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Abstract

The Hadamard and SJT product of matrices are two types of special matrix product. The latter was ®rst de®ned
by Chen. In this study, they are applied to the di�erential quadrature (DQ) solution of geometrically nonlinear
bending of isotropic and orthotropic rectangular plates. By using the Hadamard product, the nonlinear

formulations are greatly simpli®ed, while the SJT product approach minimizes the e�ort to evaluate the Jacobian
derivative matrix in the Newton±Raphson method for solving the resultant nonlinear formulations. In addition, the
coupled nonlinear formulations for the present problems can easily be decoupled by means of the Hadamard and
SJT product. Therefore, the size of the simultaneous nonlinear algebraic equations is reduced by two-thirds and the

computing e�ort and storage requirements are greatly alleviated. Two recent approaches applying the multiple
boundary conditions are employed in the present DQ nonlinear computations. The solution accuracies are
signi®cantly improved in comparison to the previously given by Bert et al. The numerical results and detailed

solution procedures are provided to demonstrate the superb e�ciency, accuracy and simplicity of the new
approaches in applying DQ method for nonlinear computations. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The di�erential quadrature (DQ) method was intro-
duced by Bellman and his associates [1,2]. Since then,

the method has been applied successfully to a broad
range of problems [2±16]. A striking merit of the

method is the high e�ciency in computing nonlinear
problems [2,3,5,7±11,14±16]. Compared with the stan-
dard numerical techniques such as the ®nite element
and ®nite di�erence methods, the DQ method pro-

duces solution of reasonable accuracy with relatively
small computational e�ort. This method also does
not require the trial functions satisfying boundary

conditions to be sought as in the Rayleigh±Ritz and
Galerkin methods [12]. Therefore, it is easily used for
practical purposes. It has been found that the DQ

method is closely related to the collocation (or
pseudo-spectral) methods [12,17,18]. The principal ad-
vantages of the DQ method over the latter are its
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simplicity and ease in using grid spacing without

restriction [8,18,19].
The geometrically nonlinear behavior of thin plates

is usually described by the von Karman equations and

has become a benchmark problem for testing numeri-
cal solutions to nonlinear partial di�erential equations.

Bert et al. [9] employed the DQ method to solve the
static von Karman equations in analyzing geometri-
cally nonlinear bending of isotropic and orthotropic

rectangular plates. The work shows that the DQ
method is an e�cient numerical technique in solving
complex nonlinear problems by comparing with the

®nite element and ®nite di�erence methods. However,
the application is not very successful in plate with all

edges simply supported. The solution procedure is also
much more complex in comparison to the solution of
linear problems. Nonlinear problems currently are con-

sidered to be in the territory of high performance
workstations and supercomputers. With the develop-
ment of personal computers, it has become possible to

develop a computationally inexpensive approach for
the nonlinear computations via PC. The DQ method

should be the choice in this respect. However, in sol-
ving complex multidimensional nonlinear problems,
for example, von Karman equations of plates, compu-

tational e�ort and storage requirements are still rather
high even in the DQ method. Therefore, if the DQ

method attempts to undertake more nonlinear compu-
tations via PC, its computing cost obviously needs to
be reduced. Recently, some remarkable advances have

been achieved in simplifying application and improving
e�ciency and accuracy of the DQ method. In this
study, values of some new techniques in DQ comput-

ing are veri®ed through the solution of the nonlinear
geometrical bending of plates. In particular, the work

validates the applicability, simplicity and high e�-
ciency of special product approach in the DQ non-
linear computations. It should be pointed out that, due

to a great reduction in the computing e�ort and sto-
rage requirements by using the new techniques, all
results presented here were accomplished on a 386 per-

sonal computer with only 4 MB memory. In contrast,
Bert et al. [9] used an IBM framework computer for

the same task. In the following, innovations in this
work are brie¯y introduced.
First, the Hadamard product of matrices and the

DQ matrix approximate formulas are used to express
the formulation of nonlinear partial di�erential oper-

ator in an explicit and easily programmable matrix
form. The DQ analog formulas in matrix form [20]
can be viewed as a simple and compact version of the

traditional polynomial approximation of multidimen-
sional problems [4]. By using these formulas, the for-
mulation e�ort can be simpli®ed. The often-used

ordinary matrix product rises from the concept of lin-
ear transformation and is extended to handle the non-

linear problems. However, since nonlinear problems

are actually di�erent from linear ones, the ordinary
matrix product seems not to undertake the task of
nonlinear analysis and computations very well. The

Hadamard product is a kind of special matrix product
and not well known to the numerical computation
community. It was found that the Hadamard product

provides an explicit, compact and convenient approach
to formulate the nonlinear di�erential operators in the

DQ method [15] as well as the other numerical tech-
niques [16]. Second, the SJT product was ®rst intro-
duced by Chen and Zhong [15] and Chen [16] as an

e�cient and simple algorithm to compute the exact
Jacobian derivative matrix in the Newton±Raphson

solution of the nonlinear formulations in the
Hadamard product form. The SJT product is also a
kind of special matrix product. It is emphasized that

the SJT product approach may require minimal com-
puting e�ort in all possible approaches for the same
task. More importantly, the Hadamard and SJT pro-

duct provides a decoupling technique in solving the
coupled nonlinear DQ analog equations of the von

Karman equations. By comparing with Bert et al. [9],
the resulting size of the nonlinear simultaneous alge-
braic equations is reduced by two-thirds. Therefore,

the computational e�ort and storage requirements are
signi®cantly alleviated. Third, a recent approach apply-
ing multiple boundary conditions in the DQ analysis

of high order boundary value problems, proposed by
Wang and Bert [21], is employed for the solution of

the geometrically nonlinear simply supported plates. It
was veri®ed that in the linear cases, the accuracies of
the DQ solutions using Wang and Bert's approach

were evidently improved in comparison to using the
conventional so-called d approach [12,21,22]. Wang
and Bert's approach is also e�ective for the other

boundary conditions except for the clamped±clamped
(C±C) boundary condition [21,22] and free edge of

plate. Chen and Yu [23] proposed another di�erent
approach to improve accuracy and eliminate instability
caused by d e�ect in the conventional d approach.

Chen and Yu's approach is applicable for problems
with any boundary constraint. In this study, the

approach is applied to analyze the plate of clamped
edges. An improvement on this approach is also pre-
sented to avoid extra four equations of corner points

in the resulting formulation and reduce the size of the
resultant algebraic systems. It is believed that these
two new approaches applying multiple boundary con-

ditions are ®rst used in the DQ solution of nonlinear
boundary value problems. To avoid confusion, the

three approaches are denoted as the DQd approach
[6,7,9,10], DQWB approach by Wang and Bert [21],
and DQCY approach by Chen and Yu [23]. Fourth,

the Chebyshev grid points are used in the present nu-
merical study. As is expected, the DQ method using
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such grid points has faster rate of convergence than
using the equally spaced grid points in [9]. Finally,

some conclusions are drawn based on the results
reported herein.

2. Approaches applying boundary conditions and matrix

approximate formulas in the DQ method

The di�erential quadrature method approximates
the partial derivative of a function at a given discrete

point as a weighted linear sum of function values at all
of the discrete points along the respective variable
direction in the entire domain of the variable. The mth

order derivative of a single function f(x ) at a given dis-
crete grid point i can be approximated by the DQ
method with N discrete grid points [2±6], namely,

@mf

@xm

����
x�x i

�
XN
j�1

w�m�ij fj i � 1,2, . . . ,N �1�

where fj=f(xj ), w (m )
ij are the corresponding DQ

weighting coe�cients and can be determined by requir-
ing that Eq. (1) be exact for all polynomials less than

or equal to N ÿ 1. The explicit formulas [11,17] were
developed to conveniently obtain the accurate DQ
weighting coe�cients. For the weighting coe�cients of

the ®rst order derivatives, we have

w
�1�
ij �

1

x j ÿ x i

YN
k6�i
y 6�i
l 6�j

x i ÿ xk

x j ÿ xk
, i � 1,2, . . . ,N and

j � 1,2, . . . ,N

�2a�

w
�1�
ii �

XN
k 6�i

1

x i ÿ xk
, i � 1,2, . . . ,N �2b�

The weighting coe�cients for high order derivatives
can be generated by recursion formulas [17]:

w�m�1�ij � m

 
w�1�ij w

�m�
ii ÿ

w
�m�
ij

x i ÿ x j

!
, i 6� j �3a�

w
�m�1�
ii � ÿ

XN
j 6�i

w
�m�1�
ij �3b�

where the superscript (m ) and (m+ 1) denote the
order of the derivative.

In the present study, besides the uniform points, the
zeros of Chebyshev polynomials of the ®rst kind are
considered, namely,

ri � cos
�2iÿ 1�p

2N
, ÿ 1<ri<1, i � 1,2, . . . ,N �4�

where ri is the ith root of the N order Chebyshev poly-
nomials. The zeros do not included the end points of

the normalized domains (0 R x R 1 or ÿ1 R x R 1),
while in the present case, the end points (x = 0,1 or
x=21) are needed to force boundary conditions.
Therefore, an algebraic transformation is required,

namely,

x i � ri ÿ 1

rN ÿ r1
, 0Rx iR1 i � 1,2, . . . ,N �5a�

yj � rj ÿ 1

rM ÿ r1
, 0RyjR1 j � 1,2, . . . ,M �5b�

The above formulas produce the coordinates of
sampling points. With such grid points, a very simple

formula can be obtained for computing the DQ
weighting coe�cients of the ®rst order derivatives.

w
�1�
ij �

�ÿ1��iÿj ��rN ÿ r1�
ri ÿ rj

�����������������
�1ÿ r2j �
�1ÿ r2i �

s
, i 6� j �6a�

w
�1�
ii �

1

2

ri�rN ÿ r1�
1ÿ r2i

, i � 1,2, . . . ,N �6b�

The weighting coe�cients for high order derivatives
can be easily computed by using recurrence formulas

(3a) and (3b). For more details about the DQ method
see Refs. [2,4,6,11,17]. It should be especially noted
that, in order to di�erentiate the variants from the DQ
weighting coe�cients more clearly, the notations for

the DQ weighting coe�cients of the ®rst, second, third
and fourth-order derivatives are represented as Aij, Bij,
Cij and Dij, respectively, in all subsequent sections. A

-
,

B
-
, C

-
and D

-
represent the corresponding modi®ed coef-

®cient matrices with built-in boundary conditions by
the DQWB or DQCY approach.

2.1. Three approaches applying multiple boundary
conditions

The governing equations in the structural mechanics
usually involve the fourth-order derivatives, and the
two conditions need be satis®ed at each boundary.

Therefore, the problems are more complex in compari-
son to the di�erential systems of no more than second
order such as the Poisson equation and convection±

di�usion equation, which do not involve more than
one boundary condition at each boundary end of
physical domain. Some careful considerations are

necessary on how to properly implement the double
boundary conditions at each edge. The problem is
actually the DQ solution of high-order boundary value
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problems with multiple boundary conditions. In what

follows we discuss three existing approaches for such
problems.
The earliest DQd approach, proposed by Bert et al.

[6] and widely used in literature [7,9,10], enforces the
geometry boundary condition at boundary points and

derivative boundary conditions at the d points, which
have very small distance d(d 3 10ÿ5 in dimensionless
value [22]) away from the boundary. Thus, the

approach cannot satisfy derivative boundary con-
ditions exactly at boundary points and the accuracies
of the solutions are a�ected. The solution accuracy

depends on the proper choice of d. If the value of d is
small enough, the approach produces good results in

some situations such as clamped condition, however, it
failed to work well in the other situations such as
simply supported and free edges [10,21,22]. On the

other hand, too small d will deteriorate the compu-
tations. d is usually determined by trial and error for
di�erent cases [22], which is a rather tedious work.

Arbitrariness in the choice of the d value may intro-
duce the unexpected oscillation behavior of the sol-

utions. In addition, the number of grid points in the
DQd approach cannot be large due to the ill-con-
ditioned matrices caused by the d grid spacing.

To overcome the drawbacks in the DQd approach,
some new techniques were presented in the application
of the multiple boundary conditions. Wang and Bert

[21] developed a DQWB approach by incorporating
the boundary conditions into the DQ weighting coe�-

cient matrices in advance, and then the weighting coef-
®cients with built-in boundary conditions were
employed to analogize the governing equations of pro-

blems of interests. The essence of the approach is that
the boundary conditions are applied while formulating
the weighting coe�cient matrices for inner grid points.

The technique resulted in an obvious improvement in
the DQ solution of beams and plates with free and SS

boundary conditions [12,21,22]. However, the tech-
nique is not applicable for problems with the C±C
boundary condition as well as cross derivative and cor-

ner boundary conditions such as completely free plates.
Thus, a combination of the DQWB and DQd
approaches was used to handle the problems with both

the C±C boundary condition and the other boundary
conditions in [22]. The modi®cation of the weighting

coe�cient matrices also causes some loss of use ¯exi-
bility and greatly increases computational e�ort,
requiring some matrix product operations of O(N 4)

scalar multiplications. In this study, the DQWB
approach is used to handle the problems with simple
supports.

Chen and Yu [23] proposed a di�erent DQCY
approach to cure the de®ciencies of the conventional

DQd approach. The fact was noted that that the rank
of the DQ weighting coe�cient matrix for the ith

order derivative is N-i, where N is the number of grid
points. Naturally, the rank of the DQ coe�cient

matrix for the fourth-order derivative is N-4.
Therefore, the DQ analog equations of the fourth-
order governing equations at boundary points and the

points immediate adjacent to the boundary need be
replaced by the analog equations of the boundary
equations. The DQCY approach imposes all boundary

conditions exactly at boundary points. Therefore, the
solution accuracy of the DQCY approach is improved
evidently in comparison to the DQd approach. The

approach is conceptually simple and e�ective for the
C±C boundary condition as well as any other bound-
ary condition. Since the DQCY eliminates the d e�ect
in the DQd, the stability of the solution is improved

and larger number of grid points can be used.
However, it has found that the DQCY approach is less
e�cient than the DQWB approach whenever the

DQWB approach is applicable. Therefore, in this
paper the DQCY approach is applied to handle the
problems with the C±C boundary condition.

An improvement is also made here for the DQCY
approach. In this application, the ®rst and last two
rows of the original weighting coe�cient matrices are

removed, and then the four boundary equations are
applied to modify these coe�cient matrices into
(N ÿ 4) � (N ÿ 4) matrix of full rank. The modi®ed
weighting coe�cient matrices can be used to formulate

the di�erential equations of interest directly. Since the
boundary conditions are incorporated into the DQ
weighting coe�cient matrices in advance, extra analog

equations at four corner points of plate need no longer
be considered in the resulting formulation. The size of
the resultant algebraic equations is also reduced. For

example, consider the C±C boundary:

w � 0, at x � 0,1 �7a�

@w

@x
� 0, at x � 0,1 �7b�

The corresponding DQ approximate equations are
given by

w1 � 0, wN � 0 �8a�

XN
j�1

A1jwj � 0,
XN
j�1

ANjwj � 0 �8b�

where wj is the displacement at the jth grid point. It is
noted that all boundary conditions are exactly satis®ed
at boundary points. By using Eqs. (8a) and (8b), the

desired displacements at the second and (N ÿ 1)th grid
points can be expressed in terms of the unknown dis-
placement values at interior points, namely,
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w2 � ÿ 1

A12

XNÿ1
j�3

A1jwj �9a�

wNÿ1 � ÿ 1

AN,Nÿ1

XNÿ2
j�2

ANjwj �9b�

Substituting Eqs. (8a) and (9a), (9b) into the DQ ap-
proximate formulas for the ®rst, second, third and
fourth derivatives, respectively, we have

dw
*

dx
� �Aw

*

,
d2w

*

dx 2
� �Bw

*

,
d3w

*

dx 3
� �Cw

*

,

d4w
*

dx 4
� �Dw

*

�10�

where K={w3, w4, . . . , wN ÿ 2}. A
-
, B
-
, C
-
and D

-
and are

(Nÿ4) � (Nÿ4) modi®ed coe�cient matrices di�erent
from those of (Nÿ2) � (Nÿ2) dimension in the
DQWB approach. For the other boundary conditions,

the modi®ed coe�cient matrices can be obtained in a
similar way.

2.2. Matrix approximate formulas in the DQ method

One of the present authors [20] proposed the follow-
ing DQ formulation in matrix form for the partial de-

rivatives of the function c(x, y ) in two-dimensional
domain:

@c
@x
� �Axc,

@c
@y
� c �A

T

y ,
@ 2c
@x@y

� �Axc �A
T

y ,

@ 2c
@x 2
� �Bxc,

@ 2c
@y2
� c �B

T

y ,
@ 2c
@x@y

� �Bxc �B
T

y ,

@ 2c
@x 2
� �Dxc,

@ 2c
@y2
� c �D

T

y

�11�

where the unknown c is a rectangular unknown matrix

rather than a vector as in [4,6,8,11±14,21,22]. A
-
, B
-
and

D
-
with subscripts x and y stand for the DQ weighting

coe�cient matrices for the ®rst, second and fourth-

order partial derivatives along x and y directions, re-
spectively. The superscript T means the transpose of
the matrices. The above analog equations are compact

matrix version of the traditional polynomial approxi-
mate formulas given by Civan and Sliepcevich [4]. In
fact, both are equivalent.

3. Hadamard and SJT product

It is not an easy task to handle the problems invol-
ving nonlinearity. Chen and Zhong [15] ®rst found
that the Hadamard product of matrices was a simple

and e�ective technique to formulate nonlinear di�eren-
tial equations in the DQ method. The SJT product

was also introduced there to e�ciently compute the
Jacobian derivative matrix in the Newton±Raphson
method for the solution of nonlinear formulation in

the Hadamard product form.

De®nition 3.1. Let matrices A=[aij ] and

B=[bij ] $ CN�M, the Hadamard product of matrices is
de®ned as A8B=[aijbij ] $ CN�M, where CN�M denotes
the set of N �M real matrices.

De®nition 3.2. If matrix A=[aij ] $ CN�M, then
A8q=[aqij] $ CN�M is de®ned as the Hadamard power
of matrix A, where q is a real number. In particular, if

aij$0, A8(ÿ1)=[1/aij ] $ CN�M is de®ned as the
Hadamard inverse of matrix A. A80=11 is de®ned as
the Hadamard unit matrix in which all elements are

equal to unity.

De®nition 3.3. If matrix A=[aij ] $ CN�M, then the

Hadamard matrix function ¦8(A ) is de®ned as
¦8(A )=[¦(aij )] $ CN�M.

Considering quadratic nonlinear di�erential operator
W,xW,y, the DQ formulation can be expressed in

Hadamard product form as

W,xW,y �
ÿ

�AxW
*
�
�
�

�AyW
*
�

�12�

where W
*

is the unknown vector. W with the comma
subscript ,x and ,y denotes vector of partial derivative
of function W along x- and y-directions. A

-
x and A

-
y

are the DQ weighting coe�cient matrices, modi®ed by
the boundary conditions, for the ®rst order derivative
along the x- and y-directions, respectively. The above

equation exposes an essential idea in the latter analysis.
For linear and nonlinear operators with varying par-
ameters c(x,y ), the DQ analog can be obtained in the

same way. For example,

c�x,y�U,x �
�
c�x j,yj �

	 � ÿ �AxU
* � �13a�

and

c�x,y�U,xU,y �
�
c�x j,yj �

	 � ÿ �AxU
*
�
�
�

�AyU
*
�
: �13b�

Theorem 3.1. If A, B and C $ CN�M, then

1: A � B � B � A �14a�

2: k�A � B � � �kA� � B, where k is a scalar �14b�
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3: �A� B � � C � A � C� B � C �14c�

The Newton±Raphson method may be one of the
most important techniques to compute nonlinear alge-

braic equations. One of the major time-consuming cal-
culations in the method is to evaluate the Jacobian
derivative matrix. In order to simplify the computation

of the Jacobian matrix, the postmultiplying SJT pro-
duct of matrix and vector was introduced by Chen and
Zhong [15].

De®nition 3.4. If matrix A=[aij ] $ CN�M,
vector K={vi } $ CN�1, then ArK=[aijvi ] $ CN�M is
de®ned as the postmultiplying SJT product of matrix

A and vector K, where r represents the SJT product.

In what follows we give the operation rules applying
the SJT product to compute the Jacobian matrices,

where @/@U
*

denotes the Jacobian derivative matrix op-
erator with respect to vector U

*

.

1. For c(x,y )U,x={c(xj,yj )} � (A-xU* ), we have

@

@U
*

n�
c�x j,yj �

	 � ÿ �AxU
*
�o
� �Ax �

�
c�x j,yj �

	 �15a�

2. For (U,x)
q=(A

-
xU
*

)�q, where q is a real number, we

have

@

@U
*

nÿ
�AxU

*
��qo � q �Ax �

ÿ
�AxU

*
���qÿ1� �15b�

3. For U,xU,y=(A
-
xU
*

) � (A-yU* ), we have

@

@U
*

nÿ
�AxU

*
�
�
�

�AyU
*
�o

� �Ax �
�

�AyU
*
�
� �Ay �

ÿ
�AxU

*
�

�15c�

4. For sin U,x=sin � (A-xU* ), we have

@

@U
*

�
sin �

ÿ
�AxU

*
�	
� �Ax � cos �

ÿ
�AxU

*
�

�15d �

5. For exp(U,x)=exp � (A-xU* ), we have

@

@U
*

n
exp �

ÿ
�AxU

*
�o
� �Ax � exp �

ÿ
�AxU

*
�

�15e�

The above computing formulas give the analytic sol-
ution of the Jacobian derivative matrix for the analog

equations considered. The computational e�ort for one
SJT product is only n 2 scalar multiplications, which
may be the smallest computational cost in all possible

approaches. The premultiplying SJT product was also
introduced to compute the Jacobian matrix of the non-
linear formulation such as @W

* m/@x=A
-
xW
* �m�m 6� 1�

[15,16]. Such cases are seldom encountered in structure
analysis. Therefore, it is not presented here for the

sake of brevity.
The ®nite di�erence method is a simple technique to

obtain the approximate solution of the Jacobian

matrix in practical engineering and requires O(n 2) sca-
lar multiplications. Both the SJT product approach
and the ®nite di�erence method are essentially compar-

able in computing e�ort. However, the approximate
Jacobian matrix yielded by the ®nite di�erence method
a�ects the accuracy and convergence rate of the

Newton±Raphson method. In contrast, the SJT pro-
duct produces the analytic solution of the Jacobian
matrix.

4. Applications

The von Karman equations governing a thin, homo-
geneous, orthotropic rectangular plate subject to a uni-
formly distributed transverse load are given by [9]

E1u,xx � mG12u,yy � Cv,xy

� ÿw,x

ÿ
E1w,xx � mG12w,yy

�ÿ Cw,yw,xy �16a�

E2v,yy � mG12v,xx � Cu,xy

� ÿw,y

ÿ
E2w,yy � mG12w,xx

�ÿ Cw,xw,xy �16b�

D1w,xxxx � 2D3w,xxyy �D2w,yyyy

� q� h

m

��
u,x � 1

2
w2
,x

�ÿ
E1w,xx � u12E2w,yy

�
�
�
v,y � 1

2
w2
,y

�ÿ
E2w,yy � u21E1w,xx

�
� 2mG12w,xy�u,y � v,x � w,xw,y �

�
�16c�

in terms of three displacement components, where n12
and v21 are Poisson's ratio, E1 and E2 are the Young's
moduli, C is the shear modulus, D1, D2 and D4 are the
principal bending and twisting rigidities, m=1ÿn12v21,
u, v and w are the desired inplane and transverse dis-
placements, and a, b and h are width, length and thick-
ness of plate, respectively.

Applying the Hadamard product and the new DQ
matrix approximate formulas (11), the analog
equations for this case are
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�
�
�

�Axŵ �A
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where A
-
, B

-
and D

-
with subscript x and y denote the

modi®ed weighting coe�cient matrix along x and y
directions, respectively. The orders of these matrices
are N ÿ 2 for the DQWB approach and N ÿ 4 for the

DQCY approach, where N is the number of grid
points. Note that the boundary conditions have been
applied in the DQWB and DQCY approach and thus

are no longer considered. It is also noted that A
-
x and

A
-
y here are di�erent form those in Section 3. The latter

are the stacked coe�cient matrix, the corresponding W
*

and U
*

are the desired vectors, while the former are in

one-dimensional sense and uÃ, vÃ and wÃ in the above for-
mulations are rectangular matrices. It is also pointed
out that A

*

x, B
*

x, A
*

y and B
*

y for di�erent u, v and w are

the same, respectively, in the cases of clamped or
simply supported edges.
The variables are nondimensionalized as X0x/a,

Y0y/b, U0uÃ/a, V0vÃ/b and W0wÃ /h. Furthermore,
by using the Kronecker product of matrices, we have

H1U
* �H2V

* � ÿ�H7W
* � � �H1W

* �

ÿ �H8W
* � � �H2W

* �
�18a�

H2U
* �H3V

* � ÿ�H8W
* � � �H3W

* �

ÿ �H7W
* � � �H2W

* �
�18b�

H4W
* � qa4

D1h
� a4

mD1h

�
a2

h2

�
H7U

* � 1

2
�H7W

* ��2
�

� �H5W
* � � b2

h2

�
H8V

* � 1

2
�H8W

* ��2
�

� �H6W
* � � 2mG12

C
�H2W

* � �
�
H8U

* �H7V
*

� �H7W
* � � �H8W

* �
��

�18c�

where H1, H2, H3, H4, H5, H6, H7 and H8 are de®ned
in Appendix A. W

*

, U
*

and V
*

are vectors generated by
stacking the rows of the corresponding rectangular

matrix W, U and V into one long vector. By using the
new matrix approximate formulas and Hadamard pro-
duct, the present nonlinear formulations are very easily
accomplished. The matrix form here is also simpler

and more explicit than the conventional algebraic poly-
nomial form given by Bert et al. [9].
Eqs. (18a) and (18b) can be also restated as

H1U
* �H2V

* � ÿL1�W* � �19a�

H2U
* �H3V

* � ÿL2�W* � �19b�

where

L1�W* � � �H7W
* � � �H1W

* � � �H8W
* � � �H2W

* � �20a�

L2�W* � � �H8W
* � � �H3W

* � � �H7W
* � � �H2W

* � �20b�

The unknown vector U
*

and V
*

can be expressed in
terms of W

*

by

U
* � H ÿ19 H ÿ13 L2�W* � ÿH ÿ19 H ÿ12 L1�W* � �21a�

and

V
* � H ÿ110 H

ÿ1
2 L2�W* � ÿH ÿ110 H

ÿ1
1 L1�W* � �21b�

where H9=Hÿ12 H1ÿHÿ13 H2 and
H10=Hÿ11 H2ÿHÿ12 H3. By applying the SJT product

for the evaluation of the Jacobian matrix, we have

@U
*

@W
* � H ÿ19 H ÿ13

@L2�W* �
@W

* ÿH ÿ19 H ÿ12

@L1�W* �
@W

* �22a�

and

@V
*

@W
* � H ÿ110 H

ÿ1
2

@L2�W* �
@W

* ÿH ÿ110 H
ÿ1
1

@L1�W* �
@W

* �22b�

where
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@L1�W* �
@W

* � H7 � �H1W
* � �H1 � �H7W

* �

�H8 � �H2W
* � �H2 � �H8W

* �
�23a�

and

@L2�W* �
@W

* � H8 � �H3W
* � �H3 � �H8W

* �

�H7 � �H2W
* � �H2 � �H7W

* �
�23b�

@U
*

/@W
*

and @V
*

/@W
*

are relative Jacobian derivative
matrices of dependent variable vector U

*

and V
*

with
respect to W

*

. Applying formulas (21a) and (21b), and

(22a) and (22b), the coupled formulations (18a)±(18c)
are decoupled. The size of the resulting nonlinear sim-
ultaneous algebraic equations is reduced from

3(N ÿ 2) � 3(N ÿ 2) to (N ÿ 2) � (N ÿ 2) for the
DQWB approach or from 3(N ÿ 4) � 3(N ÿ 4) to
(N ÿ 4) � (N ÿ 4) for the DQCY approach. It is

known that each iteration step in the Newton±
Raphson method has to solve a set of linear simul-
taneous algebraic equations, which requires an order
of n 3 scalar multiplications. n is the size of the solved

equations. For example, the Gauss elimination method
requires n 3/3 scalar multiplications, while the Gauss±
Jordan method requires n 3/2 scalar multiplications.

Therefore, the computational e�ort and storage
requirements here are only about one twenty-seventh
and one-ninth, respectively, as much as in Ref. [9]. W

*

is a basic variable vector in the present computations.
Eq. (18c) is chosen as the basic iteration equation,
namely,

jfW* g � H4W
* ÿ a4

mD1h

�
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h2

�
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2
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��
ÿ qa4

D1h
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�24�

The Jacobian derivative matrix for the above iteration
equation is given by
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It is noted that the SJT product approach here yields

the analytical solution of the Jacobian matrix quite
simply and e�ciently. The Newton±Raphson iteration
equation for this case is

W
* �k�1� �W

* �k� ÿ
 
@j�W* �k��
@W

*

!ÿ1
j�W* �k�� �26�

The DQ solutions for the corresponding linear iso-
tropic and orthotropic plates are chosen as the initial
guess of the iteration procedures. It is noted that the

Newton±Raphson method has rather a big conver-
gence domain in the present computations. Even if the
resulting nonlinear results are even eight times larger
than the initial linear solutions, the Newton±Raphson

method still converges. Moreover, the solution con-
verges very rapidly, and the iterative times vary from 1
to 10 for various loadings when the convergence cri-

terion is the maximum residual of equation (24) no
more than 10ÿ5. In contrast, the IMSL subroutine
NEONE used in Ref. [9] computed the Jacobian

matrix approximately by a ®nite di�erence technique.
Therefore, as was shown in Fig. 8 in Ref. [9], the accu-
racy and converging rate of the DQ solutions are
a�ected, especially for simply supported plates.

Refs. [8,12,17] pointed out that the accuracy and
stability of the DQ method can be improved signi®-
cantly if the Chebyshev grid spacing is used. In the fol-

lowing the DQWB and DQCY solutions are obtained
by using Chebyshev grid spacing 7 � 7 for a simply
supported plate and 9 � 9 for a clamped plate, respect-

ively, unless where speci®ed. To avoid the e�ects of
round-o� errors on the accuracy of the solution,
double-precision arithmetic is used in all the results
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presented in this paper. Ref. [9] has pointed out the
high e�ciency and ease of use in the DQ method in

comparison to other numerical techniques such as the

®nite element, ®nite di�erence, perturbation, Galerkin
and Rayleigh±Ritz, etc., while this paper places its

emphasis on the simpli®cation of the use and further

improvement of the accuracy and e�ciency in the DQ
method. Therefore, the comparisons with the other nu-

merical techniques are not discussed here.

The same simply supported and clamped isotropic
square plates subject to a uniformly distributed loading

as in example 1 of Ref. [9] are recalculated by the pre-

sent DQ method. The solutions by both the DQCY

and conventional DQd approaches are nearly in agree-

ment and very accurate for the clamped plate and,

thus, the DQCY solutions are not presented here for

the sake of brevity. Nevertheless, it should be empha-

sized that the DQd approach cannot use a larger num-

ber of grid points as in the DQCY approach due to

instability caused by the d e�ect. The results for simply

supported plate are shown in Fig. 1 and compared

with the exact [24,25] and conventional DQ [9] sol-

utions. The present DQWB results show remarkable

agreement with those of Yang [24] and Levy [25]. It is

also noted that the DQd approach using 7 � 7 grid

points by Bert et al. [9] gave obviously better results in

the clamped cases than in the simply supported cases

as shown in Figs. 1 and 2 of Ref. [9]. This is because

the DQd approach is not very suitable for the cases of

supported edges. As is expected, the DQWB approach

gives more accurate results than the DQd approach for

simply supported plate. Therefore, the former is a

competitive alternative to the latter for the nonlinear

cases of simple supports.

In addition, we compute an isotropic simply sup-

ported square plate under a uniformly distributed

transverse load. The parameters of this case are

a = 160, h = 0.10, E = 30 � 106 and n=0.316. Fig. 2

depicts the results obtained by the DQWB approach

using 5 � 5 Chebyshev grids and 7 � 7 equally spaced

grids. All solutions agree very well with those given by

Levy [26]. As is expected, the DQWB method using

the 5 � 5 Chebyshev grids yields more accurate results

than using 7 � 7 equally spaced grids.

The center de¯ections of the clamped square plate

(a = 100, h= 1.0, E= 2.1 � 106, n=0.316, q = 3.0)

and the simply supported square plate (a= 100,

h = 1.0, E = 2.1 � 106, n=0.25, q= 1.0) subject to a

Fig. 1. Central de¯ections for a simply supported square iso-

tropic plate.

Fig. 2. Comparison of the DQ accuracies of central de¯ec-

tions for a square simply supported plate using the Chebyshev

5 � 5 and the equally spaced 7 � 7 grids.

Fig. 3. Central de¯ections for a clamped square orthotropic

plate.
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uniformly distributed pressure are computed, respect-

ively, by the DQWB and DQCY methods. The DQ

results as well as the analytical and FEM solutions are

listed in Table 1. The present DQ solutions show excel-

lent agreement with the analytical [27] and FEM sol-

utions [27,28]. However, the computational e�ort in

the present DQ method is much less than in the ana-

lytical method and FEM. The DQ method is demon-

strated again to be highly computationally e�cient for

nonlinear structural analysis.

The numerical examples on the orthotropic rec-

tangular plate provided by Bert et al. [9] are recalcu-

lated by the present DQ methods. The speci®c

parameters are E1=18.7 � 106psi; E2=1.3 � 106psi,

G12=0.6 � 106psi; n12=0.3; h = 0.0624 in; a = 9.4 in;

b= 7.75 in. The center de¯ections in the clamped and

simply supported cases are displayed in Figs. 3 and 4,

respectively. For the cases of clamped edges, the results

by the DQCY approach are very close to those by

Bert and Cho. It is noted that the DQCY approach

using 15 � 15 grid spacing is still stable and give accu-

rate results, but computational e�ort also increases ex-

ponentially, while the DQd approach cannot use so

many grid points. The computational stability problem

may be essential in some cases when many grid points

are required. Therefore, the DQCY approach may

have better promise in practical engineering than the

DQd approach. In this case, the DQCY approach pro-
duces more accurate results by using more grid points
(e.g. 9 � 9 grid spacing).

For the case of simple supports, it is noted that the
results given by Bert et al. [9] using the DQd approach
with 7 � 7 equally spaced grids are obviously larger
than those by Bert and Cho. In contrast, the present

DQWB approach appears to give results that are much
closer to those by Bert and Cho as shown in Fig. 4.
Bert and Cho's solution values here are taken from

graphs 9 and 10 in respect to Ref. [9] with appropriate
scaling factors. Another example on orthotropic plates
discussed in Ref. [9] is also recalculated by the present

DQ method and the same conclusions are obtained.
Based on the centrosymmetric structures of the DQ

weighting coe�cient matrices, the reduction technique
in the DQ method was proposed in [16,17,20] and

extended to the nonlinear problems in [16]. For geome-
trically nonlinear bending of the isotropic and ortho-
tropic rectangular plates with symmetric boundary

conditions, the computational e�ort and storage
requirements can be further reduced by 75% and 50%
using such reduction techniques, respectively.

5. Concluding remarks

The DQ approach in using some new techniques is
applied to analyze geometrically nonlinear bending of

isotropic and orthotropic plates with simply supported
and clamped edges. The new matrix approximate for-
mulas o�er a compact and convenient DQ procedure

to approximate partial derivatives. The DQWB
approach is proved to be a successful technique for
geometrically nonlinear plate with SS±SS boundary

conditions. It is conceivable that the DQWB approach
is also highly e�cient for the other boundary con-
ditions whenever applicable, as in the linear problems.
The DQCY approach is improved and shown to be a

stable and accurate technique for handling the cases
with the C±C boundary conditions. Apparently, the
results obtained by these two approaches are more

accurate than those by the traditional DQd approach.
Although only simply supported and clamped bound-
ary conditions are involved in the present study, it is

straightforward that the same procedures can be easily
employed for handling problems with the other bound-
ary conditions.

Table 1

The center de¯ections of the clamped and simply supported square plates

Methods Analytical [27] FEM [28] FEM [27] Present

Simply supported 0.940 1.028 (9.3%) 0.942 (0.3%) 0.944 (0.4%)

Clamped 1.151 1.316 (14.3%) 1.170 (1.6%) 1.123 (2.4%)

Fig. 4. Central de¯ections for a simply supported square

orthotropic plate.
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The publications in which the DQ method was
applied to deal with nonlinear problems are still few

due to much more complex programming, storage
requirements, formulation and computing e�ort in
comparison to linear problems. The Hadamard and

SJT product approach may provide a simple and e�-
cient technique to greatly reduce these impediments.
The detailed solution procedures for the geometrically

nonlinear plate cases are provided here to show the
simplicity and e�ciency of the Hadamard and SJT
product approach. It is worth stressing that the

Hadamard and SJT products as well as the relative
decoupling technique are applicable for the ®nite
di�erence, pseudo-spectral and collocation methods.
Also, although only the application of Hadamard and

SJT product within one single interval is presented in
this paper, the extension of this procedure to solutions
of problems with complex geometries with the coordi-

nate mappings and multidomain techniques should be
straightforward. The application of the present DQ
solution procedure to the nonlinear analysis of more

complex plates with varying thickness, Poisson's ratio
and Young's modulus is currently the subject of
further investigation.

Appendix A

The desired unknowns in rectangular matrix form as

in equations (17a)±(17c) can be converted into the con-
ventional vector form by using the Kronecker product
[29].

Lemma 1. If A $ Cp�m, B $ Cn�q and the unknown
X $ Cm�n, then

vec�AXB � � �A
 BT�vec�X � �A1�
where vec( ) is the vector-function of a rectangular
matrix formed by stacking the rows of matrix into one
long vector, and 
 denotes the Kronecker product of

matrices. Note that vec( ) here is to stack rows rather
than columns as in Ref. [29] and, thus, the correspond-
ing operation rules are also slightly di�erent, but both

are in fact equivalent. In this paper, we de®ne
vec(AXB )=AXB

*

and vec(X )=X
*

to simplify presen-
tation.

Corollary.

1: AX
* � �A
 In�X*

2: XB
* � �Im 
 BT�X*

3: AX
* � XB

* � �A
 In � Im 
 BT�X* �A2�

where In and Im are the unit matrix. According to the
above formulas, Eqs. (17a)±(17c) can be converted into

Eqs. (18a)±(18c), and the resulting coe�cient matrices
in Eqs. (18a)±(18c) are given by

H1 � E1� �Bx 
 Iy� � mG12

�
a

b

�2

�Ix 
 �By� �A3�

H2 � C� �Ax 
 �Ay� �A4�

H3 � E2�Ix 
 �By� � mG12

�
b

a

�2

� �Bx 
 Iy� �A5�

H4 � �Dx 
 Iy � D2

D1

�
a

b

�2

� �Bx 
 �By� � D3

D1

�
a

b

�4

� �Ix 
 �Dy�
�A6�

H5 � E1

�
h

a

�2

� �Bx 
 Iy� � u12E2

�
h

b

�2

�Ix 
 �By� �A7�

H6 � E2

�
h

b

�2

�Ix 
 �By� � u21E1

�
h

a

�2

� �Bx 
 Iy� �A8�

H7 � h2

a2
� �Ax 
 Iy� �A9�

H8 � h2

b2
�Ix 
 �Ay� �A10�
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