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Abstract—Randomized gossip algorithms are attractive for
collaborative in-network processing and aggregation because they
are fully asynchronous, they require no overhead to establish
and form routes, and they do not create any bottleneck or single
point of failure. Previous studies have focused on analyzing the
worst-case number of transmissions required to reach a specified
level of accuracy. In a practical implementation, rather than
always running for the worst-case number of transmissions, one
would like to fix a final level of accuracy and have the algorithm
run only until this level of accuracy is achieved, adapting to
the initial condition and network topology. This paper describes
and analyzes a local silencing rule: when a nodes value has not
changed significantly for enough consecutive gossip rounds, it
no longer initiates new gossip transactions, thereby conserving
transmissions. We provide theoretical guarantees on the final
accuracy of the estimates, and we study the latency and message
complexity of this approach through simulation.

I. INTRODUCTION

Gossip algorithms are simple, fully-decentralized protocols
for in-network information processing and information dis-
semination. They have received a lot of attention in the signal
processing, systems and control, information theory, and the-
oretical computer science communities recently because they
are simple to implement, robust against unreliable wireless
network conditions and changing topologies, and they have
no bottlenecks or single points of failure [4], [6].

In this paper, we focus on the average consensus problem
where each node initially has a measurement and the goal
is to compute the average of all these measurements at all
nodes in the network. Although the average is a simple
function, previous work has shown that it can be used as a
building block to support much more complex tasks including
optimization [22], source localization [17], compression [16],
subspace tracking [11]. Randomized gossip [4] solves the
average consensus problem in the following manner. Each
node maintains and updates a local estimate of the average,
which it initializes with its own measurement. Each node
also runs an independent random (Poisson) clock. When the
clock at a node i ticks, it contacts one of its neighbors
(chosen randomly); they exchange estimates, and then update
their estimate by fusing their previous estimate with the new
information obtained from their neighbor.

Previous studies of randomized gossip for information pro-
cessing have focused on studying scaling laws (how many
messages are needed as the network size tends to infinity),
and on developing efficient randomized gossip algorithms for
typical models of wireless network topologies such as 2-d

grids and random geometric graphs. Since each wireless trans-
mission typically consumes a significant amount of energy,
characterizing the number of transmissions used is an impor-
tant goal, and this number of transmissions is proportional to
the number of gossip iterations executed. Much previous work
has focused on characterizing the ε-averaging time, which is
the worst-case number of iterations the algorithm must be
run to guarantee, with high probability, that the estimates of
the average at all nodes are within a factor of ε from the
true average, relative to the initial condition1. These studies
also assume a worst-case initial condition. They suggest rough
guidelines for the number of iterations to execute, but because
the bounds are pessimistic by design, the number of iterations
specified can be significantly larger than the actual number of
iterations required to get an accurate estimate at all nodes. If
one had an accurate model for typical initial conditions across
the network, then a more careful analysis of the expected
run-time could be carried out, and through the use of large-
deviation techniques, one could determine a more accurate
bound on the number of iterations required. However, accurate
models for measurements are often not available, especially
when deploying wireless sensor networks for exploratory
monitoring and surveying.

This paper describes implicit local silencing rules for
randomized gossip algorithms with theoretical performance
guarantees. Rather than fixing a total number of iterations
to execute in advance, each node monitors its estimate and
decides to become silent when the estimate has not changed
significantly after a prescribed number of iterations. When a
node becomes silent, it no longer initiates gossip exchanges
when its clock ticks, but it still responds to requests from
neighbors. We prove that the proposed scheme will stop almost
surely after a finite number of iterations. We also show how the
final error can be controlled by adjusting the parameters of our
silencing rule. The final error guaranteed by our algorithm is
also absolute, rather than being relative to the initial condition.

II. BACKGROUND AND PROBLEM SETUP

Let the graph G = (V,E) denote the communication
topology of a network with n = |V | nodes and edges (i, j) ∈
E ⊆ V 2 if and only if nodes i and j communicate directly.
We assume that G is connected. We take V = {1, . . . , n} to
index the nodes. Let xi(0) ∈ R denote the initial value at

1A precise definition is given in Section II.



node i ∈ V . In randomized gossip, nodes iteratively exchange
information and update their estimates, xi(t). Our goal is to
estimate the average x̄ = 1

n

∑n
i=1 xi(0) at every node of the

network; that is, we would like xi(t)→ x̄ for all i as t→∞.
Following [4], [22], we adopt an asynchronous update

model where each node runs an independent Poisson clock
that ticks at a rate of 1 per unit time. In this model, the
probability that two clocks tick at precisely the same time
instant is zero. Let tk denote the time of the kth clock tick in
the network, and let i(k) denote the index of the node at which
this tick occurs. It is easy to show, using properties of Poisson
processes, that the sequence of nodes i(1), i(2), . . . , i(k), . . .
is independent and uniformly distributed over V , since all
nodes’ clocks tick at the same rate. Moreover, via simple
probabilistic arguments [13], one can show that each block
of O(n log n) consecutive nodes in the sequence {i(k)}∞k=1

contains every node in V with high probability.
In the randomized gossip algorithm described in [4], when

i(k)’s clock ticks at time tk, it contacts a neighboring node,
which we will denote by j(k), according to a pre-specified
distribution Pi,j = Pr

(
i contacts j

∣∣i ticked
)
. Then i(k) and

j(k) update their values by setting

xi(k)(tk) = xj(k)(tk) =
1

2

(
xi(k)(tk−1) + xj(k)(tk−1)

)
, (1)

and all other nodes v ∈ V \{i(k), j(k)} hold their estimates at
xv(tk) = xv(tk−1). The probability Pi,j can only be positive
if there is a connection (i, j) ∈ E between nodes i and j. Let
Ni = {j : (i, j) ∈ E} denote the set of neighbors of i. Often,
we use the natural random walk probabilities Pi,j = 1/|Ni|
for the graph G.

We assume that i(k) and j(k) exchange information in-
stantaneously at time tk. As mentioned above, no two clocks
tick simultaneously, so we can order the events sequentially
t1 < t2 < · · · < tk < . . . . To simplify notation, we write
xi(k) instead of xi(tk) in the sequel, and we refer to the
operations taking place at time tk as the kth iteration.

We note that this problem setup—having local clocks oper-
ate at a rate of 1 tick per unit time—is purely for the sake of
analysis. In practice, one would tune the clock rate taking
into consideration radio transmission rates, packet lengths,
node transmission ranges, the average number of neighbors per
node, and interference patterns, and the rates could be chosen
sufficiently large so that no two gossip events interfere with
high probability. Determining the appropriate rate is beyond
the scope of this paper and is an interesting open problem.

Pseudo-code for simulating randomized gossip is shown in
Algorithm 1. The typical termination rule recommended in
previous work is to fix a total number of iterations to execute
in advance, based on the worst-case initial condition and size
of the network. To determine a rule-of-thumb for setting the
maximum number of iterations, previous work has analyzed
the ε-averaging time [4], Tε(P ), for gossip algorithms. Let
x(t) ∈ Rn denote the estimates at each node at time t stacked
into a vector, and let x̄ denote a vector with all entries equal
to the average, x̄. Then the ε-averaging time for the algorithm

Algorithm 1 Randomized Gossip
1: Initialize: {xi(0)}i∈V and k = 1
2: repeat
3: Draw i(k) uniformly from V
4: Draw j(k) according to {Pi,j}j∈V
5: xi(k)(k) = 1

2

(
xi(k)(k − 1) + xj(k)(k − 1)

)
6: xj(k)(k) = 1

2

(
xi(k)(k − 1) + xj(k)(k − 1)

)
7: for all v ∈ V \ {i(k), j(k)} do
8: xv(k) = xv(k − 1)
9: end for

10: k ← k + 1
11: until Satisfying some silencing condition

defined by neighbor-selection probabilities P is defined as

Tε(P ) = sup
x(0)

inf

{
t : Pr

(
‖x(t)− x̄‖
‖x(0)‖

≥ ε
)
≤ ε
}

; (2)

that is, Tε(P ) is the smallest time t for which the error
‖x(t)− x̄‖ ≤ ε‖x(0)‖ is small relative to the initial condition
x(0), with high probability, for the worst-case (and, thus, any)
initial condition x(0). Note that the matrix of probabilities
P captures the network topology G, since Pi,j > 0 only if
(i, j) ∈ E, and so the ε-averaging time depends strongly on
the network topology.

The 2-dimensional random geometric graph [8], [15] is a
typical model for connectivity in wireless networks: n nodes
are placed in the unit square, and two nodes are connected if
the distance between them is less than the connectivity radius
r(n) = Θ(

√
log(n)/n). Gupta and Kumar [8] showed that

this choice of connectivity radius guarantees the network is
connected with high probability. It was shown in [4] that, for
random geometric graphs, the ε-averaging time is

Tε(P ) = Θ(n log ε−1) (3)

time units, regardless of whether P is the natural probabilities
or is optimized with respect to the topology. Since each
node ticks once per time unit, on average, this means that
randomized gossip terminates after Θ(n2 log ε−1) iterations.
Each iteration involves two transmissions, so this result implies
that the total number of transmissions required to gossip scales
quadratically in the size of the network.

Motivated to achieve better scaling, previous work has
focused on developing generalizations and variations on the
randomized gossip algorithm described above (see [1], [2],
[6], [7], [10], [12], [14], [18], [19], [21], [23] and references
therein). These algorithms have significantly improved the
scaling laws, and existing state-of-the-art schemes require a
total number of transmissions that scales linearly or nearly-
linearly (e.g., as n polylog(n)) in the network size.

However, a very practical problem remains unsolved: how
can nodes locally determine when their estimate is accurate
enough to be silent? The analyses involving ε-averaging time
are asymptotic and order-wise, and the constants in the bounds
such as (3) are generally unknown. This bound defines ac-
curacy as ‖x(t) − x̄‖ ≤ ε‖x(0)‖, relative to the magnitude



initial condition, ‖x(0)‖, and so one must also bound this
magnitude to guarantee an error of the form ‖x(t)− x̄‖ ≤ δ.
Moreover, the time Tε(P ) is based on the worst-case initial
condition. In practice, this condition may be pathological,
but it is difficult to specify a tighter time without assuming
knowledge of the distribution of initial conditions, which is
generally not available in practice.

In a practical implementation of randomized gossip, one
would like to fix a desired level of accuracy δ > 0 in advance
and have the algorithm run for as many iterations as are needed
to ensure that ‖x(k) − x̄‖ ≤ δ with high probability. The
next section proposes a modification of randomized gossip
which incorporates a local silencing rule, allowing nodes to
adaptively determine when gossiping is no longer necessary.
Subsequent sections analyze this local silencing rule and
provide theoretical guarantees.

Note that two existing algorithms are guaranteed to stop
after a finite number of iterations [19], [20]. When these meth-
ods terminate, the average has been computed exactly. The
number of iterations required depends solely on the network
size and topology, and does not depend on the initial condition
(e.g., the number of iterations is not reduced if the network
is initialized “close” to a consensus). When the approach
described in [19] converges, only a single node holds the
average, and so there is a single point of failure. The approach
in [20] requires that each node v ∈ V stores its entire history
of values {xv(0), xv(1), . . . }, and to recover the average from
these values, each node needs information about the entire
network topology, G. In contrast, the approach introduced in
this paper has no single point of failure and all parameters can
be calculated in a decentralized manner. It accounts for the
network topology, and the number of transmissions required
is also a function of the initial condition (fewer transmissions
are required for “easier” initial conditions). In addition, the
proposed approach allows the user to tradeoff the number of
transmissions until termination with the final accuracy.

III. ALGORITHM AND MAIN RESULTS

Previous results [4] show that gossip converges asymptot-
ically, in the sense that the error ‖x(k) − x̄‖ vanishes as
k → ∞. Intuitively, once x(k) is close to x̄, the changes to
each node’s estimate become small. Thus, each node should
be able to locally decide when additional gossiping will not
have substantial benefits.

We propose a local silencing rule based on two parameters:
a tolerance, τ > 0, and a positive integer C. In addition to
maintaining a local estimate, node i also maintains a count
ci(k) which is initialized to ci(0) = 0. Each time a node
gossips, it tests whether its local estimate has changed by more
than τ in absolute value. If the change was less than or equal
to τ then the count ci(k) is incremented, and if the change
was greater than τ then ci(k) is reset to 0. Note that the test
only occurs at nodes i(k) and j(k) for iteration k, and all
other nodes hold their counts fixed.

After the absolute change in the estimate at node i has been
less than τ for C consecutive gossip rounds, or equivalently,

Algorithm 2 Randomized Gossip with Local silencing Rule
1: Initialize: {xi(0)}i∈V , ci(0) = 0 for all i ∈ V , and k = 1
2: repeat
3: Draw i(k) uniformly from V
4: if ci(k)(k − 1) < C then
5: Draw j(k) according to {Pi,j}j∈V
6: xi(k)(k) = 1

2

(
xi(k)(k − 1) + xj(k)(k − 1)

)
7: xj(k)(k) = 1

2

(
xi(k)(k − 1) + xj(k)(k − 1)

)
8: if |xi(k)(k)− xi(k)(k − 1)| ≤ τ then
9: ci(k)(k) = ci(k)(k − 1) + 1

10: cj(k)(k) = cj(k)(k − 1) + 1
11: else
12: ci(k)(k) = 0
13: cj(k)(k) = 0
14: end if
15: for all v ∈ V \ {i(k), j(k)} do
16: xv(k) = xv(k − 1)
17: cv(k) = cv(k − 1)
18: end for
19: k ← k + 1
20: else
21: for all v ∈ V do
22: xv(k) = xv(k − 1)
23: cv(k) = cv(k − 1)
24: end for
25: end if
26: until cv(k) ≥ C for all v ∈ V

when ci(k) ≥ C, this node ceases to initiate gossip rounds
when its clock ticks. In order to avoid terminating prematurely,
if node i is contacted by a neighbor then it will still gossip and
test whether its value has changed even if ci(k) ≥ C. In this
manner, a node may become silent for a while and then resume
actively gossiping at a later time. If all nodes reach counts
ci(k) ≥ C, then no node will initiate another round of gossip
and all nodes remain silent. Pseudo-code randomized gossip
with the proposed local silencing rule is given in Algorithm 2.

A number of questions immediately come to mind about
the proposed silencing rule: Since nodes may go silent and
then become active again, are we guaranteed that all nodes
eventually remain silent? If they are all silenced, what is the
final error in their estimates? Our main theoretical results
answer these questions as summarized in Theorem 1 below.
The final error depends on characteristics of the network
topology, and so we first introduce some notation. For a graph
G = (V,E) with n = |V | nodes, let A ∈ {0, 1}n×n denote the
adjacency matrix; i.e., Ai,j = 1 if and only if (i, j) ∈ E. Also,
let D denote a diagonal matrix whose ith element Di,i = |Ni|
is equal to the degree of node i. The graph Laplacian of G is
the matrix L = D −A. Our bounds depend on the network
topology through: (1) the second smallest eigenvalue of L,
which we denote by λ2, (2) the number of edges m = |E| in
the network, and (3) the maximum degree, dmax = maxiDi,i.

Theorem 1: Let δ > 0 be given. Assume that ‖x(0)‖ <∞,



and assume that {Pi,j} correspond to the natural random
walk probabilities on G. After running randomized gossip
(Algorithm 2) with silencing rule parameters,

C = dmax

(
log(dmax) + 2 log(n)

)
(4)

τ =

√
λ2δ2

4m(C − 1)2
, (5)

the following two statements hold.
a) All nodes eventually stop gossiping almost surely; i.e.,

with probability one, there exists a K such that ci(k) ≥
C for all i ∈ V and all k ≥ K.

b) Let K = min{k : ci(k) ≥ C for all i ∈ V } denote the
first iteration when all nodes are silent. With probability
at least 1− 1/n, the final error is bounded by

‖x(K)− x̄‖ ≤ δ. (6)

The proof of Theorem 1 is given in Section IV, but first, a
few remarks are in order.

A. Discussion

First, note the roles played by the two silencing rule parame-
ters, τ and C. Recall that C is the number of consecutive times
each node must pass the test |xi(k) − xi(k − 1)| ≤ τ before
silencing. The choice of C above ensures that before going
silent, a node has recently gossiped with all of its neighbors
and thus has a value similar (within τ ) to theirs. This ultimately
guarantees that the desired level of accuracy is achieved with
high probability. The log(n) term on the right-hand side of (4)
appears as a result of a union bound in the analysis below, and
we believe that causes the bound to be loose. In the simulation
results presented in Section V we show that even taking
C = ddmax log(dmax)e generally suffices to achieve the target
accuracy. One could generalize the approach described here
to allow for a different stopping count, Ci = ddi log(di)e, at
each node, at the cost of more cumbersome notation. Although
the same analysis goes through, we omit the generalization
here to simplify the presentation. Given C, which depends on
the network characteristics, one can control the final level of
accuracy, δ, by adjusting τ .

Another question of interest is: How long will it take
until all nodes are silenced? Intuitively, because nodes only
becomes silent gossip rounds when their values are already
close enough to their neighbors, the rate of convergence of
Algorithm 2 is essentially the same as that of randomized
gossip [4] without the local silencing rule (Algorithm 1). How-
ever, for certain initial conditions, using the local silencing
rule can result in significant savings in terms of the number
of transmissions by temporarily silencing certain nodes when
they have nothing interesting to tell their neighbors. For
example, consider an initial condition where all nodes have
xi(0) = 0 except one node that differs dramatically, e.g.,
x1(0) = 1000. In this case, most nodes will have the same
value as their neighbors initially, and so they will “pause”
gossiping until the signal from node 1 diffuses to them across

the network. Formalizing this intuition and theoretically ana-
lyzing the latency and transmission complexity is challenging,
since the dynamics of x(k) depend non-linearly on the counts,
ci(k). We investigate this issue via simulation in Section V.

Finally, note that there is an overhead associated with using
a local silencing rule, in the following sense. Even if the
network is initialized to a consensus (i.e., x(0) = x̄), a
minimum number of gossip rounds must occur before the
network is silenced. This is the price one must pay for using
a decentralized silencing rule, and this price is precisely C,
the number of rounds each node must participate in before it
decides to become silent. In grids, dmax = Θ(1), and so C =
Θ(log n). For random geometric graphs, dmax = Θ(log n)
with high probability, and so C = Θ(log(n) log log(n)). In
any case, this is no worse than the best known scaling laws
for randomized gossip algorithms in wireless networks.

B. Fully decentralized implementation

In order to implement the local silencing rule, each node
needs to be initialized with values for τ and C. If these
cannot be pre-set before the network is deployed, they can
be calculated in a decentralized manner. We assume that the
desired accuracy δ > 0 is pre-determined and known to all
nodes. In order to set C and τ according to (4) and (5), we also
need to compute dmax, n, m, and λ2. The maximum degree
dmax can be computed in a decentralized manner using a “max
consensus” algorithm, similar to Algorithm 1, but where nodes
update their states with the maximum instead of the average in
lines 5 and 6. Parameters n and m, measuring the network size,
can be calculated using the Push-Sum gossip algorithm [9],
and λ2 can be calculated using a gossip-like variant of the
Lanczos iteration [4], [14].

IV. ANALYSIS

A. Guaranteed silencing

We begin by proving part (a) of Theorem 1 which claims
that all nodes eventually become silent. Consider the squared
error, ‖x(k)− x̄‖2 after iteration k. Since two nodes average
their values when they gossip, we are guaranteed that ‖x(k)−
x̄‖2 is non-increasing, and we can quantify the decrease at
iteration k in terms of the values at nodes i(k) and j(k).

Lemma 1: After i(k) and j(k) gossip at iteration k,

‖x(k)−x̄‖2 = ‖x(k−1)−x̄‖2− 1
2

(
xi(k)(k−1)−xj(k)(k−1)

)2
.

(7)
Also, observe that∣∣xi(k)(k)− xi(k)(k − 1)

∣∣ (8)
=

∣∣ 1
2xi(k)(k − 1) + 1

2xj(k)(k − 1)− xi(k)(k − 1)
∣∣ (9)

=
∣∣ 1
2xi(k)(k − 1)− 1

2xj(k)(k − 1)
∣∣ (10)

=
∣∣xj(k)(k)− xj(k)(k − 1)

∣∣ . (11)

From equations (10) and (11), we can make the following
statements about the relationship between values at nodes i(k)
and j(k) immediately after they gossip.

Lemma 2: After i(k) and j(k) gossip at iteration k,



a)
∣∣xi(k)(k)− xi(k)(k − 1)

∣∣ > τ if and only if∣∣xj(k)(k)− xj(k)(k − 1)
∣∣ > τ ;

b)
∣∣xi(k)(k)− xi(k)(k − 1)

∣∣ > τ if and only if∣∣xi(k)(k − 1)− xj(k)(k − 1)
∣∣ > 2τ .

Lemmas 1 and 2 together imply that whenever a node resets
its counter to ci(k) = 0, the squared error decreased by at least
4τ2. Since the initial error is finite, there is a finite number of
times that any node can reset its counter (otherwise, we get the
contradiction that the squared error is negative). Once nodes
can no longer reset their counters, they will only increment
them until ci(k) ≥ C, at which point they are silent. Moreover,
since nodes clocks tick according to i.i.d. Poisson clocks, they
eventually all achieve ci(k) ≥ C, at which point all nodes are
silent, proving claim (a) of Theorem 1.

B. Error when all nodes are silent

Next, we prove part (b) of Theorem 1. Our proof of the
error bound involves two main steps. First, we show that the
choice of C as in (4) ensures that when all nodes are silent,
their estimates are close to those of their neighbors. Then, we
show that if all nodes’ estimates are close to their neighbors’
then they are all close to the average.

The first part of the proof is based on a standard results from
the study of occupancy problems, and in particular the Coupon
Collector’s problem [13]. In this problem, there are d different
types coupons. At each iteration, the coupon collector is given
a new coupon drawn uniformly and with replacement from a
pool of coupons. The following is a standard tail-bound for the
number of iterations required to collect all types of coupons.

Lemma 3 (Coupon Collector [13]): Let T be the number
of iterations it takes the coupon collector to get one of each
of the d types of coupons, and let β ≥ 1. Then

Pr(T > βd log d) ≤ d1−β . (12)

This bound suggests that after T = Θ(d log d) iterations,
the collector have one of each coupon with high probability.
We apply this result to guarantee that a node has recently
gossiped with each one of its neighbors without seeing a
significant change before it becomes silent. For each node,
we map its neighbors to coupons and require that it collect
one coupon from each neighbor (which it does only when
gossiping with that neighbor results in an absolute change of
less than τ ) before going silent. Consequently, when a node is
silent, with high probability, its estimate was recently close to
all of its neighbors: if node i is silenced at iteration Ki, then
minl=0,...,C−1 |xi(Ki− l)−xj(Ki− l)| ≤ τ for all neighbors
j ∈ Ni. Unfortunately, this is not sufficient to guarantee that
|xi(K) − xj(K)| ≤ τ for all pairs (i, j) ∈ E, since it could
happen that after i and j gossip with each other for the last
time, i still gossips with another neighbor. However, we can
guarantee these differences do not grow too large.

Lemma 4: If C = dmax(log dmax+2 log n), then at the time
K = inf{k : ci(k) ≥ C for all i ∈ V } when the network is
silenced, with probability at least 1− 1/n,

|xi(K)− xj(K)| ≤ 2(C − 1)τ (13)

for all pairs of neighboring nodes, (i, j) ∈ E.
Proof: Let β ≥ 1 denote a variable whose exact value is to

be determined. Let Bi denote the event that node i went silent
before contacting all of its neighbors in the last C rounds.
We associate with each node i a coupon collector trying to
collect di = |Ni| coupons, so that Bi = {Ti > βdi log di}.
By Lemma 3 and the union bound, the probability that some
node goes without having contacted all of its neighbors in the
last C rounds is bounded by

Pr (∪i∈VBi) ≤
∑
i∈V

Pr(Bi) = nd1−βmax . (14)

Then, taking β = 1 + 2 log(n)/ log(dmax), and setting

C = βdmax log dmax = dmax(log dmax + 2 log n), (15)

we have that, with probability at least 1 − 1/n, all nodes
gossip with all of their neighbors in the iterations when
ci(k) goes from 1 to C. By Lemma 2, when i(k) and j(k)
increment their counts, ci(k)(k) and cj(k)(k), we know that
|xi(k)(k−1)−xj(k)(k−1)| ≤ 2τ . Moreover, immediately after
they gossip, xi(k)(k) = xj(k)(k). Suppose that nodes i(k) and
j(k) set ci(k)(k) = 1 and cj(k)(k) = 1 at iteration k. In the
worst case, they each gossip C − 1 more times with different
neighbors and their estimates change by τ each time, moving
in opposite directions (e.g., xi(k)(k) increasing and xj(k)(k)
decreasing). Then their final estimates have drifted by at most
2(C − 1)τ . Since this is true for every pair of nodes when
they are silenced, we have proved the Lemma.

We restrict Pi,j to be the natural random walk probabilities
on G is in order to apply the standard form of the Coupon
Collector’s problem, where all coupons have identical prob-
ability. The above result can be immediately generalized to
other distributions Pi,j by application of variations of the
weighted Coupon Collector’s problem [3].

We have established that when the network is silenced all
nodes have estimates at most 2(C − 1)τ from their neighbors
with high probability. Next, we show that this implies all
nodes are close to the average. Even though neighboring nodes
have similar estimates, the difference between estimates can
propagate across the network. We quantify how much the error
can propagate in terms of the network topology.

Recall that A denotes the binary adjacency matrix, D is
the diagonal matrix of node degrees, and L = D −A is the
combinatorial Laplacian. For a vector x ∈ Rn, it is easy to
verify that [5]

xTLx =
∑

(i,j)∈E

(xi − xj)2. (16)

Lemma 4 can be applied to bound each term on the right-hand
side of (16). The following lemma relates the quadratic form
on left-hand side of (16) to the squared error, ‖x− x̄‖2.

Lemma 5: Let λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues
of L sorted in ascending order. Then,

1

λn
xTLx ≤ ‖x− x̄‖2 ≤ 1

λ2
xTLx. (17)



Proof: The proof follows from basic principles of linear
algebra and spectral graph theory. Let {ui ∈ Rn}ni=1 denote
the orthonormal eigenvectors of L, with ui being the eigen-
vector corresponding to eigenvalue λi.

A well-known fact from spectral graph theory (see, e.g., [5])
is that, for a connected graph G, the smallest Laplacian
eigenvalue λ1 = 0 is zero, and the corresponding orthonormal
eigenvector is u1 = 1√

n
1, where 1 denotes the vector of all

1’s. Expanding L via its eigendecomposition, we get that

xTLx =

n∑
i=2

λi〈x,ui〉2, (18)

where 〈x,u〉 = xTu denotes the inner product.
Next, consider the squared distance ‖x − x̄‖2 from x to

its corresponding average consensus vector x̄. Recall that the
average consensus vector x̄ can be written in terms of x as

x̄ =
1

n
11Tx = u1u

T
1 x = 〈x,u1〉u1. (19)

Since the eigenvectors {ui} form an orthonormal basis for
Rn, we can expand x in terms of {ui} and subtract x̄, leaving
x− x̄ =

∑n
i=2〈x,ui〉ui. Thus, the squared error is

‖x− x̄‖2 =

n∑
i=2

〈x,ui〉2. (20)

Compare equations (18) and (20). Since the eigenvalues are
ordered in ascending magnitude, λi/λ2 ≥ 1 and λi/λn ≤ 1
for all i = 2, . . . , n. Thus,

n∑
i=2

λi
λn
〈x,ui〉2 ≤

n∑
i=2

〈x,ui〉2 ≤
n∑
i=2

λi
λ2
〈x,ui〉2, (21)

which is what we wanted to show.
Now, to complete the proof of Theorem 1(b) we just need

to put the various pieces together. Recall that m = |E| denotes
the number of edges in G, and the sum on the right-hand side
of (16) contains one term for each edge. Combining Lemma 4
and Lemma 5 gives the error bound,

‖x(K)− x̄‖2 ≤ λ−12

∑
(i,j)∈E

(
xi(K)− xj(K)

)2
(22)

≤ 4m(C − 1)2τ2

λ2
, (23)

which holds with probability at least 1− 1/n. Plugging in the
expression for τ from the statement of Theorem 1(b) yields
the desired bound, and thus completes the proof.

V. SIMULATION RESULTS

This section investigates the performance of gossip with the
proposed local silencing rule (GossipLSR) via simulation. We
validate the analytical results from the previous section, study
the latency and number of transmissions used by GossipLSR,
and compare the performance of GossipLSR with that of
standard randomized gossip. Unless otherwise specified, the
topology is a random geometric graphs with 200 nodes.
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Fig. 1. Distribution histogram of the edge differences |xi(K)−xj(K)| for
a 0/100 initial condition in a 200 nodes network with C = dmax log(dmax).

We begin by illustrating that the choice of C =
dmax log(dmax) ensures all nodes have estimates within τ of
their neighbors with high probability. We simulate GossipLSR
from an initial condition where the nodes on one half of the
graph have xi(0) = 0 and nodes on the other half have
xi(0) = 100; we refer to this as the “0/100 initialization”.
Figure 1 shows a histogram of the differences between neigh-
boring nodes, |xi(K) − xj(K)|, for (i, j) ∈ E, at the point
when all nodes are silent. In this case, τ = 0.1, and clearly
the vast majority of neighbors are below this threshold. Only
0.15% of the edges violate this threshold, and they violate it
by a very small amount (less than 0.02). We have repeated
the same simulation for other initial conditions and observe
similar behavior or better. For example, with an initialization
where all nodes have xi(0) = 0 except one node that has
x1(0) = 1000 (which we refer to this as the “Spike”), all
pairs of neighbors are situated well below τ at convergence.

We next study how τ impacts the final error and the number
of transmissions until convergence (i.e., when all nodes are
silent). In addition to the 0/100 and Spike initializations
considered above, we consider two smoothly varying fields:
“Gaussian Bumps”, a mixture of Gaussians, and “Slope”,
where xi(0) is set to the sum of node i’s planar coordinates.
We also show results for the case where xi(0) are i.i.d., zero-
mean unit-variance Gaussian, which we expect to be an easy
initialization for distributed averaging since each node only
needs to gossip with a few of its neighbors to get an estimate
which is close to the true average. As can be seen from
Figures 2(a) and 2(b), increasing τ reduces the total number
of transmissions required but also results in a higher error, as
expected. The initial condition also plays an important role in
determining the number of transmissions and the final error.

In Figure 3 we observe the number of transmissions to
convergence with respect to τ for different network sizes,
we evaluate the average number of transmissions for each
value of τ ranging from 0.01 to 0.5 at intervals of 0.01.
Figure 3 provides a better understanding of how the number
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(a) Number of transmissions
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(b) Relative error at stopping

Fig. 2. Number of transmissions and Relative error ‖x(K)−x̄‖/‖x(0)−x̄‖
with respect to τ for different node initializations. Each point on this graph
corresponds to the average the number of transmissions until stopping for
C = dmax log dmax and for values of τ ranging from 0.01 to 0.5. For each
curve, we use a normalized scale of the initial value.
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Fig. 3. Number of transmissions with respect to τ for different network sizes.
Each point on this graph corresponds to the average number of transmissions
with respect to a certain value of τ where C = dmax log dmax.
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Fig. 4. Relative error ‖x(K)− x̄‖/‖x(0)− x̄‖ vs Number of transmissions
required for different values of τ where C = dmax log dmax in a 200 nodes
network deployed according to a RGG topology. The randomized gossip
without GossipLSR is well illustrated when τ=0.
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Fig. 5. Number of iterations corresponding to different values of τ , where
C = dmax log dmax in a 200 nodes network deployed according to a RGG
topology and having a Spike initial condition. The randomized gossip without
GossipLSR is well illustrated when τ=0.

of transmissions is affected by different sized networks. It also
illustrates that bigger networks achieves smaller reduction of
the number of transmissions for the same silencing parameter
τ , or put differently, that larger networks require smaller τ to
achieve the same final error.

In Figure 4 we plot the performance of local silencing rule
for three different values of τ as a function of the number
of transmissions. The curves for each value of τ stop at the
point when all nodes are silent. Observe that taking τ=0 is
equivalent to the standard randomized gossip algorithm [4].
Note that the number of additional transmissions required to
reach the same level of error is not significantly greater than
that needed by randomized gossip, when τ > 0 is used.

Although GossipLSR can potentially reduce the total num-
ber of transmissions by stopping when a desired level of
accuracy is reached, it also may result in an increase in latency
as compared to randomized gossip. This is illustrated in



Figure 5 which shows relative error as a function of the number
of iterations, instead of the number of transmissions for
different values of τ . Again, note that randomized gossip [4] is
equivalent to taking τ = 0 in this algorithm. Increasing τ leads
to convergence after fewer transmissions, but generally takes
more iterations. This is natural, since as more nodes reach the
point where they are silent or nearly silent then fewer nodes
will initiate new gossip rounds. Consequently there are many
iterations with no decrease in relative error but also where
no transmissions are consumed. This may be an acceptable
tradeoff in many applications, especially since at this point,
nodes that are silent typically have already computed what
will be their final value when all gossiping has terminated.

Note that although the simulations above were for static
networks with reliable links, GossipLSR can be applied in
networks with unreliable links as well without modification.
Assuming that link-level acknowledgements are used, dropped
messages will increase the total number of transmissions, as
they will for any aggregation algorithm, but the final accuracy
will not be affected.

VI. CONCLUSION AND FUTURE WORK

The silencing rule proposed in this paper illustrates that
local rules can be used to determine when gossip iterations
will no longer be beneficial, without sacrificing theoretical
performance guarantees. By observing the evolution of their
local estimate, each node can determine when to stop initiating
new gossip iterations. However, the system must be flexible,
allowing nodes to restart gossiping if interesting new informa-
tion reaches their neighborhood in the network.

There are a number of natural and interesting extensions of
the proposed method which we are considering in ongoing
and future work. Clearly, it would be desirable to have
theoretical bounds for the number of iterations and latency
of GossipLSR. Although this is challenging, one approach
may be to study characteristics of the Markov chain on
state (xv(k), cv(k))v∈V . This work has focused on the asyn-
chronous randomized gossip algorithm of [4], but the same
general approach can be extended to other gossip algorithms,
including those of [1], [2], [7], [21], [23]. The extensions
involve accounting for the modified structure of the overlay
network in these algorithms (which nodes exchange informa-
tion) in the analysis to determine appropriate values of C and
τ . The extension to synchronous gossip algorithms is also
straightforward. Progress in these directions will be reported
in an extended version of this manuscript. As mentioned at
the end of Section V, unreliable links affect the total number
of transmissions but not the final accuracy. It is less clear how
to extend this approach to networks with time-varying con-
nectivity due to node mobility. Another interesting extension
would be to consider similar silencing rules for distributed
computation of other functions, or distributed optimization
algorithms such as those in [22]. The same general principle,
that nodes can go silent when their local value has not
changed much recently, should be applicable, but the analysis
to guarantee final errors may be more involved. Finally, we

note that applying a silencing rule such as GossipLSR when
the goal is to track a time-varying average (i.e., nodes are
continuously gathering new measurements) directly leads to a
rule for event-triggered gossiping, and we believe this is also
a promising direction for future work.

REFERENCES

[1] T. Aysal, E. Yildiz, A. Sarwate, and A. Scaglione. Broadcast gossip
algorithms for consensus. IEEE Trans. Signal Processing, 57(7):2748–
2761, Jul. 2009.

[2] F. Benezit, A. Dimakis, P. Thiran, and M. Vetterli. Gossip along the
way: Order-optimal consensus through randomized path averaging. In
Proc. Allerton Conf., Urbana-Champaign, IL, Sep. 2007.

[3] P. Berenbrink and T. Sauerwald. The weighted coupon collector’s
problem and applications. In Proc. COCOON, Niagra Falls, Jul. 2009.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip
algorithms. IEEE Trans. Inf. Theory, 52(6):2508–2530, Jun. 2006.

[5] F. Chung. Spectral Graph Theory. American Math. Society, 1997.
[6] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione. Gossip

algorithms for distributed signal processing. to appear, Proceedings of
the IEEE, Jan. 2011.

[7] A. Dimakis, A. Sarwate, and M. Wainwright. Geographic gossip:
Efficient averaging for sensor networks. IEEE Trans. Signal Processing,
56(3):1205–1216, Mar. 2008.

[8] P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity.
In Proc. IEEE Conf. on Decision and Control, Tampa, FL, Dec. 1998.

[9] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of
aggregate information. In Proc. Foundations of Computer Science,
Cambridge, MA, Oct. 2003.

[10] E. Kokiopoulou and P. Frossard. Polynomial filtering for fast con-
vergence in distributed consensus. IEEE Trans. Signal Processing,
57(1):342–354, Jan. 2009.

[11] L. Li, X. Li, A. Scaglione, and J. Manton. Decentralized subspace
tracking via gossiping. In Proc. IEEE Conf. on Distributed Computing
in Sensor Systems, Santa Barbara, CA, Jun. 2010.

[12] W. Li and H. Dai. Location-aided distributed averaging algorithms. In
Proc. Allerton Conf., Urbana-Champaign, IL, Sep. 2007.

[13] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
Univ. Press, 1995.

[14] B. Oreshkin, M. Coates, and M. Rabbat. Optimization and analysis
of distributed averaging with short node memory. IEEE Trans. Signal
Processing, 58(5):2850–2865, May 2010.

[15] M. Penrose. Random Geometric Graphs. Oxford University Press, 2003.
[16] M. Rabbat, J. Haupt, A. Singh, and R. Nowak. Decentralized compres-

sion and predistribution via randomized gossiping. In Proc. ACM/IEEE
IPSN, Nashville, TN, April 2006.

[17] M. Rabbat, R. Nowak, and J. Bucklew. Robust decentralized source
localization via averaging. In Proc. IEEE ICASSP, Philadelphia, PA,
March 2005.

[18] V. Saligrama, M. Alanyali, and O. Savas. Distributed detection in sensor
networks with packet loss and finite capacity links. IEEE Trans. Signal
Processing, 54(11):4118–4132, Nov. 2006.

[19] O. Savas, M. Alanyali, and V. Saligrama. Efficient in-network processing
through information coalescence. In Proc. DCOSS, San Francisco, Jun.
2006.

[20] S. Sundaram and C. Hadjicostis. Distributed consensus and linear
function calculation in networks: An observability perspective. In
Proc. IEEE/ACM Int. Symp. Information Proc. in Sensor Networks,
Cambridge, MA, USA, Apr. 2007.

[21] K. Tsianos and M. Rabbat. Fast decentralized averaging via multi-scale
gossip. In Proc. IEEE DCOSS, Santa Barbara, CA, Jun. 2010.

[22] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE
Trans. Automatic Control, AC-31(9):803–812, Sep. 1986.
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