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Model selection has an important impact on subsequent inference+ Ignoring the
model selection step leads to invalid inference+We discuss some intricate aspects
of data-driven model selection that do not seem to have been widely appreciated
in the literature+ We debunk some myths about model selection, in particular the
myth that consistent model selection has no effect on subsequent inference asymp-
totically+We also discuss an “impossibility” result regarding the estimation of the
finite-sample distribution of post-model-selection estimators+

1. INTRODUCTION

In this expository article we discuss some of the problems that arise if one tries
to conduct statistical inference in the presence of data-driven model selection+
The position we hence take is that a ~finite! collection of competing models is
given, typically submodels obtained from an overall model through parameter
restrictions, and that the researcher uses the data to select one of the competing
models+1 The model selection procedure used here can be based on a ~multiple!
hypothesis testing scheme ~e+g+, general-to-specific testing, thresholding as in
wavelet regression, etc+!, on the optimization of a penalized goodness-of-fit cri-
terion ~e+g+, Akaike information criterion @AIC# , Bayesian information crite-
rion @BIC# , final prediction error @FPE#, minimum description length @MDL#,
or any of its numerous variants!, or on cross-validation methods+ The param-
eters of the selected model are then estimated ~e+g+, by least squares or maxi-
mum likelihood!+ Estimators resulting from such a two-step procedure are called
“post-model-selection estimators,” the classical pretest estimators constituting
an important example+ As an illustration consider regressor selection in a linear
model followed by least-squares estimation of the coefficients of the selected
regressors+ Here the competing models are submodels of an overall linear regres-
sion model ~of fixed finite dimension!, the submodels being given by zero-
restrictions on the regression coefficients+
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In this paper we do not wish to enter into a discussion of whether or not a
two-step procedure as described previously can be justified from a purely
decision-theoretic point of view ~although we touch upon this important
question in the discussion of the mean-squared error of post-model-selection
estimators in Sections 2+1 and 2+2 and also in Remark 4+1, which follows!+ We
rather take the pragmatic position that such procedures, explicitly acknowl-
edged or not, are prevalent in applied econometric and statistical work and
that one needs to look at their true sampling properties and related questions
of inference post model selection+ Despite the importance of this problem in
econometrics and statistics, research on this topic has been neglected for decades,
exceptions being the pretest literature as summarized in Judge and Bock ~1978!
or Giles and Giles ~1993!, on the one hand, and the contributions regarding
distributional properties of post-model-selection estimators by, e+g+, Sen
~1979!, Sen and Saleh ~1987!, Dijkstra and Veldkamp ~1988!, and Pötscher
~1991!, on the other hand+2 Only in recent years has this area seen an increase
in research activity ~e+g+, Kabaila, 1995, 1998; Pötscher, 1995; Pötscher and
Novak, 1998; Ahmed and Basu, 2000; Kapetanios, 2001; Dukić and Peña,
2002; Hjort and Claeskens, 2003; Kabaila and Leeb, 2004; Leeb and Pötscher,
2003a, 2003b, 2004; Leeb, 2003a, 2003b; Nickl, 2003; Danilov and Magnus,
2004!+

The aim of this paper is to point to some intricate aspects of data-driven
model selection that do not seem to have been widely appreciated in the liter-
ature or that seem to be viewed too optimistically+ In particular, we demon-
strate innate difficulties of data-driven model selection+ Despite occasional claims
to the contrary, no model selection procedure—implemented on a machine or
not—is immune to these difficulties+ The main points we want to make and
that will be elaborated upon subsequently can be summarized as follows+3

1+ Regardless of sample size, the model selection step typically has a dra-
matic effect on the sampling properties of the estimators that can not be
ignored+ In particular, the sampling properties of post-model-selection esti-
mators are typically significantly different from the nominal distributions
that arise if a fixed model is supposed+

2+ As a consequence, naive use of inference procedures that do not take into
account the model selection step ~e+g+, using standard t-intervals as if the
selected model had been given prior to the statistical analysis! can be highly
misleading+

3+ An increasingly frequently used argument in the literature is that consis-
tent model selection procedures allow one to employ the standard asymp-
totic distributions that would apply if no model selection were performed
and that thus the effects of consistent model selection on inference can be
safely ignored+4 Unfortunately, at closer inspection this conclusion turns
out not to be warranted at all, and relying on it only creates an illusion of
conducting valid inference+ In the same vein, the effects of procedures
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that consistently choose from a finite set of alternatives ~e+g+, proce-
dures that consistently decide between I ~0! and I ~1! or consistently select
the number of structural breaks, etc+! on subsequent inference can not be
ignored safely+ Although it is mathematically true that the use of a con-
sistent model selection procedure entails that the ~pointwise! asymptotic
distributions of the post-model-selection estimators coincide with the
asymptotic distributions that would arise if the selected model were treated
as fixed a priori ~see, e+g+, Pötscher, 1991, Lemma 1!, this does not jus-
tify the aforementioned conclusion ~for the reasons already outlined in
Pötscher, 1991, Sect+ 4, Remark ~iii!; and further discussed in Kabaila,
1995!+5

4+ More generally, regardless of whether a consistent or a conservative6 model
selection procedure is used, the finite-sample distributions of a post-model-
selection estimator are typically not uniformly close to the respective
~pointwise! asymptotic distributions+ Hence, regardless of sample size these
asymptotic distributions can not be safely used to replace the ~compli-
cated! finite-sample distributions+

5+ The finite-sample distributions of post-model-selection estimators are typ-
ically complicated and depend on unknown parameters+ Estimation of these
finite-sample distributions is “impossible” ~even in large samples!+ No
resampling scheme whatsoever can help to alleviate this situation+

To facilitate a detailed analysis of the effects of selecting a model from a
collection of competitors we assume in this paper—as already noted earlier—
that one of the competing models is capable of correctly describing the data
generating process+ Of course, it can always be debated whether or not such an
assumption leads to a “test-bed” that is relevant for empirical work, but we
shall not pursue this debate here ~see, e+g+, the contribution of Phillips, 2005, in
this issue!+ The important question of the effects of model selection when select-
ing only from approximate models will be studied elsewhere+

The points listed previously will be exemplified in detail in Section 2 in the
context of a very simple linear regression model, although they are valid on a
much wider scope+ Because of its simplicity, this example is amenable to a
small-sample and also to a large-sample analysis, allowing one to easily get
insight into the complications that arise with post-model-selection inference;
for results in more general frameworks see Pötscher ~1991!, Leeb and Pötscher
~2003a, 2003b, 2004!, and Leeb ~2003a, 2003b!+ Consistent model selection
procedures are discussed in Section 2+1, whereas Section 2+2 deals with conser-
vative procedures+ Section 2+3 is devoted to the question of estimating the finite-
sample distribution of post-model-selection estimators+ Shrinkage-type estimators
such as Lasso-type estimators, Bridge estimators, and the smoothly clipped abso-
lute deviation ~SCAD! estimator, etc+, are briefly discussed in Section 3+ Sec-
tion 4 contains some remarks, and Section 5 concludes+ Some technical results
and their proofs are collected in the Appendixes+
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2. AN ILLUSTRATIVE EXAMPLE

In the following discussion we shall—for the sake of exposition—use a very
simple example to illustrate the issues involved in model selection and infer-
ence post model selection+ These issues, however, clearly persist also in more
complicated situations such as, e+g+, nonlinear models, time series models, etc+
Consider the linear regression model

yt � axt1 � bxt2 � et ~1 � t � n! (1)

under the “textbook” assumptions that the errors et are independent and identi-
cally distributed ~i+i+d+! N~0,s 2!, s 2 � 0, and the nonstochastic n � 2 regres-
sor matrix X has full rank and satisfies X 'X0nr Q � 0 as nr`+ For simplicity,
we shall also assume that the error variance s 2 is known+7 It will be conve-
nient to write the matrix s 2~X 'X0n!�1 as

s 2~X 'X0n!�1 � � sa2 sa,b

sa,b sb
2 �+

The elements of this matrix depend on sample size n, but we shall suppress this
dependence in the notation+ The elements of the limit of this matrix will be
denoted by sa,`

2 , etc+ It will prove useful to define r� sa,b0~sasb!, i+e+, r is
the correlation coefficient between the least-squares estimators for
a and b in model ~1!+ Its limit will be denoted by r`+

Suppose now that the parameter of interest is the coefficient a in ~1! and that
we are undecided whether or not to include the regressor xt2 in the model a
priori+ ~The case where a general linear function A~a,b!', e+g+, a predictor, rather
than a is the quantity of interest is quite similar and is briefly discussed in
Remark 4+5+! In other words, we have to decide on the basis of the data whether
to fit the unrestricted ~full! model or the restricted model with b� 0+ We shall
denote the two competing candidate models by U and R ~for unrestricted and
restricted, respectively!+ For any given value of the parameter vector ~a,b!,
the most parsimonious true model will be denoted by M0 and is given by

M0 � �U if b� 0

R if b� 0+

It is important to note that M0 depends on the unknown parameters ~namely,
through b!+ The least-squares estimators for a and b in the unrestricted model
will be denoted by [a~U ! and Zb~U !, respectively+ The least-squares estimator
for a in the restricted model will be denoted by [a~R!, and we shall set Zb~R!� 0+
We shall decide between the competing models U and R depending on whether
the test statistic 6Mn Zb~U !0sb 6 � c or not, where c � 0 is a user-specified cut-
off point+ That is, we shall use the model ZM � U if 6Mn Zb~U !0sb 6 � c, and we
shall work with ZM � R otherwise+ This is a traditional pretest procedure based
on the likelihood ratio, but it is worth noting that in the simple example dis-
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cussed here it coincides exactly with Akaike’s minimum AIC rule in case c �
M2 and with Schwarz’s minimum BIC rule if c � M log n + ~We note here in
passing that there is a close connection between pretest procedures and infor-
mation criteria in general; see Remark 4+2+! In fact, in the present example it
seems that there is little choice with regard to the model selection procedure
other than the choice of c, as it is hard to come up with a reasonable model
selection procedure that is not based on the likelihood ratio statistic ~at least
asymptotically!+ Now that we have defined the model selection procedure ZM,
the resulting post-model-selection estimator for the parameter of interest a will
be denoted by Ja � [a~ ZM !; i+e+,

Ja � [a~R!1~ ZM � R!� [a~U !1~ ZM � U !+

The following simple observations will be useful: The finite-sample distribu-
tion of Ja is a convex combination of the conditional distributions, where the
conditioning is on the outcome of the model selection procedure ZM:

Pn,a,b~ Ja � t ! � Pn,a,b~ Ja� t 6 ZM � R!Pn,a,b~ ZM � R!

� Pn,a,b~ Ja� t 6 ZM � U !Pn,a,b~ ZM � U !

� Pn,a,b~ [a~R!� t 6 ZM � R!Pn,a,b~ ZM � R!

� Pn,a,b~ [a~U !� t 6 ZM � U !Pn,a,b~ ZM � U !, (2)

where Pn,a,b denotes the probability measure corresponding to the true param-
eters a, b and sample size n+ The model selection probabilities Pn,a,b~ ZM � U !
and Pn,a, b~ ZM � R! � 1 � Pn,a, b~ ZM � U ! can be evaluated easily and are
given by

Pn,a,b~ ZM � U !� 1 � ~F~c � Mnb0sb!�F~�c � Mnb0sb!!, (3)

where F~{! denotes the standard normal cumulative distribution function ~c+d+f+!+
Cf+ Leeb and Pötscher ~2003a, Sect+ 3+1! and Leeb ~2003b, Sect+ 3+1!+

The subsequent discussion is cast in terms of consistent versus conservative
model selection procedures, because this is entrenched terminology+8 However,
despite this terminology, one should not lose sight of the fact that we are given
only one sample of fixed sample size n together with a fixed model selection
procedure ~e+g+, a particular value of the cutoff point c in the present example!
and we are interested in the finite-sample properties of this procedure+ Any
given model selection procedure can now equally well be embedded as a mem-
ber into a sequence of consistent model selection procedures or into a sequence
of conservative procedures for the purpose of asymptotic analysis ~by appro-
priately defining the model selection procedures at the other—fictitious—
sample sizes!+ Of course, the finite-sample properties of the given model
selection procedure are unaffected by our choice of the embedding asymptotic
framework+ Hence, when talking about consistent or conservative sequences of
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model selection procedures we are in fact not talking about different proce-
dures but rather about different asymptotic frameworks and their comparative
~dis!advantages in revealing the finite-sample properties of a given procedure+

2.1. The Consistent Model Selection Framework

As mentioned in the introduction, proceeding with inference post model selec-
tion “as usual” ~i+e+, as if the selected model were given a priori! is often
defended by the argument that a consistent model selection procedure has been
used and hence asymptotically the selected model would coincide with the most
parsimonious true model, supposedly allowing one to use the standard asymp-
totic results that apply in case of an a priori fixed model+ We now look more
closely at the merit of such an argument+

We assume in this section that the cutoff point c in the definition of the model
selection procedure ZM is chosen to depend on sample size n such that c r `
and c0Mn r 0 as n r `+ Then it is well known ~see Bauer, Pötscher, and
Hackl, 1988; and also Remark 4+3! that the model selection procedure is a con-
sistent procedure in the sense that

Pn,a,b~ ZM � M0 !
nr`
&& 1 (4)

holds for every a, b; i+e+, the probability of revealing the most parsimonious
true model tends to unity as sample size increases+ Because the event $ ZM � M0%
is clearly contained in the event $ Ja� [a~M0!% , the consistency property expressed
in ~4! moreover immediately entails that

Pn,a,b~ Ja � [a~M0 !!
nr`
&& 1 (5)

holds for every a, b, where [a~M0! denotes the least-squares estimator in the
most parsimonious true model+ Although this latter “estimator” is infeasible as
it makes use of the unknown information whether or not b � 0, relation ~5!
shows that the post-model-selection estimator Ja is a feasible version in the sense
that both estimators coincide with probability tending to unity as sample size
increases+ An immediate consequence of ~5! is that the ~pointwise! asymptotic
distributions of Ja and [a~M0! are identical, regardless of whether M0 � U or
M0 � R+ This latter property, which is sometimes called the “oracle” property
~Fan and Li, 2001!, obviously holds for post-model-selection estimators obtained
through consistent model selection procedures in general; cf+ Pötscher ~1991,
Lemma 1! for a formal statement+9

So far the preceding discussion seems to support the argument that proceed-
ing “as usual” with inference post consistent model selection is justified+ In
particular, it seems to suggest that the usual construction of confidence sets
remains valid post consistent model selection+ Furthermore, observe that ~5!
entails that the post-model-selection estimator Ja is asymptotically normally dis-
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tributed and is as “efficient” as the maximum likelihood estimator based on the
full model if the full model is the most parsimonious true model ~i+e+, if b� 0!,
and is more “efficient” ~namely, as “efficient” as the maximum likelihood esti-
mator based on the restricted model! if the restricted model is the most parsi-
monious one ~i+e+, if b� 0!+ This seems too good to be true, and, in fact, it is!
Although the result in ~5! is mathematically correct, it is a delusion to believe
that it carries much statistical meaning+ Before we explore this in detail, a little
reflection shows that the post-model-selection estimator Ja is nothing else than
a variant of Hodges’ so-called superefficient estimator ~cf+ Lehmann and Casella,
1998, pp+ 440– 443!+10 It is remarkable that estimators such as Hodges’ estima-
tor, which was constructed in 1951 as an artificial counterexample to the belief
that any asymptotically normally distributed estimator has an asymptotic vari-
ance that can not fall below the ~asymptotic! Cramér–Rao bound, have nowa-
days come to some prominence in the guise of post-model-selection estimators
based on a consistent model selection procedure ~and of other related estima-
tors; see Section 3!+ It is equally remarkable that some of the lessons learned
from Hodges’ counterexample seem not to have been received in the model
selection literature in the intervening years:11 The actual finite-sample behav-
ior of Ja is not properly reflected by the ~pointwise! asymptotic results; in fact,
these results can be highly misleading regardless of the sample size and tend to
paint an overly optimistic picture of the performance of the estimator+ Math-
ematically speaking, the culprit is nonuniformity ~w+r+t+ the true parameter vec-
tor ~a, b!! in the convergence of the finite-sample distributions to the
corresponding asymptotic distributions; cf+ the warning already issued in Pötscher
~1991! in the discussion following Lemma 1 and also in Section 4, Remark ~iii!,
of that paper+

In the simple example discussed here even a finite-sample analysis is possi-
ble that allows us to nicely showcase the problems involved+12 We begin with a
closer look at the probability Pn,a,b~ ZM � M0! of selecting the most parsimoni-
ous true model+ From ~3! this probability equals F~c! � F~�c! if b � 0,
which—in accordance with ~4!—goes to unity as sample size increases because
we have assumed c r ` in this section+ In case b � 0, the probability equals
1 � ~F~c � Mnb0sb! � F~�c � Mnb0sb!! and—again in accordance with
~4!—converges to unity as n r `+ This is so because c0Mn r 0, so that the
arguments of the F-functions in this formula converge either both to �` or
both to �`+ Nevertheless, the probability of selecting the most parsimonious
true model can be very small for any given sample size if b � 0 is close to
zero+ In that case, we see that this probability is close to 1 � ~F~c!� F~�c!!,
which in turn is close to zero because of c r `+ More precisely, if b � 0
equals zsb c0Mn , 6z6 � 1, then—despite ~4!—the probability of selecting the
most parsimonious true model in fact converges to zero!13 That is, the consis-
tent model selection procedure is completely “blind” to certain deviations from
the restricted model that are of the order c0Mn + In particular, this reveals that
the convergence in ~4! is decidedly nonuniform w+r+t+ b: In other words, for the
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asymptotics to “kick in” in ~4! arbitrarily large sample sizes are needed depend-
ing on the value of the parameter b+ This means that ZM, although being consis-
tent for M0, is not uniformly consistent ~not even locally!+ ~This is in fact true
for any consistent model selection procedure; see Remark 4+4+! We illustrate
this now numerically+ In the following discussion, it proves useful to write g
as shorthand for ~Mn0sb!b, i+e+, to reparameterize b as b � ~sb 0Mn !g+ As a
function of g, the probability of selecting the unrestricted model ~which is the
most parsimonious true model in case b � 0! is pictured in Figure 1+ Recall
that with the choice c � M log n our model selection procedure coincides with
the minimum BIC method+

Figure 1 confirms that the probability of selecting the correct model can be
very small if b � 0 is of the order O~10Mn ! and also suggests that this effect
even gets stronger as the sample size increases+ The latter observation is
explained by the fact that the probability of selecting the correct model con-
verges to zero not only for b � 0 of the order O~10Mn ! but even for b � 0 of
larger order, namely, for b of the form zsb c0Mn , 6z6 � 1; cf+ Proposition A+1
in Appendix A+ Furthermore, we can also calculate, for given b� 0, how many
data points are needed such that the probability of selecting the correct ~i+e+,
the unrestricted! model is at least 0+9, say+ With c � M log n as in Figure 1, we
obtain: If b0sb � 1, then a sample of size n � 8 is needed; if b0sb � 1

2
_ , one

needs n � 42; if b0sb� 1
4
_ , one needs n � 207; and if b0sb� 1

8
_ , then n � 977

is required+ This demonstrates that the required sample size heavily depends on
the unknown b and increases without bound as b gets closer to zero+

Figure 1. Finite-sample model selection probability+ The probability of selecting the
unrestricted model as a function of g�Mnb0sb for various values of n, where we have
taken c �M log n + Starting from the top, the curves show Pn,a,b~ ZM � U ! for n � 10k for
k � 1,2, + + + ,6+ Note that Pn,a,b~ ZM � U ! is independent of a and symmetric around zero
in b or, equivalently, g+
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The phenomenon discussed here occurs only if the parameter b� 0 is “small”
in absolute value in the sense that it goes to zero of a certain order+14 It might
then be tempting to argue that in such a case erroneously selecting the restricted
model is not necessarily detrimental as the restricted model is only “margin-
ally” misspecified: In particular, the estimator Ja is consistent, even uniformly
consistent ~cf+ Proposition A+9 in Appendix A!, and satisfies Ja� a� OP~n�102!
as n r ` ~where OP is understood relative to Pn,a,b for fixed a and b!+ How-
ever, given that the consistent model selection procedure is “blind” to devia-
tions from the restricted model of the order 10Mn ~and even to deviations of
larger order!, it should not come as a surprise that the phenomenon discussed
previously crops up again in the distribution of Mn ~ Ja � a!+ Recall that, as a
consequence of ~5!, Mn ~ Ja � a! is asymptotically normally distributed with
mean zero and variance equal to the asymptotic variance of the restricted least-
squares estimator if b � 0 and equal to the asymptotic variance of the
unrestricted least-squares estimator if b � 0+ However, in finite samples—
regardless of how large—we get a completely different picture: From Leeb
~2003b!, we obtain that the finite-sample density of Mn ~ Ja � a! is given by

gn,a,b~u! � sa
�1~1 � r2 !�102f~u~1 � r2 !�1020sa� r~1 � r2 !�102Mnb0sb!

� D~Mnb0sb , c!

� sa
�1�1 � D�Mnb0sb� ru0sa

M1 � r2
,

c

M1 � r2 ��f~u0sa!, (6)

where f~{! denotes the standard normal probability density function ~p+d+f+!+
Furthermore, we have used D~a,b! as shorthand for F~a � b! � F~a � b!,
where F denotes the standard normal c+d+f+ Note that D~a,b! is symmetric in
its first argument+ The finite-sample density of Mn ~ Ja� a! does not depend on
a and is the sum of two terms: The first term is the density of Mn ~ [a~R! � a!
multiplied by the probability of selecting the restricted model+ The second term
is a “deformed” version of the density of Mn ~ [a~U ! � a!, where the deforma-
tion factor is given by the 1 � D~{,{!-term+15 Figure 2 gives an example of the
possible shapes of the density of Mn ~ Ja � a!+

Two of the densities in Figure 2 are unimodal: The one with the larger mode
arises for b0sb� 0 and is quite close to the ~normal! density of Mn ~ [a~R!� a!
corresponding to the restricted model+ The reason for this is that the probability
D~0, c! of selecting the restricted model is large, namely, 0+968, and hence the
first term in ~6! is the dominant one+ The density with the smaller mode arises
for b0sb � 0+5 and closely resembles the density of Mn ~ [a~U ! � a! corre-
sponding to the unrestricted model+ The reason here is ~i! that the probability
of selecting the unrestricted model is large, namely, 0+998, and hence the sec-
ond term in ~6! is dominant and ~ii! that this dominant term is approximately
Gaussian; more precisely, the second term in ~6! is approximately equal to
f~u!~1 � D~7 � 0+98u,3!!, which differs from f~u! in absolute value by less
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than 0+002+ The bimodal densities correspond to the cases b0sb � 0+21 and
b0sb � 0+25+ In both cases, the left-hand mode reflects the contribution of the
first term in ~6! whereas the right-hand mode reflects the contribution of the
second term+ The height of the left-hand mode is proportional to the proba-
bility of selecting the restricted model, which is larger for b0sb � 0+21 than
for b0sb � 0+25+ In summary, we see that the finite-sample distribution
of Mn ~ Ja � a! depends heavily on the value of the unknown parameter b
~through b0sb! and that it is far from its Gaussian large-sample limit distribu-
tion for certain values of b+ The same phenomenon is also found if we repeat
the calculations for other sample sizes n, regardless of how large n is+ In other
words: Although the distribution of Mn ~ Ja � a! is approximately Gaussian for
each given ~a,b! and sufficiently large sample size, the amount of data required
to achieve a given accuracy of approximation depends on the unknown b+ In
the example presented in Figure 2, a sample size of 100 appears to be suffi-
cient for the normal approximation predicted by pointwise asymptotic theory
to be reasonably accurate in the cases b0sb � 0 and b0sb � 0+5, whereas it is
clearly insufficient in case b0sb � 0+21 or b0sb � 0+25+

How can this be reconciled with the result mentioned earlier that Mn ~ Ja� a!
has an asymptotic normal distribution with mean zero and appropriate vari-
ance? The crucial observation again is that this limit result is a pointwise one;
i+e+, it holds for each fixed value of the parameter vector ~a,b! individually but
does not hold uniformly w+r+t+ ~a,b! ~in fact, not even locally uniformly!:While
it is easy to see that for every u � R the density gn,a,b~u! given by ~6! con-
verges to the appropriate normal density for each fixed ~a,b!, it is equally easy
to see ~cf+ Proposition A+2 in Appendix A! that ~6! has a different asymptotic

Figure 2. Finite-sample densities+ The density gn,a,b of Mn ~ Ja� a! for various values
of b0sb+ For the graphs, we have taken n � 100, c � M log n , r � 0+7, and sa

2 � 1+
The four curves correspond to b0sb equal to 0, 0+21, 0+25, and 0+5 and are discussed in
the text+

30 HANNES LEEB AND BENEDIKT M. PÖTSCHER



behavior if, e+g+, b � sbg0Mn with g � 0+ In this case ~6! converges to a
shifted version of the density of the asymptotic distribution of Mn ~ [a~R!� a!,
the shift being controlled by g+ Yet another asymptotic behavior is obtained if
we consider b � sbgn 0Mn with gn r ` ~or gn r �`! but gn � o~c!+ Then
gn,a,b~u! even converges to zero for every u � R! That is, the distribution
of Mn ~ Ja � a! does not “stabilize” as sample size increases but—loosely
speaking—“escapes” to ` or �` ~depending on the sign of gn! ; in fact,
Mn ~ Ja � a! r ` or �` in Pn,a,b-probability+ More complicated asymptotic
behavior is in fact possible and is described in Proposition A+2 in Appendix
A+16 ~To simplify matters the rather special case r` � 0 is excluded from the
preceding discussion; cf+ Remark 4+6 for some comments on this case+ How-
ever, note that Proposition A+2 also covers the case r` � 0+!

We are now in a position to analyze the actual coverage properties of confi-
dence intervals that are constructed “as usual,” thereby ignoring the presence
of model selection ~this step seemingly being justified by a reference to ~5!!+
Let I denote the “naive” confidence interval that is given by the usual confi-
dence interval in the restricted ~unrestricted! model if the restricted ~unrestricted!
model is selected+ That is,

I � @ Ja� zh n�102sa~1 � r2 !102, Ja� zh n�102sa~1 � r2 !102 # (7)

if ZM � R and

I � @ Ja� zh n�102sa , Ja� zh n�102sa# (8)

if ZM � U where 1 � h denotes the nominal coverage probability and zh is the
~1 � h02! quantile of a standard normal distribution+ In view of ~2!, the actual
coverage probability satisfies

Pn,a,b~a � I ! � Pn,a,b~a � I 6 ZM � R!Pn,a,b~ ZM � R!

� Pn,a,b~a � I 6 ZM � U !Pn,a,b~ ZM � U !+ (9)

Using the remark in note 15 in the notes section, it is an elementary calculation
to obtain

Pn,a,b~a � I !
� D~r~1 � r2 !�102Mnb0sb , zh!D~Mnb0sb , c!

� �
�zh

zh

~1 � D~~Mnb0sb� ru!~1 � r2 !�102, c~1 � r2 !�102 !!f~u! du+

(10)

Note that the coverage probability does not depend on a and is symmetric around
zero as a function of b+ Because of ~5! and the attending discussion, pointwise
asymptotic theory tells us that the coverage probability Pn,a,b~a � I ! con-
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verges to 1 � h for every ~a,b!+ However, the plots of the coverage probabil-
ity given in Figure 3 speak another language+

We see that the actual coverage probability of the “naive” interval I is often
far below its nominal level of 0+95, sometimes falling below 0+3+ Figure 3 also
suggests that this phenomenon gets more pronounced when sample size
increases! In fact, it is not difficult to see that the minimal coverage probability
of I converges to zero as sample size increases and not to the nominal cover-
age probability 1 � h as one might have hoped for ~except possibly in the rel-
atively special case r` � 0!; cf+ also Kabaila ~1995!+ To see this, note that

min
a,b

Pn,a,b~a � I ! � Pn,a,sbgn 0Mn ~a � I !,

where a is arbitrary and gn is chosen such that gn r ` ~or gn r �`! and
gn � o~c!+ ~The r+h+s+ in the preceding inequality does actually not depend on a
in view of ~10!+! Because Pn,a,sbgn 0Mn ~ ZM � U ! converges to zero as discussed
earlier ~cf+ Proposition A+1 in Appendix A!, we arrive—using ~9! and ~10!—at

lim
nr`

min
a,b

Pn,a,b~a � I !

� lim
nr`

Pn,a,sbgn 0Mn ~a � I 6 ZM � R!Pn,a,sbgn 0Mn ~ ZM � R!

� lim
nr`
D~r~1 � r2 !�102gn , zh!D~gn , c!� 0,

the last equality being true because 6gn6 r ` ~and because we have excluded
the case r` � 0!+

Figure 3. Finite-sample coverage probabilities+ The coverage probability of the “naive”
confidence interval I with nominal confidence level 1 � h � 0+95 as a function of g �
Mnb0sb for various values of n, where we have taken c � M log n and r � 0+7+ The
curves are given for n � 10k for k � 1,2, + + + ,7; larger sample sizes correspond to curves
with a smaller minimal coverage probability+
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We finally illustrate the impact of model selection on the ~scaled! bias and
the ~scaled! mean-squared error of the estimator ~again excluding for simplic-
ity of discussion the case r` � 0!+ Let Bias denote the expectation and MSE
the second moment of Mn ~ Ja � a!+ We discuss the bias first+ An explicit
formula for the bias can be obtained from ~6! by a tedious but straightforward
computation and is given by

Bias � �rsa @~Mnb0sb!D~Mnb0sb , c!

� f~Mnb0sb� c!� f~Mnb0sb� c!# + (11)

A pointwise ~i+e+, for fixed ~a,b!! asymptotic analysis tells us that this bias
vanishes asymptotically+17 In Figure 4 we have computed this bias numerically
as a function of g � Mnb0sb+ Note that the bias is independent of a and anti-
symmetric around zero in b or, equivalently, g ~and hence is shown only for
g � 0!+

Figure 4 demonstrates that—contrary to the prediction of pointwise asymp-
totic theory—the bias can be quite substantial if b is of the order O~10Mn ! and
that this effect gets more pronounced as the sample size increases ~the reason
for this discrepancy again being nonuniformity in the pointwise asymptotic
results!+ An asymptotic analysis of ~11! using b � sbg0Mn with g � 0 shows
that the bias converges to �sar`g ~see Proposition A+4 in Appendix A for
more information!+ Note that this limit corresponds to the “envelope” of the
finite-sample bias curves ~for all n! as indicated in Figure 4+ Furthermore, if
b � sbgn 0Mn with gn r ` ~or gn r �`! but gn � o~c!, the asymptotic
analysis in Proposition A+4 even shows that the bias converges to 6`, the sign

Figure 4. Finite-sample bias+ The expectation of Mn ~ Ja� a!, i+e+, the ~scaled! bias of
the post-model-selection estimator for a, as a function of g� Mnb0sb for various val-
ues of n, where we have taken c � M log n , r � 0+7, and sa

2 � 1+ The curves are given
for n � 10k for k � 1,2, + + + ,7; larger sample sizes correspond to curves with larger max-
imal absolute biases+
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depending on the sign of gn+ As a consequence, the maximal absolute bias in
fact grows without bound as sample size increases!

Turning to the MSE we encounter a similar situation+ Using the fact that the
test statistic 6Mn Zb~U !0sb 6 is independent of [a~R! ~e+g+, Leeb and Pötscher,
2003a, Proposition 3+1! and that [a~R!� [a~U !� r~sa0sb! Zb~U !, the MSE can
be computed explicitly to be

MSE � sa
2 � sa

2 r2 �
~c � Mnb0sb!f~c � Mnb0sb!

� ~c � Mnb0sb!f~c � Mnb0sb!

� ~~nb20sb2!� 1!~F~c � Mnb0sb!

�F~�c � Mnb0sb!!
� + (12)

Alternatively, the preceding formula can also be obtained by brute force inte-
gration from the density ~6! or from Theorems 2+2 and 4+1 in Magnus ~1999!+
The MSE is independent of a+ A pointwise asymptotic analysis tells us that
MSE converges to the asymptotic variance sa,`

2 ~1 � r`
2 ! of Mn ~ [a~R! � a! if

b � 0 and to the asymptotic variance sa,`
2 of Mn ~ [a~U ! � a! if b � 0+18

Again, however, the finite-sample mean-squared error exhibits a totally differ-
ent behavior, regardless how large sample size is ~as a result of nonuniformity
in the pointwise asymptotics!+ This can be gleaned from Figure 5: The maxi-
mal mean-squared error is much larger than the mean-squared error of the
unrestricted least-squares estimator that is constant and equal to sa

2 � 1+ As
Figure 5 suggests, the maximal mean-squared error diverges to infinity as sam-

Figure 5. Finite-sample mean-squared error+ The second moment of Mn ~ Ja � a!,
i+e+, the ~scaled! mean-squared error of the post-model-selection estimator for a, as a
function of g � Mnb0sb for various values of n, where we have taken c � M log n ,
r � 0+7, and sa

2 � 1+ The curves are given for n � 10k for k � 1,2, + + + ,7; larger sample
sizes correspond to curves with larger maximal mean-squared error+
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ple size increases, whereas the mean-squared error of Mn ~ [a~U ! � a! stays
bounded ~it converges to sa,`

2 !+ This is well known for the Hodges estimator
~e+g+, Lehmann and Casella, 1998, p+ 442!+ For the mean-squared error of
Mn ~ Ja � a! this follows of course immediately from the fact noted previously
that the bias diverges to 6` when setting b � sbgn 0Mn with gn r ` ~or
gn r �`! but gn � o~c!+ ~The phenomenon that the maximal absolute bias
and hence the maximal mean-squared error diverge to infinity holds for post-
model-selection estimators based on consistent model selection procedures in
general; see Remark 4+1, Appendix C; and Yang ~2003!+!

2.2. The Conservative Model Selection Framework

Generally speaking, post-model-selection estimators based on conservative model
selection procedures are subject to phenomena similar to the ones observed in
Section 2+1 for post-model-selection estimators based on consistent procedures+
In particular, the finite-sample behavior of both types of post-model-selection
estimators is governed by exactly the same formulas, because the finite-sample
behavior is clearly not much impressed by what we fancy about the behavior of
the model selection procedure at fictitious sample sizes other than n ~e+g+, what
we fancy about the behavior of the cutoff point c as a function of n!+ Cf+ the
discussion immediately preceding Section 2+1+ Not surprisingly, some differ-
ences arise in the asymptotic theory+

In this section we consider the same model selection procedure and post-
model-selection estimator Ja as before, except that we now assume the cutoff
point c to be independent of sample size n+19 This results in a conservative
model selection procedure ~that is not consistent!+20 As just noted, the finite-
sample distribution, the expectation, and the second moment of Mn ~ Ja� a! are
again given by ~6!, ~11!, and ~12!, respectively+ Also, the model selection prob-
abilities and the coverage probability of the “naive” confidence interval are given
by the same formulas as before+ As a consequence, all conclusions drawn from
the finite-sample formulas in Section 2+1 remain valid here: The finite-sample
distribution of the post-model-selection estimator is often decidedly nonnor-
mal, and the standard asymptotic approximations derived on the presumption
of an a priori given model are inappropriate+ In particular, the actual coverage
probability of the “naive” confidence interval is often much smaller than the
nominal coverage probability+ Finally, the bias can be substantial, and the mean-
squared error can by far exceed the mean-squared error of the unrestricted
estimator+

We briefly discuss the asymptotic behavior next+21 A much more detailed treat-
ment covering more general model selection procedures and more general models
can be found in Pötscher ~1991!, Leeb and Pötscher ~2003a!, and Leeb ~2003a,b!+
The pointwise limiting behavior of the model selection probabilities can be
easily read off from the finite-sample formula ~3!: limnr`Pn,a,b~ ZM � R! � 0
if b � 0 and limnr`Pn,a,b~ ZM � R! � F~c! � F~�c! � 1 if b � 0, reflecting
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the fact that the model selection procedure is conservative but not consistent+
As in the case of consistent model selection procedures, this convergence is
not uniform w+r+t+ b+ In contrast to consistent model selection procedures ~cf+
Proposition A+1 in Appendix A!, the behavior under sample-size-dependent
parameters ~an,bn! is quite simple: If Mnbn 0sb r g, 6g 6 � `, then
limnr` Pn,an ,bn

~ ZM � R! � F~c � g! � F~�c � g!+ ~If Mn 6bn 60sb r `,
then the limit is zero; i+e+, the asymptotic behavior is identical to the asymptotic
behavior under fixed b� 0+! In particular, the asymptotic analysis confirms what
we already know from the finite-sample analysis, namely, that the probability
of erroneously selecting the restricted model can be substantial, namely, if 6g 6
is small+ However, in contrast to consistent model selection procedures, this prob-
ability does not converge to unity as sample size increases+ It is also interesting
to note that deviations from the restricted model such as b � zsb cn 0Mn with
6z6 � 1 and cn r `, cn 0Mn r 0, that can not be detected by a consistent
model selection procedure using cutoff point cn ~cf+ Proposition A+1 and note
14 in the notes section! can be detected with probability approaching unity by a
conservative procedure using a fixed cutoff point c+ Consequently and not sur-
prisingly, conservative model selection procedures are more powerful than con-
sistent model selection procedures in the sense that they are less likely to
erroneously select an incorrect model for large sample sizes+ ~Needless to say
this advantage of the conservative procedure is paid for by a larger probability
of selecting an overparameterized model+!

Turning to the post-model-selection estimator Ja itself, it is obvious that now
conditions ~4! and ~5! are no longer satisfied;22 as a consequence, and in con-
trast to the case of consistent model selection procedures, the pointwise asymp-
totic distribution now captures some of the effects of model selection and no
longer coincides with the usual asymptotic distribution that applies in the absence
of model selection+ This can easily be seen from ~2!: Whereas in the case of
consistent model selection procedures, regardless of the value of b, only one of
the two terms in ~2! survives asymptotically and the corresponding condition-
ing event becomes a set of probability one asymptotically and hence has no
effect, for conservative procedures both terms do not vanish in the limit if b� 0+
Hence, the pointwise asymptotic limit captures some of the effects of the model
selection step, at least in the case when the restricted model is correct+ ~In that
sense the asymptotic framework that views a given model selection procedure
as embedded in a sequence of conservative procedures has some advantage
over the framework considered in Section 2+1+! More precisely, the pointwise
asymptotic distribution of Mn ~ Ja� a! has a density given by sa,`

�1 f~u0sa,` ! if
b � 0 and given by

sa,`
�1 ~1 � r`

2 !�102f~u~1 � r`
2 !�1020sa,` !D~0, c!

� sa,`
�1 �1 � D�r`u0sa,`

M1 � r`
2
,

c

M1 � r`
2 ��f~u0sa,` ! (13)
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if b � 0+ Note that ~13! bears some resemblance to the finite-sample distribu-
tion ~6!+ However, the pointwise asymptotic distribution does not capture all
the effects present in the finite-sample distribution, especially if b� 0; in par-
ticular, the convergence is not uniform w+r+t+ b ~except in trivial cases such
as r` � 0!; cf+ Corollary 5+5 in Leeb and Pötscher ~2003a!, Remark 6+6 in
Leeb and Pötscher ~2003b!, and note 16+ A much better approximation, cap-
turing all the essential features of the finite-sample distribution, is obtained by
the asymptotic distribution under sample-size dependent parameters ~an,bn!
with Mnbn 0sbr g, 6g 6 � `: This asymptotic distribution has a density of the
form

sa,`
�1 ~1 � r`

2 !�102f~u~1 � r`
2 !�1020sa,`� r`~1 � r`

2 !�102g!D~g, c!

� sa,`
�1 �1 � D�g� r`u0sa,`

M1 � r`
2
,

c

M1 � r`
2 ��f~u0sa!+ (14)

This follows either as a special case of Proposition 5+1 of Leeb ~2003b! ~cf+
also Leeb and Pötscher, 2003a, Proposition 5+3 and Corollary 5+4! or can be
gleaned directly from ~6!+ ~If Mn 6bn 60sb r `, then the limit has the form
sa,`

�1 f~u0sa,` !+!23 Observe that ~14! follows the same formula as the finite-
sample density ~6!, except that sa and r have been replaced by their respective
limits sa,` and r` and that Mnb0sb has been replaced by g+

Consider next the asymptotic behavior of the actual coverage probability of
the “naive” confidence interval I given by ~7! and ~8!+ The pointwise limit of
the actual coverage probability has been studied in Pötscher ~1991, Sect+ 3+3!+
In contrast to the case of consistent model selection procedures, it turns out to
be less than the nominal coverage probability in case the restricted model is
correct+ However, this pointwise asymptotic result, although hinting at the prob-
lem, still gives a much too optimistic picture when compared with the actual
finite-sample coverage probability+ The large-sample minimal coverage proba-
bility of the “naive” confidence interval has been studied in Kabaila and Leeb
~2004!+Although it does not equal zero as in the case of consistent model selec-
tion procedures, it turns out to be often much smaller than the nominal cover-
age probability 1 � h ~as in Figure 3!; see Kabaila and Leeb ~2004! for more
details+

We finally turn to the bias and mean-squared error of Mn Ja+ Under the
sequence of parameters ~an,bn! with Mnbn 0sb r g, 6g 6 � `, it is readily
seen from ~11! that the bias converges to

� r`sa,` @gD~g, c!� f~g� c!� f~g� c!# +

The pointwise asymptotics corresponds to the cases g � 0 and g � 6` ~with
the convention that 6`D~6`, c! � 0 and f~6`! � 0! and results in a zero
limiting bias+ However, the maximal bias can be quite substantial if b is of the
order O~10Mn !+ In contrast to the case of consistent model selection proce-
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dures, the maximal bias does not go to infinity ~in absolute value! as n r `
but remains bounded+ ~It is perhaps somewhat ironic—although not surprising—
that consistent model selection procedures that look perfect in a pointwise
asymptotic analysis lead in fact to more heavily distorted post-model-selection
estimators than conservative model selection procedures+! The limiting mean-
squared error under ~an,bn! as before is easily seen to be given by

sa,`
2 � sa,`

2 r`
2 � ~c � g!f~c � g!� ~c � g!f~c � g!

� ~g2 � 1!~F~c � g!�F~�c � g!!�,
the pointwise asymptotics again corresponding to the cases g� 0 and g�6`
~with the convention that `D~6`, c! � 0 and 6`f~6`! � 0!+ In contrast to
the case of consistent model selection procedures, the pointwise limit of MSE
captures some ~but not all! of the effects of model selection and hence no lon-
ger coincides with the asymptotic variance of the infeasible “estimator” [a~M0!+
Also, in contrast to the case of consistent model selection procedures, the max-
imal mean-squared error does not go off to infinity as n r `, but rather it
remains bounded; cf+ also Remark 4+1+

2.3. Can One Estimate the Distribution of
Post-Model-Selection Estimators?

It transpires from the preceding discussion that the finite-sample distributions
~and also the asymptotic distributions! of post-model-selection estimators depend
on unknown parameters ~i+e+, b in the example discussed in this paper!, often
in a complicated fashion+ For inference purposes, e+g+, for the construction of
confidence sets, estimators for these distributions would be desirable+ Con-
sistent estimators for these distributions can typically be constructed quite
easily, e+g+, by suitably replacing unknown parameters in the large-sample limit
distributions by estimators: In the case of the consistent model selection pro-
cedure discussed in Section 2+1 a consistent estimator for the finite-sample
distribution of Mn ~ Ja � a! is simply given by the normal distribution
N~0,sa2~1 � r2!!, i+e+, by the distribution of Mn ~a~R! � a!, if ZM � R, and
by N~0,sa2!, i+e+, by the distribution of Mn ~a~U ! � a!, if ZM � U+ However,
recall from Section 2+1 that the finite-sample distribution of the post-model-
selection estimator is not uniformly close to its pointwise asymptotic limit+ Hence
the suggested estimator ~being identical with the pointwise asymptotic distri-
bution except for replacing sa,`

2 and r`
2 by sa

2 and r2! will—although being
consistent—not be close to the finite-sample distribution uniformly in the
unknown parameters, thus providing a rather useless estimator+ In the case of
conservative model selection procedures consistent estimators for the finite-
sample distribution of the post-model-selection estimator can also be con-
structed from the pointwise asymptotic distribution by suitably plugging in
estimators for unknown quantities; see Leeb and Pötscher ~2003b, 2004!+ How-

38 HANNES LEEB AND BENEDIKT M. PÖTSCHER



ever, again these estimators will be quite useless for the same reason: As dis-
cussed in Section 2+2, the convergence of the finite-sample distributions to their
~pointwise! large-sample limits is typically not uniform with respect to the under-
lying parameters, and there is no reason to believe that this nonuniformity will
disappear when unknown parameter values in the large-sample limit are replaced
by estimators+

A natural reaction to the preceding discussion could be to try the bootstrap
or some related resampling procedure such as, e+g+, subsampling+ Consider first
the case of a consistent model selection procedure+ Then, in view of ~4! and
~5!, the bootstrap that resamples from the residuals of the selected model cer-
tainly provides a consistent estimator for the finite-sample distribution of the
post-model-selection estimator+ Note that the consistent estimator described in
the preceding paragraph can be viewed as a ~parametric! bootstrap+ The discus-
sion in the previous paragraph then, however, suggests that such estimators based
on the bootstrap ~or on other resampling procedures such as subsampling!,
despite being consistent, will be plagued by the nonuniformity issues discussed
earlier+ Next consider the case where the model selection procedure is conser-
vative ~but not consistent!+ Then the bootstrap will typically not even provide
consistent estimators for the finite-sample distribution of the post-model-selection
estimator, as the bootstrap can be shown to stay random in the limit ~Kulperger
and Ahmed, 1992; Knight, 1999, Example 3!:24 Basically the only way one can
coerce the bootstrap into delivering a consistent estimator is to resample from
a model that has been selected by an auxiliary consistent model selection pro-
cedure+ ~The construction of consistent estimators in Leeb and Pötscher, 2003b,
2004, alluded to previously basically follows this route+! In contrast, subsam-
pling will typically deliver consistent estimators+ However, the discussion in
the preceding paragraph strongly suggests that any such estimator will again
suffer from the nonuniformity defect+

A natural question then is how estimators ~not necessarily derived from the
asymptotic distributions or from resampling considerations! can be found that
do not suffer from the nonuniformity defect+ In other words, we are asking for
estimators ZGn,a,b of the finite-sample c+d+f+ Gn,a,b of Mn ~ Ja � a! that are uni-
formly consistent, i+e+, that satisfy for every t � R and every d � 0

sup
a,b

Pn,a,b~6 ZGn,a,b~t !� Gn,a,b~t !6 � d!
nr`
&& 0+

However, it turns out that no estimator ZGn,a,b can satisfy this requirement ~except
possibly in the trivial case where r` � 0!+ For conservative model selection
procedures this is proved in Leeb and Pötscher ~2003a, 2004! in a more general
framework, including model selection by AIC from a quite arbitrary collection
of linear regression models+ For a consistent model selection procedure such a
result is given in Leeb and Pötscher ~2002, Sect+ 2+3!+ In fact, these papers
show that the situation is even more dramatic: For every consistent estimator
ZGn,a,b of Gn,a,b even
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sup
a,b

Pn,a,b~6 ZGn,a,b~t !� Gn,a,b~t !6 � d!
nr`
&& 1

holds for suitable d � 0, and this result is even local in the sense that it holds
also if the supremum in the preceding display extends only over suitable balls
that shrink at rate 10Mn +25 ~These “impossibility” results hold for randomized
estimators of Gn,a,b also+!

The preceding “impossibility” results establish in particular that any pro-
posal to estimate the distribution of post-model-selection estimators by what-
ever resampling procedure ~bootstrap, subsampling, etc+! is doomed as any such
estimator is necessarily plagued by the nonuniformity defect ~if it is consistent
at all!+ On a more general level, an implication of the preceding results is that
assessing the variability of post-model-selection estimators ~e+g+, the construc-
tion of valid confidence intervals post model selection! is a harder problem
than perhaps expected+26

3. RELATED PROCEDURES: SHRINKAGE-TYPE ESTIMATORS
AND PENALIZED LEAST-SQUARES

Post-model-selection estimators can be viewed as a discontinuous form of shrink-
age estimators+ In this section we briefly discuss the relationship between post-
model-selection estimators and shrinkage-type estimators and look at the
distributional properties of such estimators+ Although estimators such as the
James–Stein estimator or ridge estimators have a long tradition in economet-
rics and statistics, a number of shrinkage-type estimators such as the Lasso esti-
mator, the Bridge estimator, and the SCAD estimator are of more recent vintage+
In the context of a linear regression model Y � Xu � « many of these estima-
tors can be cast in the form of a penalized least-squares estimator: Let Zu be the
estimator that is obtained by minimizing the penalized least-squares criterion

(
t�1

n

~ yt � xt+u!
2 � ln(

j�1

k

6uj 6q, (15)

where xt+ denotes the t th row and k the number of columns of X+ This is the
class of Bridge estimators introduced by Frank and Friedman ~1993!, the case
q � 2 corresponding to the ridge estimator+ The member of this class obtained
by setting q � 1 has been referred to as a Lasso-type estimator by Knight and
Fu ~2000!, because it is closely related to the Lasso of Tibshirani ~1996!+ Knight
and Fu ~2000! also note that in the context of wavelet regression minimizing
~15! with q � 1 is known as “basis pursuit,” cf+ Chen, Donoho, and Saunders
~1998!+ In fact, in the case of diagonal X 'X the Lasso-type estimator reduces
to soft-thresholding of the coordinates of the least-squares estimator+ ~We
note that in this case hard-thresholding, which obviously is a model selection
procedure, can also be represented as a penalized least-squares estimator+!
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The SCAD estimator introduced by Fan and Li ~2001! is also a penalized
least-squares estimator but uses a different penalty term+ It is given as the min-
imizer of

(
t�1

n

~ yt � xt+u!
2 �(

j�1

k

pln
~uj !

with a specific choice of pln
that we do not reproduce here+

The asymptotic distributional properties of Bridge estimators have been stud-
ied in Knight and Fu ~2000!+ Under appropriate conditions on q and on the
regularization parameter ln, the asymptotic distribution shows features similar
to the asymptotic distribution of post-model-selection estimators based on a
conservative model selection procedure ~e+g+, bimodality!+ Under other condi-
tions on q and ln, the Bridge estimator acts more like a post-model-selection
estimator based on a consistent procedure+ In particular, such a Bridge estima-
tor will estimate zero components of the true u exactly as zero with probability
approaching unity+ It hence satisfies an “oracle” property+ This is also true for
the SCAD estimator of Fan and Li ~2001!+ In view of the discussion in Sec-
tion 2+1 and the lessons learned from Hodges’ estimator, one should, however,
not read too much into this property as it can give a highly misleading impres-
sion of the properties of these estimators in finite samples+27

Another similarity with post-model-selection estimators is the fact that the
distribution function or the risk of shrinkage-type estimators often can not be
estimated uniformly consistently+ See Leeb and Pötscher ~2002! for more on
this subject+

4. REMARKS

Remark 4+1+ In this remark we collect some decision-theoretic facts about post-
model-selection estimators+ These results could be taken as a starting point for
a discussion of whether or not model selection ~from submodels of an overall
model of fixed finite dimension! can be justified from a decision-theoretic point
of view+

1+ Sometimes model selection is motivated by arguing that allowing for the
selection of models more parsimonious than the overall model would lead
to a gain in the precision of the estimate+ However, this argument does
not hold up to closer scrunity+ For example, it is well known in the stan-
dard linear regression model Y � Xu � « that the mean-squared error of
any given pretest estimator for u exceeds the mean-squared error of the
least-squares estimator ~X 'X !�1X 'Y on parts of the parameter space ~Judge
and Bock, 1978; Judge and Yancey, 1986;Magnus, 1999!+ Hence, pretest-
ing does not lead to a global gain ~i+e+, a gain that holds over the entire
parameter space! in mean-squared error over the least-squares estimator
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obtained from the overall model+ Cf+ also the discussion of the mean-
squared error in Sections 2+1 and 2+2+

2+ For Hodges’ estimator and also for the post-model-selection estimator based
on a consistent model selection procedure considered in Section 2+1 the
maximal ~scaled! mean-squared error increases without bound as nr `,
whereas the maximal ~scaled! mean-squared error of the least-squares esti-
mator in the overall model remains bounded+ Cf+ Section 2+1+

3+ The unboundedness of the maximal ~scaled! mean-squared error is true
for post-model-selection estimators based on consistent procedures more
generally+ Yang ~2003! proves such a result in a normal linear regression
framework for some sort of maximal predictive risk+A proof for the max-
imal @scaled# mean-squared error ~in fact for the maximal @scaled# abso-
lute bias! as considered in the present paper is given in Appendix C+28 In
contrast, the maximal ~scaled! mean-squared error of a post-model-selection
estimator based on a conservative ~but inconsistent! procedure typically
stays bounded as sample size increases ~although it can substantially exceed
the @scaled# mean-squared error of the least-squares estimator in the
unrestricted model!+29

4+ Kempthorne ~1984! has shown that in a normal linear regression model
no post-model-selection estimator Du ~including the trivial post-model-
selection estimators that are based on a fixed model! dominates any other
post-model-selection estimator in terms of mean-squared error of X Du+

5+ It is well known that in a normal linear regression model Y � Xu � «
with more than two regressors the least-squares estimator ~X 'X !�1X 'Y
is inadmissible as it is dominated by the Stein estimator ~and its admissi-
ble versions!+ Similarly, every pretest estimator is inadmissible as shown
by Sclove, Morris, and Radhakrishnan ~1972!+ See Judge and Yancey
~1986, p+ 33! for more information+

Remark 4+2+ That in the case of two competing models minimum AIC ~and
also BIC! reduces to a likelihood ratio test has been noted already by Söder-
ström ~1977! and has been rediscovered numerous times+ Even in the general
case there is a closer connection between model selection based on multiple
testing procedures and model selection procedures based on information cri-
teria such as AIC or BIC than is often recognized+ For example, the minimum
AIC or BIC method can be reexpressed as the search for that model that is not
rejected in pairwise comparisons against any other competing model, where
rejection occurs if the likelihood-ratio statistic ~corresponding to the pairwise
comparison! exceeds a critical value that is determined by the model dimen-
sions and sample size; see Pötscher ~1991, Sect+ 4, Remark ~ii!! for more
information+

Remark 4+3+ The idea that hypothesis tests give rise to consistent ~model!
selection procedures if the significance levels of the tests approach zero at an
appropriate rate as sample size increases has already been used in Pötscher ~1981,
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1983! in the context of ARMA models and in Bauer, Pötscher, and Hackl ~1988!
in the context of general ~semi!parametric models+ It has since been rediscov-
ered numerous times, e+g+, by Andrews ~1986!, Corradi ~1999!, Altissimo and
Corradi ~2002, 2003!, and Bunea, Niu, and Wegkamp ~2003!, to mention a few+
@The editor has informed us that in the context of a linear regression model the
same idea appears also in a 1981 manuscript by Sargan, which was eventually
published as Sargan, 2001+#

Remark 4+4+

1+ If an � a � d0Mn and bn � b � g0Mn then Pn,an ,bn
is contiguous w+r+t+

Pn,a,b ~and this is more generally true in any sufficiently regular paramet-
ric model!+ If XM is an arbitrary consistent model selection procedure, i+e+,
satisfies Pn,a,b~ XM � M0! r 1 as n r `, where M0 � M0~a,b! is the
most parsimonious true model corresponding to ~a, b!, then also
Pn,an ,bn

~ XM � M0! r 1 as n r ` by contiguity, and hence the post-
model-selection estimator based on XM coincides with the restricted esti-
mator with Pn,an ,bn

probability converging to unity if b � 0+ Hence, any
consistent model selection procedure is insensitive to deviations at least
of the order 10Mn + It is obvious that this argument immediately carries
over to any class of sufficiently regular parametric models ~except if the
competing models are “well separated”!+

2+ As a consequence of the preceding contiguity argument, in general no
model selector can be uniformly consistent for the most parsimonious true
model+ Cf+ also Corollary 2+3 in Pötscher ~2002! and Corollary 3+3 in Leeb
and Pötscher ~2002! and observe that the estimand ~i+e+, the most parsi-
monious true model! depends discontinuously on the probability measure
underlying the data generating process ~except in the case where the com-
peting models are “well separated”!+

Remark 4+5+ Suppose that in the context of model ~1! the parameter of inter-
est is now not a but more generally a linear combination d1a � d2b, which is
estimated by d1 Ja� d2 Db, where Ja is the post-model-selection estimator as defined
in Section 2 and the post-model-selection estimator Db is defined similarly, i+e+,
Db� Zb~ ZM !+ An important example is the case where the quantity of interest is a

linear predictor+ Then appropriate analogues to the results discussed in the present
paper apply, where the rôle of r is now played by the correlation coefficient
between d1 [a~U !� d2 Zb~U ! and Zb~U !+ See Leeb ~2003a, 2003b! and Leeb and
Pötscher ~2003b, 2004! for a discussion in a more general framework+

Remark 4+6+ We have excluded the special case r` � 0 in parts of the dis-
cussion of consistent model selection procedures in Section 2+1 for the sake of
simplicity+ It is, however, included in the theoretical results presented in Appen-
dix A+ In the following discussion we comment on this case+

1+ If r � 0 then it is easy to see that all effects from model selection disap-
pear in the finite-sample formulas in Section 2+1+ This is not surprising
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because r� 0 implies that the design matrix has orthogonal columns and
hence the post-model-selection estimator Ja coincides with the restricted
and also with the unrestricted least-squares estimator for a+

2+ If only r`� 0 ~i+e+, the columns of the design matrix are only asymptot-
ically orthogonal!, then the effects of model selection need not disappear
from the asymptotic formulas; cf+ Appendix A+ However, inspection of
the results in Appendix A shows that these effects will disappear asymp-
totically if r converges to r`� 0 sufficiently fast ~essentially faster than
10c!+ ~In contrast, in the case of conservative model selection procedures
the condition r` � 0 suffices to make all effects from model selection
disappear from the asymptotic formulas; cf+ Section 2+2+!

3+ As noted previously, in the case of an orthogonal design ~i+e+, r � 0! all
effects from model selection on the distributional properties of Ja vanish+
However, even for orthogonal designs, effects from model selection will
nevertheless typically be present as soon as a linear combination
d1a� d2b other than a represents the parameter of interest because then
the correlation coefficient between d1 [a~U ! � d2 Zb~U ! and Zb~U ! rather
than r governs the effects from model selection on the post-model-selection
estimator; cf+ Remark 4+5+

5. CONCLUSION

The distributional properties of post-model-selection estimators are quite intri-
cate and are not properly captured by the usual pointwise large-sample analy-
sis+ The reason is lack of uniformity in the convergence of the finite-sample
distributions and of associated quantities such as the bias or mean-squared error+
Although it has long been known that uniformity ~at least locally! w+r+t+ the
parameters is an important issue in asymptotic analysis, this lesson has often
been forgotten in the daily practice of econometric and statistical theory where
we are often content to prove pointwise asymptotic results ~i+e+, results that
hold for each fixed true parameter value!+ This amnesia—and the resulting
practice—fortunately has no dramatic consequences as long as only suffi-
ciently “regular” estimators in sufficiently “regular” models are considered+30

However, because post-model-selection estimators are quite “irregular,” the
uniformity issues surface here with a vengeance+ Hajek’s ~1971, p+ 153! warning,

Especially misinformative can be those limit results that are not uniform+ Then
the limit may exhibit some features that are not even approximately true for any
finite n + + +

thus takes on particular relevance in the context of model selection: While a
pointwise asymptotic analysis paints a very misleading picture of the proper-
ties of post-model-selection estimators, an asymptotic analysis based on the fic-
tion of a true parameter that depends on sample size provides highly accurate
insights into the finite-sample properties of such estimators+
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The distinction between consistent and conservative model selection pro-
cedures is an artificial one as discussed in Section 2 and is rather a property of
the embedding framework than of the model selection procedure+ Viewing a
model selection procedure as consistent results in a completely misleading
pointwise asymptotic analysis that does not capture any of the effects of model
selection that are present in finite samples+ Viewing a model selection proce-
dure as conservative ~but inconsistent! results in a pointwise asymptotic
analysis that captures some of the effects of model selection, although still miss-
ing others+

We would like to stress that the claim that the use of a consistent model
selection procedure allows one to act as if the true model were known in advance
is without any substance+ In fact, any asymptotic consideration based on the
so-called oracle property should not be trusted+ ~Somewhat ironically, consis-
tent model selection procedures that seem not to affect the asymptotic distribu-
tion in a pointwise analysis at all exhibit stronger effects @e+g+, larger maximal
absolute bias or larger maximal mean-squared error# as a result of model selec-
tion in a “uniform” analysis when compared with conservative procedures+!31

Similar warnings apply more generally to procedures that consistently choose
from a finite set of alternatives ~e+g+, procedures that consistently decide between
I ~0! and I ~1! or consistently select the number of structural breaks, etc+!+ Also,
the claim that one can come up with a model selection procedure that can always
detect the most parsimonious true model with high probability is unwarranted:
However the model selection procedure is constructed, the misclassification error
is always there and will be substantial for certain values of the true parameter,
regardless of how large sample size is+

As shown in Section 2+3, accurate estimation of the distribution of post-model-
selection estimators is intrinsically a difficult problem+ In particular, it is typi-
cally impossible to estimate these distributions uniformly consistently+ Similar
results apply to certain shrinkage-type estimators as discussed in Section 3+

Although the discussion in this paper is set in the framework of a simple
linear regression model, the issues discussed are obviously relevant much more
generally+ Results on post-model-selection estimators for nonlinear models
and0or dependent data are given in Sen ~1979!, Pötscher ~1991!, Hjort and
Claeskens ~2003!, and Nickl ~2003!+

We stress that the discussion in this paper should neither be construed as a
criticism nor as an endorsement of model selection ~be it consistent or conser-
vative!+ In this paper we take no position on whether or not model selection is
a sensible strategy+ Of course, this is an important issue, but it is not the one
we address here+ A starting point for such a discussion could certainly be the
results mentioned in Remark 4+1+

Although there is now a substantial body of literature on distributional prop-
erties of post-model-selection estimators, a proper theory of inference post model
selection is only slowly emerging and is currently the subject of intensive
research+ We hope to be able to report on this elsewhere+
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NOTES

1+ We assume throughout that at least one of the competing models is capable of correctly
describing the data generating process+ We do not touch upon the important question of model
selection in the context of fitting only approximate models+

2+ The pretest literature as summarized in Judge and Bock ~1978! or Giles and Giles ~1993!
concentrates exclusively on second moment properties of pretest estimators and does not provide
distributional results+

3+ Some of the issues we raise here may not apply in the ~relatively trivial! case where one
selects between “well-separated” model classes, i+e+, model classes that have positive minimum
distance, e+g+, in the Kullback–Leibler sense+

4+ For example, Bunea ~2004!, Dufour, Pelletier, and Renault ~2003, Sect+ 7!; Fan and Li ~2001!,
Hall and Peixe ~2003, Theorem 3!, Hidalgo ~2002, Theorem 3+4!, and Lütkepohl ~1990, p+ 120! to
mention a few+

5+ With hindsight the second author regrets having included Lemma 1 in Pötscher ~1991! at
all, as this lemma seems to have contributed to popularizing the aforementioned unwarranted con-
clusion in the literature+ Given that this lemma was included, he wishes at least that he had been
more guarded in his wording in the discussion of this lemma and that he had issued a stronger
warning against an uncritical use of it+

6+ That is, a procedure that asymptotically selects only correct models but possibly overparam-
eterized ones+

7+ Nothing substantial changes because of this convenience assumption+ The entire discussion
that follows can also be given for the unknown s 2 case+ See Leeb and Pötscher ~2003a! and Leeb
~2003a, 2003b!+

8+ In fact, it would be more precise to talk about consistent ~or conservative! sequences of
model selection procedures+

9+ This property of consistent model selection procedures has already been observed by Han-
nan and Quinn ~1979, p+ 191!+ It has since been rediscovered several times in special instances; cf+
Ensor and Newton ~1988, Theorem 2+1!; Bunea ~2004, Sect+ 4!+

10+ Hodges’ estimator ~with a � 0 in the notation of Lehmann and Casella, 1998! is a post-
model-selection estimator based on a model selection procedure that consistently chooses between
an N~0,1! and an N~u,1! distribution+

11+ Exceptions are Hosoya ~1984!, Shibata ~1986!, Pötscher ~1991!, and Kabaila ~1995, 1996!,
who explicitly note this problem+

12+ For a detailed treatment of the finite-sample properties of post-model-selection estimators
in linear regression models see Leeb and Pötscher ~2003a!, Leeb ~2003a, 2003b!+

13+ Slightly more general conditions under which this is true are given in Proposition A+1 in
Appendix A+

14+ It can be debated whether the b’s giving rise to this phenomenon are justifiably viewed
as “small”: The phenomenon can, e+g+, arise if b � 0 satisfies b � zsb c0Mn with 6z6 � 1 ~cf+
Proposition A+1 in Appendix A!+ Although such sequences of b’s converge to zero by the assump-
tion c � o~Mn ! maintained in Section 2+1, the “nonzeroness” of any such b can be detected with
probability approaching unity by a standard test with fixed significance level or equivalently, with
fixed cutoff point, and thus such b’s could justifiably be classified as “far” from zero+ ~In more
mathematical terms, Pn,a, b is not contiguous w+r+t+ Pn,a,0 for such b’s+! By the way, this also
nicely illustrates that the consistent model selection procedure is ~not surprisingly! less powerful
in detecting b � 0 compared with the conservative procedure with a fixed value of c, the reason
being that the consistent procedure has to let the significance level of the test approach zero to
asymptotically avoid choosing a model that is too large+ ~This loss of power is not specific to the
consistent model selection procedure discussed here but is typical for consistent model selection
procedures in general+!

15+ In light of ~2!, the first term is actually the conditional density of Mn ~ [a~R!� a! given the
event that the pretest does not reject multiplied by the probability of this event+ Because the test
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statistic is independent of [a~R! ~Leeb and Pötscher, 2003a, Proposition 3+1!, this conditional den-
sity reduces to the unconditional one+ Similarly, the second term is the conditional density of
Mn ~ [a~U ! � a! given that the pretest rejects multiplied by the probability of this event+ Because
the test statistic is typically correlated with [a~U !, the conditional density is not normal, which is
reflected by the “deformation” factor+

16+ A quick alternative argument showing that the convergence of the finite-sample c+d+f+s of
post-model-selection estimators is typically not uniform runs as follows: Equip the space of c+d+f+s
with a suitable metric ~e+g+, a metric that generates the topology of weak convergence!+ Observe
that the finite-sample c+d+f+s typically depend continuously on the underlying parameters, whereas
their ~pointwise! limits typically are discontinuous in the underlying parameters+ This shows that
the convergence can not be uniform+

17+ Although this fits in nicely with ~5!, it is not a direct consequence of ~5!+ The crucial point
here is that Pn,a,b~ ZM � R! � D~Mnb0sb , c! converges to zero exponentially fast for fixed b � 0;
see, e+g+, Lemma B+1 in Leeb and Pötscher ~2003a!+

18+ Although this is again in line with ~5! it is again not a direct consequence of ~5! but follows
from the exponential decay of D~Mnb0sb , c! for fixed b � 0; cf+ note 17+ Furthermore, the fact
that the pointwise limit of the MSE coincides with the asymptotic variance of the infeasible “esti-
mator” [a~M0! is not particular to the consistent model selection procedure discussed here+ It is true
for consistent model selection procedures in general, provided the probability of selecting an incor-
rect model converges to zero sufficiently fast, which is typically the case; see Nishii ~1984! for
some results in this direction+ Of course, being only pointwise limit results, these results are sub-
ject to the criticism put forward in the present paper+

19+ We could allow more generally for a sample-size-dependent c that, e+g+, converges to a
positive real number+ See Leeb and Pötscher ~2003a, Remark 6+2!+

20+ For a detailed treatment of the finite-sample and asymptotic properties of post-model-
selection estimators based on a conservative model selection procedure see Pötscher ~1991!, Leeb
and Pötscher ~2003a!, and Leeb ~2003a, 2003b!+

21+ Similar as for consistent model selection procedures in fact all accumulation points of the
model selection probabilities, the finite-sample distributions, the bias, and the mean-squared error
can be characterized by a subsequence argument similar to Remark A+8; cf+ also Leeb and Pötscher
~2003a, Remark 4+4~i!!, and Leeb ~2003b, Remark 5+5!+

22+ Nevertheless, it is easy to see that Ja is consistent ~cf+ Pötscher, 1991, Lemma 2! and, in
fact, is uniformly consistent; see Proposition B+1 in Appendix B+

23+ Here the convergence of the finite-sample distribution to the asymptotic distribution is w+r+t+
total variation distance+

24+ Kilian ~1998! claims the validity of a bootstrap procedure in the context of autoregressive
models that is based on a conservative model selection procedure+ Hansen ~2003! makes a similar
claim for a stationary bootstrap procedure in the context of a conservative model selection proce-
dure+ The preceding discussion intimates that both these claims are at least unsubstantiated+

25+ Similar “impossibility” results apply to estimators of the model selection probabilities; see
Leeb and Pötscher ~2004! in the case of conservative procedures; for consistent procedures this
argument can be easily adapted by making use of Proposition A+1+

26+ The confidence interval suggested in Hjort and Claeskens ~2003, p+ 886! does not provide a
solution to this problem+ As pointed out in Remark 3+5 of Kabaila and Leeb ~2004!, the proposed
interval ~asymptotically! coincides with the classical confidence interval obtained from the overall
model+

27+ Although the James–Stein estimator is known to dominate the least-squares estimator in a
normal linear regression model with more than two regressors, we are not aware of any similar
result for the other shrinkage-type estimators mentioned earlier+ ~In fact, for some it is known that
they do not dominate the least-squares estimator+!

28+ This proof seems to be somewhat simpler than Yang’s proof and has the advantage of also
covering nonnormally distributed errors+ It should easily extend to Yang’s framework, but we do
not pursue this here+
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29+ The fact that the maximal ~scaled! mean-squared error remains bounded for conservative
procedures is sometimes billed as “minimax rate optimality” of the procedure ~see, e+g+, Yang,
2003, and the references given there!+ Given that this “optimality” property is typically shared by
any post-model-selection estimator based on a conservative procedure ~including the procedure
that always selects the overall model!, this property does not seem to carry much weight here+

30+ The reason is that the asymptotic properties of such estimators typically are then in fact
“automatically” uniform, at least locally+

31+ This is not surprising+ For the particular model selection procedure considered here it is
obvious that a larger value of the cutoff point c gives more “weight” to the restricted model, which
results in a larger maximal absolute bias+
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APPENDIX A:
ASYMPTOTIC RESULTS FOR CONSISTENT

MODEL SELECTION PROCEDURES

In this Appendix we provide propositions that together with Remark A+8, which fol-
lows, characterize all possible limits ~more precisely, all accumulation points! of the
model selection probabilities, the finite-sample distribution, the ~scaled! bias, and the
~scaled! mean-squared error of the post-model-selection estimator based on a consistent
model selection procedure under arbitrary sequences of parameters ~an, bn!+ Recall
that these quantities do not depend on a and hence the behavior of a will not enter
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the results in the sequel+ In the following discussion we consider the linear regression
model ~1! under the assumptions of Section 2+ Furthermore, we assume as in Sec-
tion 2+1 that c r ` and c0Mn r 0 as n r `+

PROPOSITION A+1+ Let ~an,bn! be an arbitrary sequence of values for the regres-
sion parameters in (1).

1. Suppose Mnbn 0~sb c!r z, 6z6 � 1, as nr `. Then limnr` Pn,an ,bn
~ ZM � R!� 1.

2. Suppose Mnbn 0~sb c! r z, 1 � 6z6 � `, as n r `. Then limnr` Pn,an ,bn

~ ZM � R! � 0.
3. Suppose Mnbn 0~sb c!r 1 and c �Mnbn 0sbr r for some r � R � $�`,`% as

n r `. Then limnr` Pn,an ,bn
~ ZM � R! � F~r! .

4. Suppose Mnbn 0~sb c! r �1 and c � Mnbn 0sb r s for some s � R � $�`,`%
as n r `. Then limnr` Pn,an ,bn

~ ZM � R! � F~s! .

Proof. From ~3! we have

Pn,an ,bn
~ ZM � R!�F~c �Mnbn 0sb!�F~�c �Mnbn 0sb!+

Observe that F~c � Mnbn 0sb! � F~c~1 � Mnbn 0~sb c!!! and F~�c � Mnbn 0sb! �
F~c~�1 � Mnbn 0~sb c!!!+ The first two claims then follow immediately+ The third
claim follows because then F~c � Mnbn 0sb! trivially converges to F~r!, whereas
F~�c �Mnbn 0sb!� F~c~�1 �Mnbn 0~sb c!!! converges to zero+ The fourth claim is
proved analogously+ �

The next proposition describes the possible limiting behavior of the finite-sample dis-
tribution of the post-model-selection estimator, which is somewhat complex+ It turns
out that the limit can, e+g+, be point-mass at ~plus or minus! infinity, or a convex com-
bination of such a point-mass with a “deformed” normal distribution, or a convex
combination of a normal distribution with a “deformed” normal+ Let Gn,a,b~t ! denote
the cumulative distribution function corresponding to the density gn,a, b~u! of
Mn ~ Ja� a!+ Also recall that convergence in total variation of a sequence of absolutely
continuous c+d+f+s on the real line is equivalent to convergence of the densities in the
L1-sense+

PROPOSITION A+2+ Let ~an,bn! be an arbitrary sequence of values for the regres-
sion parameters in (1).

1. Suppose that (i) Mnbn 0~sb c! r z, 6z6 � 1, or that (ii) Mnbn 0~sb c! r 1,
c � Mnbn 0sb r `, or that (iii) Mnbn 0~sb c! r �1, c � Mnbn 0sb r ` as
n r `. Assume furthermore that Mnbn~r0sb! r x for some x � R � $�`,`%
as n r `. If x � �`, then Gn,an ,bn

~t ! converges to 0 for every t � R; i.e.,
Mn ~ Ja � an! converges to ` in Pn,an ,bn

probability. If x � `, then Gn,an ,bn
~t !

converges to 1 for every t � R; i.e., Mn ~ Ja � an! converges to �` in
Pn,an ,bn

probability. If 6x6 � `, then Gn,an ,bn
~t ! converges to F~~1 � r`

2 !�102 �
~t0sa,` � x!! in total variation distance; in fact, gn,an ,bn

~u! converges to
sa,`

�1 ~1 � r`
2 !�102f~~1 � r`

2 !�102~u0sa,` � x!! pointwise and hence in the L1

sense.
2. Suppose that (i) Mnbn 0~sb c! r z, 1 � 6z6 � `, or that (ii) Mnbn 0~sb c! r 1,

c � Mnbn 0sbr �`, or that (iii) Mnbn 0~sb c!r �1, c � Mnbn 0sbr �` as
n r `. Then Gn,an ,bn

~t ! converges to F~t0sa,`! in the total variation distance;
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in fact, gn,an ,bn
~u! converges to sa,`

�1 f~u0sa,` ! pointwise and hence in the L1

sense.
3. Suppose that Mnbn 0~sb c! r 1, c � Mnbn 0sb r r for some r � R and
Mnbn~r0sb! r x for some x � R � $�`,`% as n r `. If 6x6 � `, then
Gn,an ,bn

~t ! converges to

F~r!1~x � 0!��
�`

t

sa,`
�1 f~u0sa,` !F~~1 � r`

2 !�102~�r � r`sa,`
�1 u!! du

(A.1)

for every t � R. The limit is a convex combination of pointmass at sign~�x!`
and a c.d.f. with density given by 10~1 � F~r!! times the integrand in the preced-
ing display, the weights in the convex combination given by F~r! and 1 � F~r! ,
respectively. If 6x6 � `, then Gn,an ,bn

~t ! converges to

F~r!�
�`

t

sa,`
�1 ~1 � r`

2 !�102f~~1 � r`
2 !�102~u0sa,`� x!! du

� �
�`

t

sa,`
�1 f~u0sa,` !F~~1 � r`

2 !�102~�r � r`sa,`
�1 u!! du

for every t � R.
4. Suppose Mnbn 0~sb c! r �1 and c � Mnbn 0sb r s for some s � R, and
Mnbn~r0sb! r x for some x � R � $�`,`% as n r `. If 6x6 � `, then
Gn,an ,bn

~t ! converges to

F~s!1~x � 0!��
�`

t

sa,`
�1 f~u0sa,` !~1 �F~~1 � r`

2 !�102~s � r`sa,`
�1 u!!! du

(A.2)

for every t � R. The limit is a convex combination of pointmass at sign~�x!`
and a c.d.f. with density given by 10~1 � F~s!! times the integrand in the preced-
ing display, the weights in the convex combination given by F~s! and 1 � F~s! ,
respectively. If 6x6 � `, then Gn,an ,bn

~t ! converges to

F~s!�
�`

t

sa,`
�1 ~1 � r`

2 !�102f~~1 � r`
2 !�102~u0sa,`� x!! du

� �
�`

t

sa,`
�1 f~u0sa,` !~1 �F~~1 � r`

2 !�102~s � r`sa,`
�1 u!!! du

for every t � R.

Proof. In view of ~2! we can write the density gn,a,b as

gn,a,b~u! � gn,a,b~u 6R!Pn,a,b~ ZM � R!� gn,a,b~u 6U !Pn,a,b~ ZM � U !

� gn,a,b~u 6R!D~Mnb0sb , c!� gn,a,b~u 6U !~1 � D~Mnb0sb , c!!, (A.3)
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where gn,a,b~u 6R! is the conditional density of Mn ~ Ja � a! given that ZM � R and
gn,a,b~u 6U ! is defined analogously+ As mentioned in note 15,

gn,a,b~u 6R! � sa�1~1 � r2 !�102f~u~1 � r2 !�1020sa� r~1 � r2 !�102Mnb0sb!, (A.4)

gn,a,b~u 6U ! � sa�1��1 � D�Mnb0sb� ru0sa
M1 � r2

,
c

M1 � r2 ��	
~1 � D~Mnb0sb , c!!�f~u0sa!+ (A.5)

To prove part 1 replace ~a,b! by ~an,bn! in the preceding formulas and observe that
under the assumptions of this part of the proposition the probability Pn,an ,bn

~ ZM � R!
converges to unity ~Proposition A+1! and hence the contribution to the total probability
mass by the second term on the far r+h+s+ of ~A+3! vanishes asymptotically+ It hence
suffices to consider the first term only+ Now Mnbn~r0sb!r x by assumption+ Further-
more, r r r` � 6 1 ~because Q was assumed to be positive definite!, and sa r
sa,` � 0+ If x � 6`, inspection of ~A+4! immediately shows that the total probability
mass of Mn ~ Ja � an! escapes to 7`+ If x is finite, inspection of ~A+4! reveals that the
conditional density gn,an ,bn

~u 6R! converges to sa,`
�1 ~1 � r`

2 !�102f~~1 � r`
2 !�102 �

~u0sa,` � x!! for every u � R+ Because the limit function is a density again, conver-
gence takes place in the L1 sense in view of Scheffé’s theorem+ This establishes con-
vergence of the corresponding c+d+f+ in the total variation distance+

To prove part 2 again replace ~a, b! by ~an, bn! in the preceding formulas and
observe that under the assumptions of this part of the proposition the probability
Pn,an ,bn

~ ZM � R! converges to zero ~Proposition A+1! and hence the contribution to the
total probability mass by the first term on the far r+h+s+ of ~A+3! vanishes asymptotically+
It hence suffices to consider the second term only+ Now, r r r` � 61, and sa r
sa,` � 0+ Inspection of ~A+5! then immediately shows that gn,an ,bn

~u 6U ! converges to
sa,`

�1 f~u0sa,` ! for every u � R+
To prove part 3 observe that under the assumptions of this part of the proposition

Pn,an ,bn
~ ZM � R! r F~r! � 0 and Pn,an ,bn

~ ZM � U ! r 1 � F~r! � 0 hold+ The proof
that the total probability mass of gn,an ,bn

~u 6R! escapes to 7` if x�6` is exactly the
same as in the proof of part 1+ In the case that x is finite, the same argument as in
the proof of part 1 shows that gn,an ,bn

~u 6R! converges to sa,`
�1 ~1 � r`

2 !�102 �
f~~1 � r`

2 !�102~u0sa,`� x!! for every u � R and in L1 + Now regarding gn,an ,bn
~u 6U !

inspection of ~A+5! shows that this density converges to sa,`
�1 f~u0sa,` !F~~1 �

r`
2 !�102~�r � r`sa,`

�1 u!!0~1 � F~r!! for every u � R+ Because this limit is a proba-
bility density as is readily seen, the convergence is also in L1 by an application of
Scheffé’s theorem+

The proof of part 4 is completely analogous to the proof of part 3+ �

Remark A.3. In the important case where r` � 0 the preceding results simplify
somewhat: If r` � 0 and z � limnr`Mnbn 0~sb c! � 0 in part 1 of the proposition,
then necessarily x � sign~r`z!`; i+e+, Mn ~ Ja � an! always converges to 6` in prob-
ability+ If r` � 0 in part 3 of the proposition, then necessarily x � sign~r`!`; i+e+,
only the distribution ~A+1! can arise+ If r`� 0 in part 4 of the proposition, then neces-
sarily x � sign~�r`!`; i+e+, only the distribution ~A+2! can arise+
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PROPOSITION A+4+ Let ~an,bn! be an arbitrary sequence of values for the regres-
sion parameters in (1).

1. Suppose that Mnbn 0~sb c! r z, 6z6 � 1, and that Mnbn~r0sb! r x for some
x � R � $�`,`% as n r `. Then Bias r �sa,`x.

2. Suppose that Mnbn 0~sb c! r z, 1 � 6z6 � ` as n r `. Then Bias r 0.
3. Suppose that Mnbn 0~sb c! r 1, c � Mnbn 0sb r r for some r � R � $�`,`%,

and Mnbn~r0sb! r x for some x � R � $�`,`% as n r `. If r � �`, or if
r � �` but x is finite, then Biasr �sa,`xF~r!� sa,`r`f~r! . If r � �` and
6x6 � `, then Bias r �sa,` limnr` rMnbn~Mnbn � csb!

�1f~~Mnbn � csb!0
sb! provided this limit exists.

4. Suppose that Mnbn 0~sb c! r �1, c � Mnbn 0sb r s for some s � R �
$�`,`%, and Mnbn~r0sb! r x for some x � R � $�`,`% as n r `. If
s � �`, or if s � �` but x is finite, then Bias r �sa,`xF~s!� sa,`r`f~s! .
If s � �` and 6x6 � `, then Bias r sa,` limnr` rMnbn~Mnbn � csb!

�1 �
f~~Mnbn � csb!0sb! provided this limit exists.

Proof. Under the assumptions of part 1 of the proposition Pn,an ,bn
~ ZM � R! �

D~Mnbn 0sb , c! converges to unity by Proposition A+1+ Hence the first term in ~11! con-
verges to �sa,`x+ Because r r r`, sa r sa,`, and because f~Mnbn 0sb � c! and
also f~Mnbn 0sb � c! converge to zero, the second and third term in ~11! go to zero,
completing the proof of part 1+

To prove part 2 observe that the second and third term in ~11! again converge to zero+
Now, D~Mnbn 0sb , c! converges to zero by Proposition A+1, whereas Mnbn 0sb
diverges to 6`+ Because D~{,{! is symmetric in its first argument, we may assume that
z is positive+ Applying Lemma B+1 in Leeb and Pötscher ~2003a!, the limit of the first
term in ~11! is then readily seen to be zero+

We next prove part 3+ From Proposition A+1 we see that D~Mnbn 0sb , c! converges
to F~r!+ Furthermore, �rsaMnbn 0sb converges to �sa,`x ~which may be infinite!+
This shows that the first term in ~11! converges to �sa,`xF~r! provided x is finite or
F~r! is positive+ The second term obviously converges to r`sa,`f~�r!� r`sa,`f~r!
~which is zero in case r � �`!, whereas the third term goes to zero+ If x is infinite and
F~r! is zero ~i+e+, if r � �`!, Lemma B+1 in Leeb and Pötscher ~2003a! shows that the
first term in ~11! converges to the claimed limit+

Part 4 is proved analogously to part 3+ �

Remark A.5. In the important case where r` � 0 the following simplifications
arise: If r`� 0 and z� 0 in part 1 of the proposition, then necessarily x� sign~r`z!`+
If r` � 0 in part 3 of the proposition, then necessarily x � sign~r`!`+ If r` � 0 in
part 4 of the proposition, then necessarily x � sign~�r`!`+

PROPOSITION A+6+ Let ~an,bn! be an arbitrary sequence of values for the regres-
sion parameters in (1).

1. Suppose that Mnbn 0~sb c! r z, 6z6 � 1, and that Mnbn~r0sb! r x for some
x � R � $�`,`% as nr `. Then MSEr sa,`

2 ~1 � r`
2 � x2! , which is infinite

if 6x6 � `.
2. Suppose that Mnbn 0~sb c! r z, 1 � 6z6 � ` as n r `. Then MSE r sa,`

2 .
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3. Suppose that Mnbn 0~sb c! r 1, c � Mnbn 0sb r r for some r � R � $�`,`%,
and Mnbn~r0sb! r x for some x � R � $�`,`% as n r `. Then MSE r
sa,`

2 ~1 � r`
2 rf~r!� r`

2 F~r!� x2F~r!! if r � �`, or if r � �` but x is finite
(with the convention that rf~r! � 0 if r � 6`). If r � �` and 6x6 � `, then
MSEr sa,`

2 @1 � limnr` r
2sb

�1 nbn
2~Mnbn � csb!

�1f~~Mnbn � csb!0sb!# pro-
vided this limit exists.

4. Suppose that Mnbn 0~sb c!r �1, c �Mnbn 0sbr s for some s � R � $�`,`%,
and Mnbn~r0sb! r x for some x � R � $�`,`% as n r `. Then MSE r
sa,`

2 ~1 � r`
2 sf~s!� r`

2 F~s!� x2F~s!! if s � �`, or if s � �` but x is finite
(with the convention that sf~s! � 0 if s � 6`). If s � �` and 6x6 � `, then
MSEr sa,`

2 @1 � limnr` r
2sb

�1 nbn
2~Mnbn � csb!

�1f~~Mnbn � csb!0sb!# pro-
vided this limit exists.

Proof. Under the assumptions of part 1 of the proposition the terms in ~12! involv-
ing the standard normal density f are readily seen to converge to zero+ By Proposi-
tion A+1, F~c � Mnbn 0sb! � F~�c � Mnbn 0sb! converges to unity+ Consequently,
MSE r sa,`

2 ~1 � r`
2 � x2!+

To prove part 2, observe that the terms in ~12! involving the standard normal density
f again converge to zero and that F~c � Mnbn 0sb! � F~�c � Mnbn 0sb! converges
to zero by Proposition A+1+ Hence we only need to show that n ~bn0sb!2 @F~c �
Mnbn 0sb! � F~�c � Mnbn 0sb!# converges to zero+ This follows from an application
of Lemma B+1 in Leeb and Pötscher ~2003a!+

We next prove part 3+ The terms in ~12! involving the standard normal density f are
readily seen to converge to sa,`

2 r`
2 rf~r! with the convention that rf~r! � 0 if

r � 6`+ Furthermore, we see from Proposition A+1 that F~c � Mnbn 0sb! �
F~�c � Mnbn 0sb! converges to F~r! and that sa

2 r2~n~bn 0sb!2 � 1! converges to
sa,`

2 ~x2 � r`
2 ! ~which may be infinite!+ This proves the result provided x is finite or

F~r! is positive+ If x is infinite and F~r! is zero ~i+e+, if r � �`!, Lemma B+1 in Leeb
and Pötscher ~2003a! shows that the third term in ~12! converges to the claimed limit+

Part 4 is proved analogously to part 3+ �

Remark A.7. In the important case where r` � 0 the following simplifications
arise: If r`� 0 and z� 0 in part 1 of the proposition, then necessarily x� sign~r`z!`,
and hence MSE converges to `+ If r`� 0 in part 3 of the proposition, then necessarily
x� sign~r`!`, and hence MSE converges to ` provided r � �`+ If r`� 0 in part 4
of the proposition, then necessarily x � sign~�r`!`, and hence MSE converges to `
provided s � �`+

Remark A.8. The preceding propositions in fact allow for a characterization of all
possible accumulation points of the model selection probabilities, the finite-sample dis-
tribution, the ~scaled! bias, and the ~scaled! mean-squared error of the post-model-
selection estimator under arbitrary sequences of parameters ~an,bn!: Given any sequence
~an,bn!, compactness of R � $�`,`% implies that every subsequence ~ni ! contains
a further subsequence ~ni ~ j !! such that the quantities Mnbn 0~sb c!, Mnbn~r0sb!,
c �Mnbn 0sb , c �Mnbn 0sb , and the expressions in the limit operators in Propositions
A+4 and A+6 converge to respective limits in R � $�`,`% along the subsequence ~ni ~ j !!+
Applying the preceding propositions to the subsequence ~ni ~ j !! provides the desired char-
acterization of all accumulation points+
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PROPOSITION A+9+ The post-model-selection estimator Ja is uniformly consistent
for a, i.e.,

lim
nr`

sup
~a,b!�R

2
Pn,a,b~6 Ja� a6 � «!� 0

for every « � 0.

Proof. Using Chebychev’s inequality we obtain

Pn,a,b~6 Ja� a6� «!

� Pn,a,b~6 [a~R!� a6 � «, ZM � R!� Pn,a,b~6 [a~U !� a6 � «, ZM � U !

� Pn,a,b~6 [a~R!� a6 � «, ZM � R!� Pn,a,b~6 [a~U !� a6 � «!

� min$Pn,a,b~6 [a~R!� a6 � «!,Pn,a,b~ ZM � R!%� sa
20~n«2 !+

Because sa
20~n«2 ! is independent of ~a,b! and converges to zero, it suffices to show

that the first term on the far r+h+s+ of the preceding display converges to zero uniformly
in ~a,b!+ Observe that [a~R! � a is distributed normally with mean ~�rsa0sb!b and
variance sa

2~1 � r2!0n+ In view of ~3!, the first term on the far r+h+s+ of the preceding
display hence equals

min$1 � D~Mnr~1 � r2 !�102b0sb ,Mnsa
�1~1 � r2 !�102«!,D~Mnb0sb , c!%, (A.6)

which clearly does not depend on the value of the parameter a+ Now

lim
nr`

sup
6b 6�2csb 0Mn

D~Mnb0sb , c! � 0

by an application of Proposition A+1+ Furthermore,

sup
6b 6�2csb 0Mn

@1 � D~Mnr~1 � r2 !�102b0sb ,Mnsa
�1~1 � r2 !�102«!#

� 2 � 2F~~1 � r2 !�102~�2c 6r6� sa�1Mn«!!,

which converges to zero because « � 0, r r r`, and because c0Mn r 0+ It now fol-
lows that ~A+6! converges to zero uniformly+ �

APPENDIX B:
ASYMPTOTIC RESULTS FOR CONSERVATIVE

MODEL SELECTION PROCEDURES

In the following discussion we consider the linear regression model ~1! under the assump-
tions of Section 2+ Furthermore, we assume as in Section 2+2 that c does not depend on
sample size and satisfies 0 � c � `+
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PROPOSITION B+1+ The post-model-selection estimator Ja is uniformly consistent
for a, i.e.,

lim
nr`

sup
~a,b!�R

2
Pn,a,b~6 Ja� a6 � «!� 0

for every « � 0.

Proof. The proof is identical to the proof of Proposition A+9 up to and including
~A+6!+ Now

lim
gr`

lim sup
nr`

sup
6b 6�gsb 0Mn

D~Mnb0sb , c! � 0

as a consequence of Lemma C+3 in Leeb and Pötscher ~2003b!+ Furthermore,

sup
6b 6�gsb 0Mn

@1 � D~Mnr~1 � r2 !�102b0sb ,Mnsa
�1~1 � r2 !�102«!#

� 2 � 2F~~1 � r2 !�102~�g 6r6� sa�1Mn«!!,

which converges to zero for every given g � R because « � 0 and r r r`+ It then
follows that ~A+6! converges to zero uniformly+ �

APPENDIX C:
THE MAXIMAL ABSOLUTE BIAS AND

THE MAXIMAL MSE ARE UNBOUNDED
FOR GENERAL CONSISTENT MODEL

SELECTION PROCEDURES

We give here a simple proof of the fact that the ~scaled! maximal absolute bias and
hence the ~scaled! maximal mean-squared error of a post-model-selection estimator
diverges to infinity if an arbitrary consistent model selection procedure is employed+
This is a variant of the result of Yang ~2003!, who uses a predictive mean-square risk
measure instead+ Our proof is based on the contiguity argument discussed in Remark 4+4+
An advantage of this proof is that—contrary to Yang’s proof—it does not rely on a
normality assumption for the errors+

We assume the simple linear regression model ~1! under the basic assumptions made
in Section 2, except that the errors et only need to be i+i+d+ with mean zero and ~finite!
variance s2 � 0+ ~The assumption that s2 is known is inessential here+ If s2 is unknown,
and hence f depends on the scale parameter s, Proposition C+1 holds for every value of
s2 +! Furthermore, we assume that et has a density f that possesses an absolutely contin-
uous derivative f ' satisfying

0 � �
�`

`

~ f '~x!0f ~x!!2 f ~x! dx � `+
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Note that the conditions on f guarantee that the information of f is finite and positive+
~These conditions are obviously satisfied in the special case of normally distributed
errors+! Let XM now be an arbitrary model selection procedure that consistently selects
between the models R and U+ Furthermore, let Ya denote the corresponding post-model-
selection estimator ~i+e+, Ya� [a~R! if XM � R and Ya� [a~U ! if XM � U !+ In the following
En,a,b denotes the expectation operator w+r+t+ Pn,a,b+ Recall that r` is less than unity in
absolute value because the limit Q of X 'X0n has been assumed to be positive definite+

PROPOSITION C+1+ Suppose that r` � 0. Then the maximal absolute bias
supa,b 6En,a,b @Mn ~ Ya � a!#6, and hence the maximal mean-squared error
supa,bEn,a,b@n~ Ya � a!2# , goes to infinity for n r `.

Proof. Clearly, it suffices to prove the result for the maximal absolute bias+ The fol-
lowing elementary relations hold:

En,a,b @Mn ~ Ya� a!#

� En,a,b @Mn ~ [a~R!� a!1~ XM � R!#� En,a,b @Mn ~ [a~U !� a!1~ XM � U !#

� En,a,b @Mn ~ [a~R!� a!#� En,a,b @Mn ~ [a~U !� [a~R!!1~ XM � U !#

� En,a,b @Mn ~ [a~R!� a!#� r~sa 0sb!En,a,b @Mn Zb~U !1~ XM � U !# +

Furthermore,

En,a,b @Mn ~ [a~R!� a!# � Mnb (
t�1

n

xt1 xt2	(
t�1

n

xt1
2 � �Mnbrsasb

�1 +

Consequently, for every a and every r � R we have

lim inf
nr`

sup
b�R

6En,a,b @Mn ~ Ya� a!#6

� lim inf
nr`

6En,a, r0Mn @Mn ~ Ya� a!#6

� lim inf
nr`

6En,a, r0Mn @Mn ~ [a~R!� a!#6� 6r 6 6r`6sa,`sb,`�1 , (C.1)

provided we can show that

lim sup
nr`

6En,a, r0Mn @Mn ~ Zb~U !!1~ XM � U !#6� 0 (C.2)

for every r � R+ We apply the Cauchy–Schwartz inequality to obtain

6En,a, r0Mn @Mn ~ Zb~U !!1~ XM � U !#6� En,a, r0Mn
102 @n~ Zb~U !!2 # @Pn,a, r0Mn ~ XM � U !#102+

(C.3)

The first term on the r+h+s+ in ~C+3! is easily seen to satisfy

En,a, r0Mn
102 @n~ Zb~U !!2 # � ~sb2 � r 2 !102+
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To prove ~C+2! it hence suffices to show that lim supnr` Pn,a, r0Mn ~ XM � U ! � 0+
Because the model is locally asymptotically normal ~Koul and Wang, 1984, Theo-
rem 2+1 and Remark 1; Hajek and Sidak, 1967, p+ 213!, the sequence of probability
measures Pn,a, r0Mn is contiguous w+r+t+ the sequence Pn,a,0 ~for every r � R!+ Because
lim supnr`Pn,a,0~ XM � U ! � 0 by the assumed consistency of the model selection pro-
cedure, contiguity implies

lim sup
nr`

Pn,a, r0Mn ~ XM � U !� 0

for every r � R, cf+ Remark 4+4+ This establishes ~C+2! and hence ~C+1!+ Letting 6r 6 go
to infinity in ~C+1! then completes the proof ~note that 6r`6 and sa,` are positive and
sb,`

�1 is finite!+ �

Remark C.2.

1+ The proof in fact shows that this result holds for fixed a and any bounded neighbor-
hood of b� 0, i+e+, sup6b 6�s 6En,a,b @Mn ~ Ya� a!#6 and sup6b 6�s En,a,b@n~ Ya� a!2#
diverge to infinity as n r ` for each fixed a and s � 0+

2+ The preceding proposition is formulated for the simple regression model with two
regressors and only two competing models from which to choose+ It can easily be
extended to more general cases+ The preceding proof should also easily extend to
the risk measure used in Yang ~2003!+ We do not pursue these issues here+
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