2 drift points. The third data set, the global non-recurring

gradual drift data set (Friedman-GnRG), contains 2 episodes

of gradual changes. The complete description of these data sets

can be found in [44].

Industrial data sets. Six real-world data sets are considered

in the experiments, as detailed in Table 1. Most industrial pro-

cesses exhibit some kind of time-varying behavior, and so these

data sets are crucial to evaluate the proposed methodologies.

The cement kiln data set was obtained in a real-world envi-

ronment of a cement plant, where the samples of input vari-

able (e.g. temperatures, pressures, concentrations, etc.) were

recorded with a sampling interval of T = 1 [min], while the

output samples were obtained with different sampling intervals

using a laboratory automation system. Information about the

other data sets can be found on their corresponding references

[18, 46, 47]. The Sulfur Recovery Unit (SRU) data set [47] is a

large data set with two outputs. In this paper, only one output is

used: the H2O concentration. Selection of input variables was

performed to remove variables with missing values and noises;

and to select input variables highly correlated to the output [47].

5.2. Evaluation Methodology

The following methodology is performed to evaluate all the

approaches. Consider a data set D = {(xt, yt)}
T
t=1

with T sam-

ples. The single model, the first model of the ensemble, or the

pool of models (depending on each approach) is designed us-

ing the first T0 samples from D in the initialization phase of

the learner. The remaining (T − T0) samples of D are arranged

to form the on-line data to simulate an on-line scenario, where

samples are given incrementally one-by-one. Each approach is

7

Table 1: Specifications of the real-world data sets used in the experiments.

Data set Output Description # Samples # Inputs # Inputs Data Set

(bef. pre-proc.) (af. pre-proc.) Size

Polymerization reactor1 [18] catalyst activity 648 15 10 small

Cement kiln process2 free lime (CaO) 701 195 45 small

Powder detergent production1 [46] powder specific weight 1962 14 14 medium

Thermal oxidizer1 [46] NOx concentration 2053 39 39 medium

Debutanizer column3 [47] butane concentration 2394 7 7 medium

Sulfur recovery unit (SRU)3 [47] H2O concentration 10081 5 5 large

1 The data set can be made available for academic purposes by requesting it to the authors.
2 Provided by “AControl - Automação e Controle Industrial, Lda.”, Coimbra, Portugal.
3 http://www.springer.com/engineering/control/book/978-1-84628-479-3

evaluated using the mean and standard deviation of the MSE the

predicted outputs and the real outputs on the on-line data in 20

trials. In the experiments below, only the MSE on the on-line

data is reported.

5.3. Approach Description and Setup

Tests are performed by comparing λDFFOS-ELM and OEOA

to other state-of-the-art methods. The accuracies of the follow-

ing single model learning algorithms are compared:

• ELM: standard ELM [35], implemented as Algorithm 1.

• OS-ELM: sample-based OS-ELM [6], implemented as Algo-

rithm 2.

• λDFFOS-ELM: OS-ELM using a variable FF, implemented

as Algorithm 3, where λ0 = 1; γ0 = 10−3; υ0 = 10−6, and

ρ = 0.99 (the parameters are set as recommend by Bobál

et al. [14]).

For each single-model and for each component-model of an en-

semble, the hidden layer activation function g(x) is sigmoid;

and the number of neurons in the hidden layer L is selected

by varying it in the interval of [1, 20]. This interval may be

adjusted to [1,T0] if T0 < 20, since L should not be greater

than T0 in order to comply with the assumptions in the ELM

algorithms. The value of L is selected based on the best per-

formance on a 10-fold cross-validation using the training data

set in 1 trial, where the best number of neurons is selected as

the one that maximizes the mean testing performance on the

10-folds. Each OS-ELM or λDFFOS-ELM model is created by

firstly training it with T0 samples (e.g. belonging to D0, for OS-

ELM or λDFFOS-ELM, or belonging to Dt in OEOA) using the

initialization phase of the learner; and then, whenever a new on-

line sample is available, the model is retrained using the on-line

learning phase of the learner.

Experiments are also conduced by comparing the effective-

ness of the following on-line ensemble learning algorithms:

• AddExp. The AddExp’s parameters are: β, a decreasing fac-

tor for the models’ weights; τ, a factor to include a new

model; and γ, a factor to set a new model’s weight. They

are set based on studies from [26]: β = 0.5, γ = 0.1, and

τ = 0.05. AddExp was implemented according to [27].

• DOER. It was implemented according to [28]. The window’s

size is T0. The factor to include a new model (α) will be

discussed in Section 5.5.

• EOS-ELM. The training data set D0 has T0 samples (win-

dow). All the models are trained with the same g(x) and L

[17], where L is selected as the most frequent best number of

neurons on 20 trials of 10-fold cross-validation on D0, and

at each trial the best number of neurons is selected as the

one that maximizes the mean testing performance on the 10-

folds. On the on-line phase, all the models are retrained and

combined by average.

• FOS-ELM. The training data set D0 has T0 samples

(chunk/block), and g(x) and L for all the models are se-

lected as in the EOS-ELM approach. On the on-line phase,

when a chunk of size T0 is available, the models are updated

and combined by average. FOS-ELM was implemented as a

batch-based ensemble, as in [23]. The timeless parameter s

(a parameter related to the number of last chunks employed

to compute the OS-ELM models’ parameters) is set accord-

ing the best results presented in [23]: s = 4.

• Learn++.NSE. It was implemented and adapted to regression

using the AdaBoost.RT [48], as proposed in [27], where the

factor to demarcate incorrect and correct predictions are set

to 0.05. Each batch is considered to have size T0. The slope

parameters of the weighing function are set according to the

Learn++.NSE authors’ suggestions [20]: a = 0.5 and b = 10.

• OAUE. It was implemented according to [29], where each

batch/block is considered to have size T0.

• OB. It was implemented according to [22], where L can be

different for each model. The training data set has T0 sam-

ples. On the on-line phase, all models are retrained and com-

bined by average.

• OEOA. It was implemented according to Algorithm 4. The

parameters setting will be discussed in Section 5.5.

• OWE. It was implemented according to [27], where the fac-

tor to demarcate incorrect and correct predictions is set to

θ = 0.05, and the pruning activation factor ρ is set to 1. The

window’s size is T0. The discount factor κ is set to 0.2 for all

data sets, except for Friedman-GRA where κ is set to 0.99,

because it has a recurring nature. The factor to include a new

model (α) will be discussed in Section 5.5.

As Learn++.NSE and OWE do not employ model retraining,

their base model is the ELM. For the other ensembles (except

FOS-ELM), tests are performed using λDFFOS-ELM and OS-

ELM as base models. FOS-ELM has itself a base model: an

OS-ELM with a forgetting mechanism which discards old data.

For all learning algorithms, on-line data scaling to zero-mean

8

and unit-variance is performed on the input and output data,

where on the on-line scenario the mean and standard deviation

of each variable is recursively adapted as new samples are avail-

able [49]. As the AddExp requires the presented output data to

be normalized to the interval of [0, 1], the outputs of all the data

sets are normalized to this interval. In all experiments, this pa-

per considers small values of T0 (training data set size), since in

real-world setups of Soft Sensor applications, it is often difficult

to get sufficient data for modeling.

5.4. Comparison of Single Model Learning Algorithms

λDFFOS-ELM is evaluated and compared to ELM and OS-

ELM. For each model, the results are averaged over 20 trials.

It has been observed that, for medium size datasets, small win-

dows (e.g. T0 = 10) lead to a significant increase in computa-

tional time, and in some cases no improvement in the accuracy

of the system is observed. Thus, large windows were chosen for

artificial data sets and real-world data sets of medium size. On

the other hand, previous tests in [28] have shown that, in real-

world data sets of small size, better performance is obtained

when small windows are selected; and in real-world data sets of

large size, low computational time is obtained when large win-

dows are selected. Therefore, the experiments are conducted by

varying T0 from 20 to 100 in steps of 1 for artificial data sets

and real-world data sets of medium size; varying T0 from 10 to

50 in steps of 1 for real-world data sets of small size; and vary-

ing T0 from 30 to 150 in steps of 1 for the real-world data set of

large size (see Table 1). Figure 2 shows the MSE results of each

algorithm as a function of T0 in all data sets. Table 2 shows the

average and standard deviation of the MSE and processing time

over all values of T0 for all the algorithms. The processing time

considers the time spent on the training and on-line phases.

As observed in Figure 2, for the artificial data sets, the al-

gorithms tend to decrease their errors as T0 increases. For

the real-world data sets, in most cases, OS-ELM and λDFFOS-

ELM methods keep their performances as T0 increases. For the

Friedman data sets, it is observed that OS-ELM outperforms

λDFFOS-ELM. This reveals that λDFFOS-ELM may not track

scenarios with local and abrupt drifts (Friedman-LA), global re-

curring abrupt drifts (Friedman-GRA) and global non-recurring

gradual drifts (Friedman-GnRG). This is because, λDFFOS-

ELM forgets old information over time. λDFFOS-ELM has the

best performance in the hyperplane data set that contains non-

recurring abrupt drift. For the real-world data sets, λDFFOS-

ELM obtained the lowest MSE. From Table 2, it is noted that, in

terms of processing time, λDFFOS-ELM outperforms OS-ELM

and ELM in most cases.

5.5. Analysis of OEOA parameters

The frequency of adding new models (which is related to α)

may impact on the performances of OEOA, OWE, and DOER:

small values of α generate large numbers of new models and in-

crease the computational time; and large values of α may pro-

duce an inaccurate ensemble in changing environments, since

new models are rarely added to the ensemble. Previous tests in

[28] were conducted by varying α from 0.04 to 0.1 in steps of

Table 2: Average and standard deviation of the MSE1 and processing time (sec-

onds) of the single model learning algorithms by varying T0.

Data set Approach MSE Proc. Time (s)

Hyperplane2 ELM 37.120 (2.741) 1.481 (0.259)

OS-ELM 21.472 (0.323) 1.950 (0.241)

λDFF OS-ELM 10.867 (1.350) 1.408 (0.202)

Friedman-LA2 ELM 11.032 (3.024) 1.477 (0.015)

OS-ELM 8.285 (1.151) 2.007 (0.197)

λDFF OS-ELM 11.359 (1.618) 1.332 (0.161)

Friedman-GRA2 ELM 21.497 (5.349) 1.487 (0.016)

OS-ELM 15.299 (1.654) 1.518 (0.208)

λDFF OS-ELM 19.253 (2.921) 1.294 (0.197)

Friedman-GnRG2 ELM 19.735 (3.738) 1.475 (0.013)

OS-ELM 14.775 (0.965) 2.035 (0.176)

λDFF OS-ELM 16.801 (1.683) 1.411 (0.159)

Polymerization ELM 323.506 (160.943) 0.710 (0.075)

reactor3 OS-ELM 9.152 (2.983) 0.878 (0.100)

λDFF OS-ELM 4.891 (2.015) 0.715 (0.112)

Cement ELM 29.608 (2.666) 0.757 (0.092)

kiln3 OS-ELM 21.825 (1.192) 0.888 (0.106)

λDFF OS-ELM 12.736 (0.882) 0.666 (0.099)

Powder ELM 14.751 (1.699) 1.473 (0.035)

detergent2 OS-ELM 6.922 (0.218) 1.660 (0.314)

λDFF OS-ELM 4.756 (0.119) 1.457 (0.145)

Thermal ELM 2.250 (0.148) 1.788 (0.326)

oxidizer2 OS-ELM 1.755 (0.055) 2.071 (0.298)

λDFF OS-ELM 1.443 (0.031) 1.518 (0.154)

Debutanizer ELM 45.426 (8.936) 1.629 (0.337)

column2 OS-ELM 22.243 (0.493) 1.688 (0.322)

λDFF OS-ELM 4.398 (0.883) 1.693 (0.175)

SRU4 ELM 6.236 (2.797) 5.988 (1.573)
OS-ELM 2.827 (0.021) 6.777 (1.504)

λDFF OS-ELM 1.020 (0.066) 7.455 (2.350)

1The values have been multiplied by 103.
2The values of T0 are varied from 20 to 100 (in steps of 1).
3The values of T0 are varied from 10 to 50 (in steps of 1).
4The values of T0 are varied from 30 to 150 (in steps of 1).

0.02. It has been shown that α is related to the rate of concept

change. That is, in data sets where concepts have large sizes

(e.g. hyperplane data, where each concept has 500 samples), α

should be set to a large value. While in data sets with concepts

of small sizes (e.g. most industrial data sets due to the dynam-

ics), α should be set to a small value. Therefore, for the OEOA,

OWE, and DOER, in this paper, α is set to 0.10 for the artificial

data sets, and 0.04 for the real-world data sets. The training

size T0 (or window size) is also related to the rate of change

of the data. In data sets which have a large rate of change, the

system has better accuracy when T0 is small; while in data sets

which have a small rate of change, the system has better accu-

racy when T0 is large. This characteristic can be observed in

the experiments of the next Section.

Experiments were done to evaluate the effect of the mini-

mum number of models (Mmin) and maximum number of mod-

els (Mmax) in the OEOA algorithm. The experiments use the

cement kiln data set with T0 = 10 and α = 0.04. The base

models are λDFFOS-ELM and OS-ELM. The ELM model is

not used, since it does not have retraining. The first test aims

to show the OEOA algorithm when Mmin = Mmax, namely, no

OA is employed (see Figure (3a)). The test reveals that when

λDFFOS-ELM is the base model, the error is reduced as the

9

20 30 40 50 60 70 80 90 100

Number of Training Samples (T0)

0

10

20

30

40

50

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(a) Hyperplane data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (T0)

0

5

10

15

20

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(b) Friedman-LA data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (T0)

0

5

10

15

20

25

30

35

40

45

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(c) Friedman-GRA data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (T0)

0

5

10

15

20

25

30

35

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(d) Friedman-GnRG data set.

10 15 20 25 30 35 40 45 50

Number of Training Samples (T0)

0

100

200

300

400

500

600

700

800

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(e) Polymerization reactor data set

10 15 20 25 30 35 40 45 50

Number of Training Samples (T0)

0

10

20

30

40

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(f) Cement kiln data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (T0)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(g) Thermal oxidizer data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (T0)

0

5

10

15

20

25

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(h) Powder detergent data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (T0)

0

10

20

30

40

50

60

70

80

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(i) Debutanizer column data set.

40 60 80 100 120 140

Number of Training Samples (T0)

0

5

10

15

20

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(j) SRU data set.

Figure 2: Performance of the single learning algorithms when the number of training samples T0 increases.

5 10 15 20 25 30

Number of Models (Mmin =Mmax)

8.0

8.5

9.0

9.5

10.0

10.5

11.0

M
S
E

×10
−3

OS-ELM λDFFOS-ELM

(a)

2 4 6 8 10 12 14

Minimum Number of Models (Mmin) whenMmax=15

8.0

8.5

9.0

9.5

10.0

10.5

11.0

M
S
E

×10
−3

OS-ELM λDFFOS-ELM

(b)

5 10 15 20 25 30

Minimum Number of Models (Mmin) whenMmax=30

8.0

8.5

9.0

9.5

10.0

10.5

11.0

M
S
E

×10
−3

OS-ELM λDFFOS-ELM

(c)

Figure 3: Experiments using different values of Mmin and Mmax in the OEOA algorithm for the cement kiln data set.

number of models increases. When OS-ELM is the base model,

the best performances are not obtained with the largest ensem-

ble sizes. Figures (3b) and (3c) show the OEOA’s performance

when Mmin varies and Mmax is fixed. In Figure (3b), Mmax is

set to 15, and in Figure (3c), Mmax is set to 30. When λDFFOS-

ELM is the base model, as an overall tendency the experiment

shows that if Mmin increases, then the ensemble accuracy in-

creases; while when OS-ELM is the base model, if Mmin in-

creases the ensemble error increases, after having obtained the

best accuracy for some value of Mmin. Thus, the adequate set-

ting of Mmin may depend on the base model. The test shows

that λDFFOS-ELM outperforms OS-ELM as base model for the

cement kiln data set. This is because, λDFFOS-ELM models are

able to forget old information and track better the dynamics of

this data set.

5.6. Comparison of On-line Ensemble Learning Algorithms

In this section, results of the on-line ensemble learning algo-

rithms are compared. For the ensembles of fixed size (i.e. all

ensembles except OEOA with the ordering strategy), the max-

imum number of models (Mmax) is set to 15. This choice was

considered the best suitable for all the ensembles, since in lit-

erature Mmax usually varies between 15 and 30 [20, 26, 28],

and the processing time of the experiments increases as Mmax

increases. The OEOA is tested in two scenarios. In the first sce-

nario Mmin = Mmax and thus no OA is employed. In the second

scenario Mmin , Mmax, thus OA is tested. For each data set, the

following pairs of values of (Mmin, Mmax) are tested in OEOA:

10

Table 3: Results of the on-line ensemble learning algorithms using the artificial data sets.

Approach Base Ensemble Average and SD of MSE1 for different values of T0 Av. and SD of MSE1 Av. and SD of Proc. Time2

model size T0 = 20 T0 = 40 T0 = 60 T0 = 80 T0 = 100 over all values of T0 PTAS (min.) / PTPS (sec.)

Hyperplane data set
AddExp OS-ELM Mmax = 15 7.23 (0.26) 6.77 (0.17) 7.16 (0.14) 7.69 (0.15) 8.10 (0.10) 7.39 (0.52) 9.84 (0.30) / 0.30 (0.01)

DOER OS-ELM Mmax = 15 5.87 (0.11) 5.57 (0.05) 5.80 (0.06) 6.18 (0.06) 6.50 (0.05) 5.98 (0.36) 7.72 (0.69) / 0.23 (0.02)

EOS-ELM OS-ELM Mmax = 15 19.20 (0.69) 19.61 (0.19) 19.79 (0.16) 20.03 (0.12) 20.14 (0.10) 19.75 (0.37) 0.52 (0.11) / 0.02 (0.00)

FOS-ELM OS-ELM Mmax = 15 6.38 (0.07) 8.02 (0.04) 10.21 (0.06) 12.43 (0.07) 15.40 (0.09) 10.49 (3.57) 0.42 (0.10) / 0.01 (0.00)

OAUE OS-ELM Mmax = 15 19.68 (0.20) 19.59 (0.12) 19.76 (0.27) 19.74 (0.17) 19.85 (0.19) 19.72 (0.10) 1.29 (0.35) / 0.04 (0.01)

OB OS-ELM Mmax = 15 19.01 (0.26) 19.55 (0.19) 19.77 (0.20) 20.04 (0.14) 20.16 (0.14) 19.71 (0.46) 0.44 (0.13) / 0.01 (0.00)

OEOA OS-ELM Mmin = 15, Mmax = 15 5.82 (0.07) 5.54 (0.07) 5.80 (0.05) 6.16 (0.04) 6.49 (0.06) 5.96 (0.37) 7.08 (0.95) / 0.21 (0.02)

OEOA OS-ELM Mmin = 10, Mmax = 15 5.87 (0.09) 5.54 (0.05) 5.76 (0.07) 6.15 (0.08) 6.49 (0.08) 5.96 (0.37) 7.25 (0.83) / 0.21 (0.02)

AddExp λDFF OS-ELM Mmax = 15 7.26 (0.23) 6.47 (0.14) 6.51 (0.16) 6.58 (0.12) 6.70 (0.14) 6.70 (0.32) 7.91 (0.69) / 0.24 (0.02)

DOER λDFF OS-ELM Mmax = 15 6.30 (0.09) 5.51 (0.06) 5.58 (0.07) 5.77 (0.05) 6.04 (0.06) 5.84 (0.33) 8.13 (0.75) / 0.24 (0.02)

EOS-ELM λDFF OS-ELM Mmax = 15 8.82 (1.77) 6.35 (0.28) 6.31 (0.14) 6.37 (0.10) 6.51 (0.12) 6.87 (1.09) 0.47 (0.03) / 0.01 (0.00)

OAUE λDFF OS-ELM Mmax = 15 10.21 (0.83) 8.49 (0.59) 8.23 (0.43) 8.51 (0.51) 8.89 (0.37) 8.87 (0.78) 1.20 (0.67) / 0.04 (0.02)

OB λDFF OS-ELM Mmax = 15 8.57 (0.73) 6.38 (0.15) 6.41 (0.12) 6.59 (0.16) 6.84 (0.12) 6.96 (0.92) 0.50 (0.01) / 0.02 (0.00)

OEOA λDFF OS-ELM Mmin = 15, Mmax = 15 6.23 (0.10) 5.53 (0.05) 5.57 (0.08) 5.76 (0.05) 6.01 (0.07) 5.82 (0.30) 7.07 (0.86) / 0.21 (0.03)

OEOA λDFF OS-ELM Mmin = 10, Nmax = 30 6.01 (0.09) 5.44 (0.05) 5.50 (0.07) 5.67 (0.06) 5.88 (0.08) 5.70 (0.24) 7.19 (0.76) / 0.22 (0.02)

Learn++.NSE ELM Mmax = 15 23.63 (1.17) 12.92 (1.35) 11.47 (0.49) 10.33 (0.43) 11.97 (0.40) 14.06 (5.43) 0.54 (0.09) / 0.02 (0.00)

OWE ELM Mmax = 15 7.91 (0.19) 6.32 (0.08) 6.48 (0.08) 6.87 (0.08) 7.29 (0.10) 6.97 (0.64) 9.00 (0.75) / 0.27 (0.02)

Friedman-LA data set
AddExp OS-ELM Mmax = 15 7.23 (0.16) 6.71 (0.12) 6.66 (0.09) 6.60 (0.08) 6.59 (0.07) 6.76 (0.27) 5.99 (0.47) / 0.18 (0.01)

DOER OS-ELM Mmax = 15 7.29 (0.11) 6.75 (0.06) 6.75 (0.05) 6.72 (0.05) 6.67 (0.06) 6.84 (0.26) 6.29 (0.36) / 0.19 (0.01)

EOS-ELM OS-ELM Mmax = 15 8.98 (1.87) 6.53 (0.14) 6.49 (0.13) 6.45 (0.14) 6.42 (0.10) 6.97 (1.12) 0.55 (0.01 / 0.02 (0.00)

FOS-ELM OS-ELM Mmax = 15 7.27 (0.08) 6.73 (0.08) 6.51 (0.07) 6.56 (0.06) 6.52 (0.07) 6.72 (0.32) 0.42 (0.10) / 0.01 (0.00)

OAUE OS-ELM Mmax = 15 6.62 (0.14) 6.48 (0.09) 6.53 (0.10) 6.64 (0.15) 6.56 (0.13) 6.56 (0.07) 1.60 (0.94) / 0.05 (0.03)

OB OS-ELM Mmax = 15 8.70 (0.86) 6.60 (0.15) 6.45 (0.08) 6.46 (0.08) 6.43 (0.07) 6.93 (0.99) 0.71 (0.03) / 0.02 (0.00)

OEOA OS-ELM Mmin = 15, Mmax = 15 7.22 (0.12) 6.72 (0.06) 6.76 (0.05) 6.70 (0.05) 6.65 (0.04) 6.81 (0.23) 5.55 (0.36) / 0.16 (0.01)

OEOA OS-ELM Mmin = 10, Mmax = 30 6.86 (0.09) 6.48 (0.04) 6.48 (0.07) 6.47 (0.05) 6.46 (0.05) 6.55 (0.17) 6.48 (0.43) / 0.19 (0.01)

AddExp λDFF OS-ELM Mmax = 15 8.84 (0.17) 7.99 (0.13) 7.70 (0.09) 7.49 (0.10) 7.37 (0.07) 7.88 (0.59) 7.13 (0.50) / 0.21 (0.02)

DOER λDFF OS-ELM Mmax = 15 8.79 (0.12) 7.51 (0.08) 7.18 (0.06) 6.94 (0.05) 6.80 (0.06) 7.45 (0.80) 5.95 (1.52) / 0.18 (0.05)

EOS-ELM λDFF OS-ELM Mmax = 15 11.34 (2.25) 8.12 (0.34) 7.73 (0.13) 7.64 (0.15) 7.55 (0.11) 8.48 (1.61) 0.45 (0.01) / 0.01 (0.00)

OAUE λDFF OS-ELM Mmax = 15 6.64 (0.15) 6.62 (0.10) 6.77 (0.09) 6.94 (0.09) 7.10 (0.16) 6.81 (0.21) 1.23 (0.70) / 0.04 (0.02)

OB λDFF OS-ELM Mmax = 15 9.48 (0.68) 7.45 (0.12) 7.27 (0.15) 7.20 (0.11) 7.11 (0.09) 7.70 (1.00) 0.48 (0.01) / 0.01 (0.00)

OEOA λDFF OS-ELM Mmin = 15, Mmax = 15 8.73 (0.11) 7.53 (0.06) 7.17 (0.06) 6.96 (0.04) 6.80 (0.05) 7.44 (0.77) 5.99 (0.27) / 0.18 (0.01)

OEOA λDFF OS-ELM Mmin = 10, Mmax = 30 8.40 (0.08) 7.48 (0.06) 7.15 (0.06) 6.95 (0.05) 6.81 (0.05) 7.36 (0.63) 6.65 (0.41) / 0.20 (0.01)

Learn++.NSE ELM Mmax = 15 20.45 (0.93) 13.30 (0.53) 10.79 (0.39) 9.57 (0.37) 8.93 (0.25) 12.61 (4.69) 0.71 (0.28) / 0.02 (0.01)

OWE ELM Mmax = 15 9.26 (0.14) 7.41 (0.07) 7.10 (0.05) 6.89 (0.06) 6.76 (0.06) 7.49 (1.02) 6.62 (0.78) / 0.20 (0.02)

Friedman-GRA data set
AddExp OS-ELM Mmax = 15 12.40 (0.29) 11.55 (0.16) 11.51 (0.13) 11.46 (0.12) 11.46 (0.12) 11.67 (0.41) 8.78 (1.29) / 0.26 (0.04)

DOER OS-ELM Mmax = 15 12.63 (0.16) 11.43 (0.10) 11.30 (0.12) 11.17 (0.08) 11.08 (0.06) 11.52 (0.63) 9.40 (0.97) / 0.28 (0.03)

EOS-ELM OS-ELM Mmax = 15 16.30 (3.18) 12.42 (0.64) 11.92 (0.11) 11.84 (0.13) 11.85 (0.11) 12.87 (1.94) 0.55 (0.01) / 0.02 (0.00)

FOS-ELM OS-ELM Mmax = 15 11.88 (0.17) 11.16 (0.10) 11.32 (0.12) 11.53 (0.08) 12.00 (0.09) 11.58 (0.36) 0.43 (0.11) / 0.01 (0.00)

OAUE OS-ELM Mmax = 15 12.45 (0.22) 12.29 (0.28) 12.16 (0.14) 12.33 (0.30) 12.28 (0.29) 12.30 (0.10) 1.66 (0.97) / 0.05 (0.03)

OB OS-ELM Mmax = 15 14.83 (1.48) 12.26 (0.31) 11.99 (0.11) 11.94 (0.11) 11.88 (0.10) 12.58 (1.27) 0.74 (0.13) / 0.02 (0.00)

OEOA OS-ELM Mmin = 15, Mmax = 15 12.60 (0.16) 11.40 (0.10) 11.33 (0.08) 11.14 (0.09) 11.04 (0.07) 11.50 (0.63) 8.92 (1.11) / 0.26 (0.03)

OEOA OS-ELM Mmin = 10, Mmax = 30 11.96 (0.13) 11.16 (0.11) 11.02 (0.05) 10.97 (0.09) 10.89 (0.08) 11.20 (0.43) 9.63 (0.70) / 0.28 (0.02)

AddExp λDFF OS-ELM Mmax = 15 14.24 (0.38) 12.60 (0.19) 12.15 (0.13) 11.87 (0.18) 11.63 (0.12) 12.50 (1.04) 8.63 (0.38) / 0.26 (0.01)

DOER λDFF OS-ELM Mmax = 15 14.47 (0.23) 12.21 (0.13) 11.61 (0.11) 11.27 (0.08) 11.09 (0.10) 12.13 (1.38) 7.74 (0.30) / 0.23 (0.01)

EOS-ELM λDFF OS-ELM Mmax = 15 16.03 (1.52) 13.69 (1.21) 12.46 (0.42) 12.50 (0.37) 12.16 (0.26) 13.37 (1.60) 0.45 (0.01) / 0.01 (0.00)

OAUE λDFF OS-ELM Mmax = 15 12.23 (0.31) 11.90 (0.42) 11.88 (0.19) 11.90 (0.25) 11.97 (0.41) 11.98 (0.15) 1.25 (0.79) / 0.04 (0.02)

OB λDFF OS-ELM Mmax = 15 15.09 (0.82) 12.20 (0.50) 11.74 (0.21) 11.53 (0.25) 11.44 (0.17) 12.40 (1.53) 0.48 (0.01) / 0.01 (0.00)

OEOA λDFF OS-ELM Mmin = 15, Mmax = 15 14.51 (0.16) 12.16 (0.10) 11.62 (0.10) 11.27 (0.10) 11.04 (0.08) 12.12 (1.40) 8.81 (1.19) / 0.26 (0.04)

OEOA λDFF OS-ELM Mmin = 10, Mmax = 30 13.66 (0.15) 12.07 (0.10) 11.57 (0.10) 11.17 (0.08) 11.04 (0.09) 11.90 (1.06) 8.87 (0.40) / 0.27 (0.01)

Learn++.NSE ELM Mmax = 15 37.56 (10.02) 21.34 (0.93) 17.81 (0.64) 16.06 (0.55) 16.03 (0.69) 21.76 (9.09) 0.68 (0.29) / 0.02 (0.01)

OWE ELM Mmax = 15 14.54 (0.33) 12.10 (0.17) 11.59 (0.13) 11.29 (0.10) 11.21 (0.08) 12.15 (1.38) 7.89 (2.19) / 0.24 (0.07)

Friedman-GnRG data set
AddExp OS-ELM Mmax = 15 11.63 (0.19) 10.87 (0.12) 10.70 (0.09) 10.67 (0.11) 10.62 (0.07) 10.90 (0.42) 7.54 (1.25) / 0.23 (0.04)

DOER OS-ELM Mmax = 15 11.54 (0.16) 10.51 (0.09) 10.27 (0.06) 10.15 (0.06) 9.98 (0.07) 10.49 (0.61) 8.90 (0.85) / 0.27 (0.03)

EOS-ELM OS-ELM Mmax = 15 13.73 (1.53) 12.40 (0.44) 12.27 (0.13) 12.27 (0.15) 12.20 (0.10) 12.57 (0.65) 0.56 (0.00) / 0.02 (0.00)

FOS-ELM OS-ELM Mmax = 15 10.57 (0.11) 10.19 (0.09) 10.21 (0.11) 10.66 (0.09) 11.02 (0.06) 10.53 (0.35) 0.41 (0.12) / 0.01 (0.00)

OAUE OS-ELM Mmax = 15 12.54 (0.14) 12.45 (0.17) 12.53 (0.19) 12.66 (0.26) 12.71 (0.45) 12.58 (0.11) 1.37 (1.10) / 0.04 (0.03)

OB OS-ELM Mmax = 15 13.70 (0.52) 12.30 (0.19) 12.22 (0.10) 12.25 (0.10) 12.27 (0.12) 12.55 (0.65) 0.71 (0.05) / 0.02 (0.00)

OEOA OS-ELM Mmin = 15, Mmax = 15 11.51 (0.17) 10.53 (0.09) 10.26 (0.11) 10.14 (0.11) 9.98 (0.06) 10.48 (0.61) 8.15 (1.16) / 0.24 (0.03)

OEOA OS-ELM Mmin = 10, Mmax = 30 10.99 (0.13) 10.23 (0.06) 10.05 (0.06) 9.97 (0.06) 9.84 (0.06) 10.22 (0.45) 9.04 (0.57) / 0.27 (0.01)

AddExp λDFF OS-ELM Mmax = 15 13.02 (0.21) 11.60 (0.18) 11.12 (0.14) 10.81 (0.12) 10.59 (0.11) 11.43 (0.97) 8.39 (0.69) / 0.25 (0.02)

DOER λDFF OS-ELM Mmax = 15 13.25 (0.17) 11.20 (0.07) 10.56 (0.10) 10.28 (0.08) 10.03 (0.07) 11.06 (1.30) 8.31 (0.53) / 0.25 (0.02)

EOS-ELM λDFF OS-ELM Mmax = 15 14.63 (2.59) 12.07 (0.74) 11.65 (0.35) 11.40 (0.43) 11.09 (0.25) 12.17 (1.42) 0.46 (0.01) / 0.01 (0.00)

OAUE λDFF OS-ELM Mmax = 15 11.97 (0.22) 11.60 (0.21) 11.49 (0.30) 11.30 (0.31) 11.21 (0.30) 11.52 (0.30) 1.22 (0.53) / 0.04 (0.02)

OB λDFF OS-ELM Mmax = 15 13.72 (1.00) 11.06 (0.26) 10.77 (0.18) 10.59 (0.10) 10.52 (0.17) 11.33 (1.35) 0.49 (0.01) / 0.01 (0.00)

OEOA λDFF OS-ELM Mmin = 15, Mmax = 15 13.15 (0.13) 11.21 (0.10) 10.58 (0.09) 10.26 (0.07) 10.04 (0.07) 11.05 (1.26) 8.44 (1.36) / 0.25 (0.04)

OEOA λDFF OS-ELM Mmin = 10, Mmax = 30 12.46 (0.14) 11.04 (0.09) 10.50 (0.09) 10.26 (0.07) 10.05 (0.05) 10.86 (0.97) 8.55 (0.60) / 0.26 (0.02)

Learn++.NSE ELM Mmax = 15 29.73 (1.03) 19.42 (0.84) 15.50 (0.57) 14.16 (0.44) 13.34 (0.58) 18.43 (6.73) 0.68 (0.31) / 0.02 (0.01)

OWE ELM Mmax = 15 14.44 (0.26) 11.21 (0.14) 10.52 (0.07) 10.30 (0.09) 10.06 (0.09) 11.31 (1.80) 9.80 (1.12) / 0.29 (0.03)

1The MSE values have been multiplied by 103; 2Av. and SD of the Processing Time on all samples (PTAS) and per sample (PTPS) over all values of T0.

11

Table 4: Results of the on-line ensemble learning algorithms using the real-world data sets of small size.

Approach Base Ensemble Average and SD of MSE1 for different values of T0 Av. and SD of MSE1 Av. and SD of Proc. Time2

model size T0 = 10 T0 = 20 T0 = 30 T0 = 40 T0 = 50 over all values of T0 PTAS (min.) / PTPS (sec.)

Polymerization reactor data set

AddExp OS-ELM Mmax = 15 2.80 (0.09) 2.73 (0.14) 2.67 (0.20) 2.52 (0.17) 2.75 (0.21) 2.70 (0.11) 1.28 (0.35) / 0.12 (0.03)

DOER OS-ELM Mmax = 15 0.47 (0.04) 0.66 (0.06) 0.80 (0.07) 0.99 (0.08) 1.22 (0.09) 0.83 (0.29) 1.41 (0.51) / 0.13 (0.05)

EOS-ELM OS-ELM Mmax = 15 8.09 (0.42) 14.18 (3.07) 6.01 (0.25) 4.54 (0.26) 4.12 (0.20) 7.39 (4.10) 0.26 (0.04) / 0.02 (0.00)

FOS-ELM OS-ELM Mmax = 15 3.91 (0.27) 5.22 (0.39) 4.12 (0.23) 3.94 (0.25) 3.00 (0.28) 4.04 (0.79) 0.21 (0.06) / 0.02 (0.01)

OAUE OS-ELM Mmax = 15 2.76 (0.23) 2.93 (0.19) 3.59 (0.34) 3.74 (0.42) 4.06 (0.37) 3.42 (0.55) 0.17 (0.04) / 0.02 (0.00)

OB OS-ELM Mmax = 15 8.32 (0.57) 10.73 (1.47) 5.99 (0.34) 4.49 (0.25) 4.27 (0.24) 6.76 (2.75) 0.28 (0.03) / 0.03 (0.00)

OEOA OS-ELM Mmin = 15, Mmax = 15 0.50 (0.02) 0.68 (0.05) 0.81 (0.07) 1.10 (0.12) 1.37 (0.08) 0.89 (0.35) 1.36 (0.45) / 0.12 (0.04)

OEOA OS-ELM Mmin = 5, Mmax = 30 0.40 (0.06) 0.52 (0.06) 0.69 (0.09) 0.87 (0.10) 1.12 (0.09) 0.72 (0.28) 1.38 (0.36) / 0.12 (0.03)

AddExp λDFF OS-ELM Mmax = 15 0.97 (0.12) 1.33 (0.19) 1.47 (0.16) 1.58 (0.25) 1.62 (0.15) 1.39 (0.26) 0.31 (0.06) / 0.03 (0.01)

DOER λDFF OS-ELM Mmax = 15 0.29 (0.02) 0.46 (0.04) 0.54 (0.05) 0.64 (0.09) 0.88 (0.05) 0.56 (0.22) 0.88 (0.29) / 0.08 (0.03)

EOS-ELM λDFF OS-ELM Mmax = 15 0.68 (0.13) 2.94 (2.42) 1.50 (0.38) 2.23 (0.26) 2.25 (0.21) 1.92 (0.86) 0.22 (0.04) / 0.02 (0.00)

OAUE λDFF OS-ELM Mmax = 15 0.81 (0.13) 1.45 (0.40) 1.76 (0.47) 2.31 (0.34) 2.40 (0.51) 1.75 (0.65) 0.40 (0.14) / 0.04 (0.01)

OB λDFF OS-ELM Mmax = 15 1.03 (0.16) 2.13 (0.86) 2.13 (0.27) 2.75 (0.26) 2.61 (0.17) 2.13 (0.68) 0.21 (0.03) / 0.02 (0.00)

OEOA λDFF OS-ELM Mmin = 15, Mmax = 15 0.29 (0.03) 0.48 (0.03) 0.52 (0.05) 0.62 (0.05) 0.87 (0.06) 0.56 (0.21) 0.94 (0.32) / 0.09 (0.03)

OEOA λDFF OS-ELM Mmin = 5, Mmax = 30 0.30 (0.03) 0.43 (0.05) 0.51 (0.04) 0.60 (0.07) 0.82 (0.09) 0.53 (0.19) 1.25 (0.30) / 0.12 (0.03)

Learn++.NSE ELM Mmax = 15 2.89 (0.42) 5.74 (0.87) 6.74 (1.30) 8.05 (2.69) 16.83 (2.99) 8.05 (5.26) 0.26 (0.09) / 0.02 (0.01)

OWE ELM Mmax = 15 0.55 (0.06) 0.94 (0.10) 1.33 (0.11) 1.90 (0.12) 2.42 (0.27) 1.43 (0.75) 1.85 (0.81) / 0.17 (0.08)

Cement kiln data set

AddExp OS-ELM Mmax = 15 12.13 (0.26) 12.22 (0.23) 12.02 (0.35) 11.97 (0.24) 11.86 (0.34) 12.04 (0.14) 3.39 (1.10) / 0.29 (0.09)

DOER OS-ELM Mmax = 15 10.03 (0.19) 10.25 (0.21) 10.20 (0.23) 10.26 (0.20) 10.13 (0.18) 10.17 (0.10) 3.17 (1.20) / 0.27 (0.10)

EOS-ELM OS-ELM Mmax = 15 22.40 (1.17) 22.05 (2.00) 17.33 (2.31) 18.59 (2.64) 17.88 (1.98) 19.65 (2.39) 0.28 (0.05) / 0.02 (0.00)

FOS-ELM OS-ELM Mmax = 15 17.70 (5.59) 18.91 (8.29) 20.12 (0.69) 23.53 (0.97) 24.16 (1.39) 20.89 (2.84) 0.30 (0.09) / 0.03 (0.01)

OAUE OS-ELM Mmax = 15 12.07 (0.32) 12.67 (0.32) 12.97 (0.40) 13.47 (0.64) 14.99 (1.15) 13.23 (1.11) 0.49 (0.10) / 0.04 (0.01)

OB OS-ELM Mmax = 15 20.08 (0.86) 18.70 (1.09) 16.52 (1.12) 16.46 (0.96) 16.13 (0.91) 17.58 (1.73) 0.31 (0.05) / 0.03 (0.00)

OEOA OS-ELM Mmin = 15, Mmax = 15 9.96 (0.18) 10.22 (0.14) 10.08 (0.23) 10.21 (0.20) 10.15 (0.23) 10.12 (0.11) 2.85 (1.10) / 0.24 (0.09)

OEOA OS-ELM Mmin = 5, Mmax = 30 9.26 (0.17) 9.59 (0.17) 9.56 (0.29) 9.73 (0.25) 9.69 (0.22) 9.56 (0.18) 3.18 (1.16) / 0.27 (0.10)

AddExp λDFF OS-ELM Mmax = 15 9.13 (0.24) 9.44 (0.25) 9.35 (0.23) 9.67 (0.32) 9.78 (0.31) 9.47 (0.26) 2.47 (0.72) / 0.21 (0.06)

DOER λDFF OS-ELM Mmax = 15 8.61 (0.11) 8.86 (0.11) 8.78 (0.15) 8.97 (0.16) 8.97 (0.20) 8.84 (0.15) 2.68 (0.97) / 0.23 (0.08)

EOS-ELM λDFF OS-ELM Mmax = 15 10.03 (0.63) 10.20 (1.33) 9.15 (1.05) 9.49 (0.91) 9.46 (1.14) 9.67 (0.44) 0.24 (0.05) / 0.02 (0.00)

OAUE λDFF OS-ELM Mmax = 15 9.61 (0.30) 9.55 (0.28) 9.45 (0.35) 9.70 (0.56) 10.17 (0.81) 9.70 (0.28) 0.57 (0.20) / 0.05 (0.02)

OB λDFF OS-ELM Mmax = 15 9.44 (0.43) 9.36 (0.34) 8.94 (0.21) 9.19 (0.28) 9.16 (0.20) 9.22 (0.19) 0.23 (0.04) / 0.02 (0.00)

OEOA λDFF OS-ELM Mmin = 15, Mmax = 15 8.60 (0.09) 8.88 (0.13) 8.77 (0.15) 8.93 (0.15) 8.92 (0.19) 8.82 (0.14) 2.70 (1.05) / 0.23 (0.09)

OEOA λDFF OS-ELM Mmin = 10, Mmax = 30 8.57 (0.09) 8.71 (0.13) 8.67 (0.08) 8.81 (0.08) 8.79 (0.11) 8.71 (0.10) 4.40 (2.02) / 0.38 (0.17)

Learn++.NSE ELM Mmax = 15 23.12 (3.03) 24.47 (1.71) 28.51 (2.03) 26.75 (3.51) 33.44 (5.59) 27.26 (4.03) 0.31 (0.07) / 0.03 (0.01)

OWE ELM Mmax = 15 11.23 (0.41) 12.67 (0.69) 13.04 (0.67) 13.55 (0.65) 13.16 (0.49) 12.73 (0.89) 3.40 (1.63) / 0.29 (0.14)

1The MSE values have been multiplied by 103; 2Av. and SD of the Processing Time on all samples (PTAS) and per sample (PTPS) over all values of T0.

(5, 15), (5, 30), (10, 15), and (10, 30); and for each data set and

base model, and for all the tested values of T0, the pair with

the lowest average MSE error is presented in the in the results

of the experiments below. The simulation results are presented

in Tables 3, 4, and 5. Several values of T0 were tested, as de-

scribed in these tables. For each problem, the simulation was

conducted 20 times. The average and standard deviation values

of the MSE, and of the processing time on all samples (PTAS)

in minutes, and processing time per sample (PTPS) in seconds,

with respect to all values of T0 are presented. The processing

time considers the time spent on both the training and on-line

phases.

As described in Section 5.4, λDFFOS-ELM has poor per-

formance when compared to OS-ELM in the Friedman data

sets. This can be observed in Table 3 where most ensem-

bles have better performance when OS-ELM is the base model.

The exceptions are for the OAUE in the Friedman-GRA and

Friedman-GnRG data sets; and for the OB in the Friedman-

GnRG data set; where the error is reduced when λDFFOS-ELM

is the base model. For the other data sets, in most cases, the

ensembles’ errors reduce significantly when λDFFOS-ELM is

the base model. The reduction can be observed mainly in the

debutanizer column data set. For example, for the EOS-ELM

with OS-ELM as base model, the average of the MSE over all

tested values of T0 is 21.3 × 10−3; and with λDFFOS-ELM as

base model, the average of the MSE is reduced to 2.34 × 10−3;

And for the OB with OS-ELM as base model, the average of

MSE over all values of T0 is 21.11 × 10−3; and with λDFFOS-

ELM as base model, the MSE is reduced to 3.47 × 10−3. OB

and EOS-ELM are ensembles with few adaptive mechanisms,

since only retraining of models is employed, and no weights’

adaptation and no dynamic selection of models are employed.

However, they significantly improve their performances when

λDFFOS-ELM is the base model. Additionally, they have low

processing time when compared to the other approaches.

OWE outperforms Learn++.NSE in all cases, and FOS-ELM

in most cases (except in the Friedman data sets). This is be-

cause, Learn++.NSE and FOS-ELM are adapted on a batch ba-

sis; while OWE is adapted on a sample basis. Therefore, OWE

adapts faster to changes. The best performances of OWE are

achieved mainly in the hyperplane data set and the thermal ox-

idizer data set. In the thermal oxidizer data set, the average of

the MSE over all values of T0 for the OWE is 1.17×10−3; while

for OEOA with ordering (Mmin , Mmax) and λDFFOS-ELM as

base model, the average MSE is 1.18 × 10−3. In contrast to

OWE and Learn++.NSE, OAUE retrains all the models at each

new sample. However, OAUE includes new models into the en-

semble at a low frequency when compared to AddExp, OEOA,

12

Table 5: Results of the on-line ensemble learning algorithms the real-world data sets of medium size.

Approach Base Ensemble Average and SD of MSE1 for different values of T0 Av. and SD of MSE1 Av. and SD of Proc. Time2

model size T0 = 20 T0 = 40 T0 = 60 T0 = 80 T0 = 100 over all values of T0 PTAS (min.) / PTPS (sec.)

Powder detergent data set

AddExp OS-ELM Mmax = 15 5.13 (0.09) 5.11 (0.10) 5.21 (0.09) 5.29 (0.11) 5.37 (0.06) 5.22 (0.11) 5.14 (1.11) / 0.16 (0.03)

DOER OS-ELM Mmax = 15 4.53 (0.06) 4.76 (0.09) 4.97 (0.08) 5.09 (0.08) 5.19 (0.06) 4.91 (0.27) 7.47 (0.22) / 0.23 (0.01)

EOS-ELM OS-ELM Mmax = 15 6.92 (0.70) 6.04 (0.47) 6.14 (0.37) 5.94 (0.17) 5.83 (0.22) 6.17 (0.43) 0.54 (0.01) / 0.02 (0.00)

FOS-ELM OS-ELM Mmax = 15 7.76 (0.44) 8.47 (0.30) 8.05 (0.22) 6.33 (0.14) 5.63 (0.06) 7.25 (1.21) 0.41 (0.14) / 0.01 (0.00)

OAUE OS-ELM Mmax = 15 5.09 (0.07) 5.36 (0.11) 5.59 (0.17) 5.72 (0.16) 5.79 (0.20) 5.51 (0.29) 1.36 (0.79) / 0.04 (0.02)

OB OS-ELM Mmax = 15 6.43 (0.26) 5.87 (0.15) 5.80 (0.15) 5.76 (0.12) 5.72 (0.08) 5.92 (0.29) 0.68 (0.05) / 0.02 (0.00)

OEOA OS-ELM Mmin = 15, Mmax = 15 4.51 (0.06) 4.74 (0.08) 4.95 (0.10) 5.07 (0.09) 5.17 (0.11) 4.89 (0.27) 6.54 (0.42) / 0.20 (0.01)

OEOA OS-ELM Mmin = 5, Mmax = 30 4.31 (0.09) 4.51 (0.11) 4.69 (0.11) 4.84 (0.13) 4.96 (0.11) 4.66 (0.26) 7.66 (0.52) / 0.23 (0.01)

AddExp λDFF OS-ELM Mmax = 15 4.07 (0.15) 4.05 (0.10) 4.15 (0.12) 4.20 (0.08) 4.26 (0.10) 4.15 (0.09) 4.48 (0.68) / 0.14 (0.02)

DOER λDFF OS-ELM Mmax = 15 4.00 (0.04) 4.17 (0.07) 4.18 (0.08) 4.27 (0.07) 4.40 (0.08) 4.20 (0.15) 7.02 (2.22) / 0.21 (0.07)

EOS-ELM λDFF OS-ELM Mmax = 15 3.86 (0.14) 3.78 (0.08) 3.75 (0.05) 3.86 (0.07) 3.84 (0.06) 3.82 (0.05) 0.45 (0.01) / 0.01 (0.00)

OAUE λDFF OS-ELM Mmax = 15 3.89 (0.08) 3.91 (0.10) 3.96 (0.13) 4.20 (0.19) 4.21 (0.17) 4.03 (0.16) 1.45 (1.00) / 0.04 (0.03)

OB λDFF OS-ELM Mmax = 15 3.84 (0.08) 3.79 (0.06) 3.80 (0.09) 3.84 (0.08) 3.89 (0.06) 3.83 (0.04) 0.46 (0.00) / 0.01 (0.00)

OEOA λDFF OS-ELM Mmin = 15, Mmax = 15 3.99 (0.07) 4.11 (0.10) 4.19 (0.11) 4.26 (0.09) 4.35 (0.10) 4.18 (0.14) 6.23 (0.27) / 0.19 (0.01)

OEOA λDFF OS-ELM Mmin = 10, Mmax = 30 3.87 (0.05) 3.87 (0.06) 3.90 (0.06) 3.99 (0.06) 4.10 (0.08) 3.95 (0.10) 6.54 (0.56) / 0.20 (0.02)

Learn++.NSE ELM Mmax = 15 9.94 (1.14) 11.51 (1.66) 12.01 (1.68) 11.77 (2.47) 11.07 (1.69) 11.26 (0.82) 0.64 (0.28) / 0.02 (0.01)

OWE ELM Mmax = 15 5.88 (0.17) 6.28 (0.21) 6.67 (0.20) 7.06 (0.20) 7.12 (0.18) 6.60 (0.53) 7.36 (1.57) / 0.23 (0.05)

Thermal oxidizer data set

AddExp OS-ELM Mmax = 15 1.45 (0.04) 1.40 (0.04) 1.38 (0.03) 1.38 (0.03) 1.39 (0.03) 1.40 (0.03) 1.53 (0.26) / 0.04 (0.01)

DOER OS-ELM Mmax = 15 1.12 (0.01) 1.13 (0.01) 1.12 (0.01) 1.13 (0.01) 1.13 (0.00) 1.13 (0.01) 7.41 (2.24) / 0.22 (0.07)

EOS-ELM OS-ELM Mmax = 15 1.66 (0.10) 1.64 (0.13) 1.79 (0.08) 1.78 (0.13) 1.70 (0.12) 1.72 (0.07) 0.66 (0.07) / 0.02 (0.00)

FOS-ELM OS-ELM Mmax = 15 1.41 (0.09) 1.46 (0.08) 1.33 (0.05) 1.45 (0.10) 1.55 (0.11) 1.44 (0.08) 0.45 (0.10) / 0.01 (0.00)

OAUE OS-ELM Mmax = 15 1.19 (0.01) 1.26 (0.01) 1.29 (0.02) 1.34 (0.03) 1.39 (0.03) 1.30 (0.07) 1.64 (0.97) / 0.05 (0.03)

OB OS-ELM Mmax = 15 1.64 (0.03) 1.57 (0.05) 1.65 (0.04) 1.70 (0.05) 1.66 (0.04) 1.64 (0.04) 0.79 (0.07) / 0.02 (0.00)

OEOA OS-ELM Mmin = 15, Mmax = 15 1.12 (0.01) 1.13 (0.01) 1.12 (0.01) 1.13 (0.00) 1.14 (0.00) 1.13 (0.01) 7.41 (2.41) / 0.21 (0.07)

OEOA OS-ELM Mmin = 5, Mmax = 15 1.12 (0.01) 1.12 (0.01) 1.11 (0.01) 1.11 (0.01) 1.12 (0.01) 1.12 (0.01) 6.54 (2.17) / 0.19 (0.06)

AddExp λDFF OS-ELM Mmax = 15 1.32 (0.04) 1.28 (0.05) 1.27 (0.05) 1.28 (0.04) 1.26 (0.05) 1.28 (0.02) 0.80 (0.16) / 0.02 (0.00)

DOER λDFF OS-ELM Mmax = 15 1.17 (0.02) 1.19 (0.02) 1.18 (0.02) 1.17 (0.02) 1.18 (0.02) 1.18 (0.01) 6.29 (1.80) / 0.18 (0.05)

EOS-ELM λDFF OS-ELM Mmax = 15 1.26 (0.04) 1.27 (0.04) 1.24 (0.05) 1.23 (0.05) 1.27 (0.09) 1.25 (0.02) 0.54 (0.08) / 0.02 (0.00)

OAUE λDFF OS-ELM Mmax = 15 1.17 (0.03) 1.22 (0.04) 1.24 (0.07) 1.27 (0.07) 1.27 (0.07) 1.23 (0.04) 1.64 (0.86) / 0.05 (0.02)

OB λDFF OS-ELM Mmax = 15 1.22 (0.04) 1.20 (0.03) 1.19 (0.03) 1.19 (0.04) 1.20 (0.03) 1.20 (0.01) 0.57 (0.05) / 0.02 (0.00)

OEOA λDFF OS-ELM Mmin = 15, Mmax = 15 1.18 (0.03) 1.19 (0.01) 1.17 (0.02) 1.18 (0.02) 1.17 (0.02) 1.18 (0.01) 6.73 (2.74) / 0.20 (0.08)

OEOA λDFF OS-ELM Mmin = 10, Mmax = 15 1.18 (0.02) 1.20 (0.02) 1.18 (0.02) 1.18 (0.02) 1.17 (0.01) 1.18 (0.01) 8.48 (3.09) / 0.25 (0.09)

Learn++.NSE ELM Mmax = 15 1.36 (0.10) 1.50 (0.13) 1.59 (0.09) 1.69 (0.14) 1.76 (0.15) 1.58 (0.16) 0.83 (0.26) / 0.02 (0.01)

OWE ELM Mmax = 15 1.12 (0.01) 1.16 (0.01) 1.17 (0.01) 1.19 (0.01) 1.21 (0.01) 1.17 (0.03) 6.88 (2.65) / 0.20 (0.08)

Debutanizer column data set

AddExp OS-ELM Mmax = 15 7.28 (0.19) 7.94 (0.20) 8.87 (0.15) 9.59 (0.15) 10.14 (0.18) 8.77 (1.17) 8.62 (1.10) / 0.22 (0.03)

DOER OS-ELM Mmax = 15 2.61 (0.21) 3.62 (0.12) 5.72 (0.18) 6.73 (0.20) 7.73 (0.22) 5.28 (2.13) 14.02 (1.82) / 0.35 (0.05)

EOS-ELM OS-ELM Mmax = 15 23.22 (0.82) 21.41 (0.54) 20.59 (0.48) 20.86 (0.45) 20.45 (0.25) 21.30 (1.13) 0.58 (0.03) / 0.01 (0.00)

FOS-ELM OS-ELM Mmax = 15 36.34 (13.99) 170.07 (67.27) 37.34 (4.83) 36.58 (2.34) 33.73 (1.10) 62.81 (59.97) 0.43 (0.13) / 0.01 (0.00)

OAUE OS-ELM Mmax = 15 15.22 (0.30) 17.86 (0.31) 18.72 (0.29) 19.04 (0.26) 19.30 (0.23) 18.03 (1.66) 1.81 (1.06) / 0.05 (0.03)

OB OS-ELM Mmax = 15 22.61 (0.45) 21.25 (0.19) 20.58 (0.26) 20.56 (0.25) 20.57 (0.25) 21.11 (0.88) 0.74 (0.03) / 0.02 (0.00)

OEOA OS-ELM Mmin = 15, Mmax = 15 2.60 (0.20) 3.60 (0.11) 5.68 (0.17) 6.73 (0.16) 7.77 (0.17) 5.28 (2.15) 12.59 (1.63) / 0.31 (0.04)

OEOA OS-ELM Mmin = 5, Mmax = 30 2.17 (0.20) 3.07 (0.15) 4.92 (0.17) 5.87 (0.19) 6.90 (0.27) 4.59 (1.95) 13.12 (3.95) / 0.33 (0.10)

AddExp λDFF OS-ELM Mmax = 15 1.39 (0.24) 1.94 (0.26) 2.66 (0.35) 2.77 (0.31) 3.26 (0.36) 2.40 (0.73) 3.68 (0.87) / 0.09 (0.02)

DOER λDFF OS-ELM Mmax = 15 1.55 (0.19) 2.14 (0.10) 3.18 (0.14) 3.74 (0.15) 4.31 (0.17) 2.99 (1.14) 16.56 (1.37) / 0.42 (0.03)

EOS-ELM λDFF OS-ELM Mmax = 15 1.11 (0.16) 1.89 (0.34) 2.82 (0.21) 2.84 (0.30) 3.05 (0.16) 2.34 (0.82) 0.50 (0.02) / 0.01 (0.00)

OAUE λDFF OS-ELM Mmax = 15 2.19 (0.44) 2.75 (0.31) 3.31 (0.30) 3.32 (0.26) 3.47 (0.30) 3.01 (0.53) 1.68 (0.98) / 0.04 (0.02)

OB λDFF OS-ELM Mmax = 15 2.03 (0.17) 3.09 (0.23) 3.96 (0.19) 3.95 (0.23) 4.30 (0.16) 3.47 (0.92) 0.53 (0.02) / 0.01 (0.00)

OEOA λDFF OS-ELM Mmin = 15, Mmax = 15 1.55 (0.13) 2.15 (0.11) 3.20 (0.11) 3.72 (0.14) 4.29 (0.22) 2.98 (1.12) 8.75 (1.07) / 0.22 (0.03)

OEOA λDFF OS-ELM Mmin = 10, Mmax = 30 1.19 (0.09) 1.77 (0.12) 2.42 (0.23) 2.84 (0.14) 3.07 (0.14) 2.26 (0.78) 12.13 (2.13) / 0.30 (0.05)

Learn++.NSE ELM Mmax = 15 26.49 (4.69) 42.15 (4.83) 51.06 (8.00) 72.20 (15.63) 98.71 (31.13) 58.12 (28.07) 0.77 (0.36) / 0.02 (0.01)

OWE ELM Mmax = 15 9.19 (0.61) 19.58 (1.18) 31.18 (1.52) 29.67 (1.54) 32.76 (1.80) 24.48 (9.98) 16.79 (3.09) / 0.42 (0.08)

1The MSE values have been multiplied by 103; 2Av. and SD of the Processing Time on all samples (PTAS) and per sample (PTPS) over all values of T0.

OWE, and DOER. AddExp employs the same adaptive ensem-

ble mechanisms as the OEOA. However, AddExp has an error

larger than the error on OEOA in all cases. In the AddExp, new

models take more time to have their weights significantly in-

creased. In scenarios that require faster adaptation to the new

concepts, this method for assigning weights may fail. In con-

trast to AddExp, OEOA assigns large weights to the new and

accurate models if they have low errors on the newest samples.

In most cases, OEOA with OA significantly reduces the en-

semble error when compared to OEOA without OA - for ex-

ample, in the debutanizer column and cement kiln data sets.

In other cases, OEOA with OA has similar performance when

compared to OEOA without OA - for example, in the hyper-

plane data set with OS-ELM as the base model. In most cases,

it can also be observed that OEOA with OA has better perfor-

mance when Mmin and Mmax are large; And the sets with best

performances are (Mmin,Mmax) = (10, 30) and (Mmin,Mmax) =

(5, 30). DOER, and OEOA without OA, have similar perfor-

mances, since they have similar methods for the assignment

of weights and for the selection of models. However, DOER

13

Table 6: Results of the on-line ensemble learning algorithms on a real-world data set of large size.

Approach Base Ensemble Average and SD of MSE1 for different values of T0 Av. and SD of MSE1 Av. and SD of Proc. Time2

model size T0 = 30 T0 = 60 T0 = 90 T0 = 120 T0 = 150 over all values of T0 PTAS (min.) / PTPS (sec.)

SRU data set

AddExp OS-ELM Mmax = 15 1.64 (0.02) 1.64 (0.03) 1.66 (0.03) 1.70 (0.03) 1.73 (0.03) 1.67 (0.04) 10.30 (0.69) / 0.06 (0.00)

DOER OS-ELM Mmax = 15 1.02 (0.02) 1.17 (0.03) 1.23 (0.02) 1.27 (0.03) 1.34 (0.02) 1.20 (0.12) 19.02 (1.56) / 0.11 (0.01)

EOS-ELM OS-ELM Mmax = 15 2.72 (0.05) 2.53 (0.05) 2.72 (0.03) 2.69 (0.03) 2.68 (0.06) 2.67 (0.08) 2.57 (0.33) / 0.02 (0.00)

FOS-ELM OS-ELM Mmax = 15 8.26 (1.98) 8.90 (2.02) 9.46 (2.76) 10.52 (2.88) 11.76 (3.45) 9.78 (1.38) 1.55 (0.74) / 0.01 (0.00)

OAUE OS-ELM Mmax = 15 1.94 (0.03) 2.11 (0.03) 2.21 (0.05) 2.29 (0.04) 2.40 (0.05) 2.19 (0.17) 9.76 (6.02) / 0.06 (0.04)

OB OS-ELM Mmax = 15 2.68 (0.04) 2.51 (0.05) 2.67 (0.03) 2.61 (0.03) 2.55 (0.04) 2.61 (0.08) 3.13 (0.13) / 0.02 (0.00)

OEOA OS-ELM Mmin = 15, Mmax = 15 1.02 (0.02) 1.15 (0.02) 1.21 (0.03) 1.27 (0.02) 1.32 (0.02) 1.19 (0.12) 18.59 (1.14) / 0.11 (0.00)

OEOA OS-ELM Mmin = 5, Mmax = 30 0.94 (0.04) 1.07 (0.03) 1.13 (0.02) 1.18 (0.03) 1.23 (0.02) 1.11 (0.11) 34.88 (2.02) / 0.20 (0.01)

AddExp λDFF OS-ELM Mmax = 15 0.63 (0.05) 0.65 (0.02) 0.67 (0.05) 0.70 (0.05) 0.70 (0.05) 0.67 (0.03) 5.27 (0.56) / 0.03 (0.00)

DOER λDFF OS-ELM Mmax = 15 0.65 (0.02) 0.73 (0.02) 0.75 (0.02) 0.80 (0.02) 0.83 (0.02) 0.75 (0.07) 18.13 (2.20) / 0.11 (0.01)

EOS-ELM λDFF OS-ELM Mmax = 15 0.67 (0.02) 0.69 (0.02) 0.77 (0.04) 0.77 (0.04) 0.77 (0.06) 0.73 (0.05) 2.32 (0.17) / 0.01 (0.00)

OAUE λDFF OS-ELM Mmax = 15 0.59 (0.03) 0.60 (0.03) 0.65 (0.05) 0.74 (0.07) 0.85 (0.12) 0.69 (0.11) 9.47 (6.04) / 0.06 (0.04)

OB λDFF OS-ELM Mmax = 15 0.88 (0.02) 0.89 (0.03) 0.99 (0.05) 0.98 (0.04) 0.97 (0.04) 0.94 (0.05) 2.77 (0.10) / 0.02 (0.00)

OEOA λDFF OS-ELM Mmin = 15, Mmax = 15 0.65 (0.02) 0.73 (0.02) 0.76 (0.02) 0.80 (0.03) 0.83 (0.02) 0.75 (0.07) 18.08 (1.67) / 0.11 (0.01)

OEOA λDFF OS-ELM Mmin = 5, Mmax = 30 0.53 (0.01) 0.61 (0.02) 0.66 (0.03) 0.70 (0.03) 0.71 (0.03) 0.64 (0.07) 34.27 (2.13) / 0.20 (0.01)

Learn++.NSE ELM Mmax = 15 6.26 (1.95) 15.24 (11.48) 12.13 (4.44) 79.96 (98.39) 41.23 (24.70) 30.96 (30.49) 3.30 (0.97) / 0.02 (0.01)

OWE ELM Mmax = 15 2.93 (0.57) 3.08 (0.25) 3.09 (0.35) 4.08 (0.84) 4.65 (1.18) 3.57 (0.76) 18.48 (4.31) / 0.11 (0.02)

1The MSE values have been multiplied by 103; 2Av. and SD of the Processing Time on all samples (PTAS) and per sample (PTPS) over all values of T0.

starts the system by creating an ensemble with one model; while

OEOA starts the system by creating an initial pool of Mmax

models. The results indicate that OEOA without OA slightly

outperforms DOER in most cases. However, in the polymeriza-

tion reactor data set, with OS-ELM as base model, the average

of the MSE over all values of T0 for the DOER is 0.83 × 10−3;

while for the OEOA without OA it is 0.89 × 10−3.

The results reveal that OEOA with OA is more time con-

suming when compared to the OEOA without OA. This is be-

cause the OA strategy requires more time to compute the best

subset size. Additionally, the results show that sample-based

ensembles with SW strategies (DOER, OEOA, OWE, and Ad-

dExp) require more processing time than batch-based ensem-

bles (FOS-ELM, Learn++.NSE, and OAUE). This is because,

sample-based ensembles with SW train more models over time.

Nevertheless, these ensembles outperform batch-based ensem-

bles in prediction performance in most times. In the data

set of large size (SRU; see Table 6), it is also observed that

OEOA with OA requires significantly more processing time

when compared to the other methodologies. This is because,

more computations are necessary to select the best subset size

and best models along time. Despite this, the processing time

per sample (PTPS) is low (< 1 second). For example, in the

data set of large size (SRU data set), using OEOA with OA and

λDFFOS-ELM as the base model, the average of the PTPS is

0.20 seconds; while in the polymerization reactor data set (a

small data set), using OEOA with OA and λDFFOS-ELM as the

base model, the average of the PTPS is 0.12 seconds. Therefore,

OEOA can be designed for practical use in real-world applica-

tions, reducing the time and maintenance costs of traditional

measurement systems (e.g. laboratory measurement systems).

Recently, an ensemble of subset OS-ELM (ESOS-ELM) for

class imbalance and concept drift in classification problems was

proposed [50]. This contrasts with OEOA which is devoted

to regression problems. ESOS-ELM comprises a short-term

memory, representing the ensemble system; a long-term mem-

ory, representing an information storage module; and a change

detection mechanism. The long-term memory stores models

trained on old concepts that can be included to the ensem-

ble when a recurring drift is detected. Results in [50] show

that ESOS-ELM outperforms Learn++.NSE and the Dynamic

Weighted Majority (DWM) [51] (an approach similar to Ad-

dExp) in recurring drifts. OEOA does not use an information

storage module as in ESOS-ELM. In OEOA, old models trained

on old concepts are kept, and the best performing models on the

current concept are used for prediction; however, old models

that perform badly on the current concept may be replaced by

new models over time. The main drawback in OEOA is that the

previously acquired information may be excluded. Tests using

the Friedman-GRA data set (see Table 3), a data set with recur-

ring drifts, showed that OEOA outperforms Learn++.NSE and

AddExp. An important issue in ensemble development is the

diversity. If the models provide the same output, there is noth-

ing to be gained from their aggregation [31]. A drawback in

ESOS-ELM is that the ensemble’s models have the same num-

ber of hidden neurons, which may result in low diversity in the

ensemble system. On the other hand, in the experiments per-

formed with OEOA in this paper, for each model of the en-

semble, the best number of hidden neurons is selected from an

interval of [1, 20], which increases the diversity of the ensem-

ble.

6. Conclusions

A new on-line ensemble of regressor models using an OA

method which is able to predict on-line variables in changing

environments was proposed in this paper. The main contribu-

tion of the proposed ensemble is that it overcomes the problems

of defining the optimal ensemble size and selecting of the set

of most relevant models. These problems are solved by mini-

mizing the ensemble’s error on the newest sample. The results

have shown that this strategy obtains better performance than

combining all the models, in most cases. The proposed ensem-

ble (OEOA) was shown to deliver more accurate estimations

14

of the output variables in industrial applications, as well as in

several other cases, when compared to the other state-of-the-

art ensembles in the literature. This paper also proposed the

λDFFOS-ELM model, a new on-line ELM model using vari-

able FF. λDFFOS-ELM was shown to have higher accuracy

when compared to the OS-ELM; and it also improves the per-

formance of well-known state-of-the-art ensembles. In general,

OEOA and λDFFOS-ELM have high accuracy and fast adap-

tivity in non-recurring abrupt drifts (hyperplane data set), and

in real-world applications. Thus, the proposed methods can

be built for real industrial applications, reducing the time and

maintenance costs of traditional measurement systems, such as

laboratory measurement systems.

The proposed approaches have shown to have inferior perfor-

mance in scenarios with local drifts. This may happen because

the proposed method loses information about the old samples.

Additionally, extra experiments may be necessary to tune the

window’ size in some applications. Future efforts can be de-

voted to use variables window’ size that adapts according to

the system characteristics. Moreover, as a future work, the au-

thors would like to propose the dynamic selection of models us-

ing dynamic and fast meta-heuristics [52]; and a new λDFFOS-

ELM algorithm that can be adapted both on sample and batch

bases.

Acknowledgments

Symone Gomes Soares is supported by the Fundação

para a Ciência e a Tecnologia (FCT) under the Grant

SFRH/BD/68515/2010.

This work was supported by Project SCIAD “Self-Learning

Industrial Control Systems Through Process Data” (reference:

SCIAD/2011/21531) co-financed by QREN, in the framework

of the “Mais Centro - Regional Operational Program of the

Centro”, and by the European Union through the European Re-

gional Development Fund (ERDF).

The authors acknowledge the support of FCT project PEst-

C/EEI/UI0048/2014. The authors are grateful to the Nanyang

Technological University for sharing the implementation of the

OS-ELM algorithm; and to Dr. Petr Kadlec, M. Eng. Ratko Gr-

bić and Dr. Luigi Fortuna for sharing their data sets.

References

[1] L. Wang, Y. Zeng, T. Chen, Back propagation neural network with adap-

tive differential evolution algorithm for time series forecasting, Expert

Systems with Applications 42 (2015) 855–863.

[2] S. M. Siniscalchi, T. Svendsen, C.-H. Lee, An artificial neural network

approach to automatic speech processing, Neurocomputing 140 (2014)

326–338.

[3] S. Soares, R. Araújo, P. Sousa, F. Souza, Design and application of soft

sensor using ensemble methods, in: Proc. of the 16th IEEE Int. Conf.

on Emerging Technologies and Factory Automation, ETFA’11, 2011, pp.

1–8.

[4] Q. Dai, N. Liu, Alleviating the problem of local minima in backpropaga-

tion through competitive learning, Neurocomputing 94 (2012) 152–158.

[5] L. Sun, B. Chen, K.-A. Toh, Z. Lin, Sequential extreme learning machine

incorporating survival error potential, Neurocomputing 155 (2015) 194–

204.

[6] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A fast and

accurate online sequential learning algorithm for feedforward networks,

IEEE Transactions on Neural Networks 17 (2006) 1411–1423.

[7] D. Wang, P. Wang, Y. Ji, An oscillation bound of the generalization per-

formance of extreme learning machine and corresponding analysis, Neu-

rocomputing 151, Part 2 (2015) 883–890.

[8] S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice-Hall, Upper Saddle

River, NJ, USA, 1996.

[9] W.-Y. Deng, Q.-H. Zheng, Z.-M. Wang, Cross-person activity recognition

using reduced kernel extreme learning machine, Neural Networks 53

(2014) 1–7.

[10] X. Wang, M. Han, Online sequential extreme learning machine with ker-

nels for nonstationary time series prediction, Neurocomputing 145 (2014)

90–97.

[11] T. Matias, D. Gabriel, F. Souza, R. Araújo, J. C. Pereira, Fault detec-

tion and replacement of a temperature sensor in a cement rotary kiln, in:

Proc. of the 18th IEEE Int. Conf. on Emerging Technologies and Factory

Automation, ETFA’13, 2013, pp. 1–8.

[12] J.-S. Lim, S. Lee, H.-S. Pang, Low complexity adaptive forgetting factor

for online sequential extreme learning machine (OS-ELM) for application

to nonstationary system estimations, Neural Computing and Applications

22 (2013) 569–576.

[13] L. Cao, H. Schwartz, A directional forgetting algorithm based on the

decomposition of the information matrix, Automatica 36 (2000) 1725–

1731.

[14] V. Bobál, J. Böhm, J. Fessl, J. Machácek, Digital Self-tuning Controllers:

Algorithms, Implementation and Applications, Advanced Textbooks in

Control and Signal Processing, Springer, 2005.

[15] R. Kulhavý, Restricted exponential forgetting in real-time identification,

Automatica 23 (1987) 589–600.

[16] D. Wang, M. Alhamdoosh, Evolutionary extreme learning machine en-

sembles with size control, Neurocomputing 102 (2013) 98–110.

[17] Y. Lan, Y. C. Soh, G.-B. Huang, Ensemble of online sequential extreme

learning machine, Neurocomputing 72 (2009) 3391–3395.

[18] P. Kadlec, B. Gabrys, Local learning-based adaptive soft sensor for cata-

lyst activation prediction, AIChE Journal 57 (2011) 1288–1301.

[19] B. Lin, B. Recke, J. K. H. Knudsen, S. B. Jørgensen, A systematic ap-

proach for soft sensor development, Computers & Chemical Engineering

31 (2007) 419–425.

[20] R. Elwell, R. Polikar, Incremental learning of concept drift in nonsta-

tionary environments, IEEE Transactions on Neural Networks 22 (2011)

1517–1531.

[21] R. Elwell, R. Polikar, Incremental learning in nonstationary environments

with controlled forgetting, in: Proc. of the Int. Joint Conf. on Neural

Networks, 2009, pp. 771–778.

[22] N. C. Oza, S. Russell, Experimental comparisons of online and batch

versions of bagging and boosting, in: Proc. of the 7th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, KDD’01, 2001,

pp. 359–364.

[23] J. Zhao, Z. Wang, D. S. Park, Online sequential extreme learning machine

with forgetting mechanism, Neurocomputing 87 (2012) 79–89.

[24] H. Kaneko, K. Funatsu, Adaptive soft sensor based on online support

vector regression and bayesian ensemble learning for various states in

chemical plants, Chemometrics and Intelligent Laboratory Systems 137

(2014) 57–66.

[25] Y. Lv, J. Liu, T. Yang, D. Zeng, A novel least squares support vector ma-

chine ensemble model for NOx emission prediction of a coal-fired boiler,

Energy 55 (2013) 319–329.

[26] J. Z. Kolter, M. A. Maloof, Using additive expert ensembles to cope

with concept drift, in: Proc. of the 22nd Int. Conf. on Machine Learning,

ACM, 2005, pp. 449–456.

[27] S. G. Soares, R. Araújo, An on-line weighted ensemble of regressor mod-

els to handle concept drifts, Engineering Applications of Artificial Intel-

ligence 37 (2015) 392–406.

[28] S. G. Soares, R. Araújo, A dynamic and on-line ensemble regression

for changing environments, Expert Systems with Applications 42 (2015)

2935–2948.

[29] D. Brzezinski, J. Stefanowski, Combining block-based and online meth-

15

ods in learning ensembles from concept drifting data streams, Information

Sciences 265 (2014) 50–67.

[30] Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: Many could be

better than all, Artificial Intelligence 137 (2002) 239–263. Code available

at http://lamda.nju.edu.cn/files/Gasen.zip.

[31] S. Soares, C. H. Antunes, R. Araújo, Comparison of a genetic algorithm

and simulated annealing for automatic neural network ensemble develop-

ment, Neurocomputing 121 (2013) 498–511.

[32] I. Partalas, G. Tsoumakas, E. V. Hatzikos, I. Vlahavas, Greedy regression

ensemble selection: Theory and an application to water quality prediction,

Information Sciences 178 (2008) 3867–3879.

[33] G. Coelho, F. Von Zuben, The influence of the pool of candidates on the

performance of selection and combination techniques in ensembles, in:

Proc. of the Int. Joint Conf. on Neural Networks, IJCNN’06, 2006, pp.

5132–5139.

[34] A. Lazarevic, Z. Obradovic, Effective pruning of neural network classifier

ensembles, in: Proc. of the Int. Joint Conf. on Neural Networks, volume 2

of IJCNN’01, 2001, pp. 796–801.

[35] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: Theory

and applications, Neurocomputing 70 (2006) 489–501.

[36] A. Ben-Israel, T. N. Greville, Generalized Inverses: Theory and Applica-

tions, 2nd ed., Springer-Verlag, New York, USA, 2003.

[37] C. R. Rao, S. K. Mitra, Generalized inverse of a matrix and its ap-

plications, in: Proc. 6th Berkeley Symposium on Mathematical Statis-

tics and Probability, Volume 1: Theory of Statistics, University of Cal-

ifornia Press, Berkeley, CA, USA, 1972, pp. 601–620. URL: http:

//projecteuclid.org/euclid.bsmsp/1200514113.

[38] P. Maponi, The solution of linear systems by using the sherman-morrison

formula, Linear Algebra and Its Applications 420 (2007) 276–294.

[39] J. Mendes, R. Araújo, F. Souza, Adaptive fuzzy identification and predic-

tive control for industrial processes, Expert Systems with Applications

40 (2013) 6964–6975.

[40] V. Bobál, P. Chalupa, Self-Tuning Controllers Simulink Library,

Zlín, Czech Republic, 2008. http://www.mathworks.com/

matlabcentral/fileexchange/8381-stcsl-standard-version.

[41] R. Kulhavý, Probabilistic Identification of Time-Variable Systems with

Unknown Model of Parameter Evolution, PhD thesis, Institute of Infor-

mation Theory and Automation of Czechoslovak Academy of Sciences,

Praha, Czechoslovakia, 1985. (in Czech).

[42] R. Klinkenberg, Meta-learning, model selection, and example selection

in machine learning domains with concept drift, in: Proc. of Annual

Workshop of the Special Interest Group on Machine Learning, Knowl-

edge Discovery, and Data Mining, FGML-2005, 2005, pp. 164–171.

[43] E. M. D. Santos, R. Sabourin, P. Maupin, Overfitting cautious selection

of classifier ensembles with genetic algorithms, Information Fusion 10

(2009) 150–162.

[44] E. Ikonomovska, Algorithms for Learning Regression Trees and Ensem-

bles on Evolving Data Streams, PhD’s thesis, Jožef Stefan Int. Postgrad-

uate School, 2012.

[45] J. H. Friedman, Multivariate adaptive regression splines, The Annals of

Statistics 19 (1991) 1–67.

[46] R. Grbić, D. Slišković, P. Kadlec, Adaptive soft sensor for online pre-

diction and process monitoring based on a mixture of gaussian process

models, Computers & Chemical Engineering 58 (2013) 84–97.

[47] L. Fortuna, S. Graziani, A. Rizzo, M. G. Xibilia, Soft Sensors for Mon-

itoring and Control of Industrial Processes (Advances in Industrial Con-

trol), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[48] D. L. Shrestha, D. P. Solomatine, Experiments with AdaBoost.RT, an

improved boosting scheme for regression, Neural Computation 18 (2006)

1678–1710.

[49] H. J. Galicia, Q. P. He, J. Wang, Comparison of the performance of a

reduced-order dynamic PLS soft sensor with different updating schemes

for digester control, Control Engineering Practice 20 (2012) 747–760.

[50] B. Mirza, Z. Lin, N. Liu, Ensemble of subset online sequential extreme

learning machine for class imbalance and concept drift, Neurocomputing

149, Part A (2015) 316–329.

[51] J. Z. Kolter, M. A. Maloof, Dynamic weighted majority: An ensemble

method for drifting concepts, Journal of Machine Learning Research 8

(2007) 2755–2790.

[52] V. Mangat, R. Vig, Novel associative classifier based on dynamic adaptive

PSO: Application to determining candidates for thoracic surgery, Expert

Systems with Applications 41 (2014) 8234–8244.

Symone G. Soares received her B.Sc. degree in

Computer Engineering from the Pontifical Catholic

University of Goiás (PUC-GO), Brazil, in 2009. Ac-

tually she is pursuing her Ph.D. degree in Electrical

and Computer Engineering at the University of Coim-

bra, Portugal. Her research interests include machine

learning, optimization techniques, computational in-

telligence modeling, and Soft Sensors for industrial

applications.

Rui Araújo received the B.Sc. degree (“Licen-

ciatura”) in Electrical Engineering, the M.Sc. degree

in Systems and Automation, and the Ph.D. degree in

Electrical Engineering from the University of Coim-

bra, Portugal, in 1991, 1994, and 2000 respectively.

He joined the Department of Electrical and Computer

Engineering of the University of Coimbra where he

is currently an Assistant Professor. He is a found-

ing member of the Portuguese Institute for Systems

and Robotics (ISR-Coimbra), where he is now a re-

searcher. His research interests include computational intelligence, intelligent

control, computational learning, fuzzy systems, neural networks, estimation,

control, robotics, mobile robotics and intelligent vehicles, robot manipulators

control, sensing, soft sensors, automation, industrial systems, embedded sys-

tems, real-time systems, and in general architectures and systems for control-

ling robot manipulators, mobile robots, intelligent vehicles, and industrial sys-

tems.

16

