
INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 4, DECEMBER 2008 1

Interactions Between Computational Verbs
Tao Yang

Abstract— Different types of interactions between computa-
tional verbs are studied in a general context. The interactions
can be categorized by their strengthes and directions as well as
the configurations of interactions. Two interaction types; namely,
coupling and parameter modulation are studied. The identical
synchronization and generalized synchronization between com-
putational verbs and their linguistic implications are investigated.
The merge and split of computational verbs are constructed as
two special forms of interactions between computational verbs.
Copyright c© 2008 Yang’s Scientific Research Institute, LLC. All
rights reserved.

Index Terms— Computational verb, synchronization, general
synchronization, dynamical system.

I. INTRODUCTION

AN adverb can function as a mathematical operator acting
upon the evolving function or the evolving system of a

computational verb[48]. This is the mostly studied computa-
tions acting upon computational verbs. However, as studied
long times ago by the author, there are many other kinds of
computations between computational verbs[23]. For example,
in [23] the author studied the computation between must and a
computational verb V. In this paper, the author will revisit the
computation between computational verbs in a more general
context; namely, the computation between computational verbs
will be studied as the interaction between computational verbs.

The recent motivation of studying the interaction between
computational verbs is the reading of a few Chinese linguistic
papers addressing the issues of the history and mechanism
of the transforming process of some Chinese verbs into
prepositions. There are some Chinese prepositions that had
been historically solely used as verbs, however, as time went
by, their roles as verbs become weaker and weaker until they
become prepositions. Chinese linguists found the following
mechanism of triggering the transform of verbs to prepositions.
When two Chinese verbs were used in the same sentence and
very much close to each other, some verbs were induced to
undergo this transforming procedure. This observation imme-
diately caught the author’s attention because it is similar to a
generalized synchronization between two verbs.

Recalling author’s previous study of the computation be-
tween computational verbs, adverbs and computational verbs
and the evolution of Chinese prepositions, the author realized

Manuscript received October 10, 2008; revised October 22, 2008.
Tao Yang, Department of Electronic Engineering, Xiamen

University, Xiamen 361005, P.R. China. Department of Cognitive
Economics, Department of Electrical Engineering and Computer
Sciences, Yang’s Scientific Research Institute, 1303 East University
Blvd., #20882, Tucson, Arizona 85719-0521, USA. Email:
taoyang@xmu.edu.cn,taoyang@yangsky.com,taoyang@yangsky.us.

Publisher Item Identifier S 1542-5908(08)10312-8/$20.00
Copyright c©2008 Yang’s Scientific Research Institute, LLC. All
rights reserved. The online version posted on October 28, 2008 at
http://www.YangSky.com/ijcc/ijcc64.htm

that there is a unified computational platform for all these
computations involving computational verbs. Since a compu-
tational verb is modeled by a dynamical system, any compu-
tation involving a computational verb is inevitably related to
manipulate dynamical systems. From mathematically point of
view, there are many ways to manipulate a dynamical system,
some of them are listed as follows.
• Manipulate the phase space of a dynamical system. We

can transform the phase space of a dynamical system
by using different mathematical operators, which usually
function as adverbs.

• Manipulate the time. Many temporal adverbs serve as the
mathematical operators for this purpose.

• Manipulate the configurations, parameters and structures
of the dynamical system. For example, we couple two
verbs into one by modifying the configuration of equilib-
rium points.

The main focus here is to manipulate a verb using another
verb; namely, to study the interaction between verbs.

The organization of this paper is as follows. In Section II,
the brief history of computational verb theory will be given.
In Section III, the mathematical representations of interactions
between computational verbs will be presented. In Section IV,
the identical synchronization between two computational verbs
are studied and its linguistic implications will be given. In
Section V, the reverse synchronization between two compu-
tational verbs are studied and its linguistic implication will
be addressed. In Section VI, the linear generalized synchro-
nization between two computational verbs will be studied. In
Section VII, the process of merging two computational verbs
into one computational verb will be presented. In Section VIII,
the process of splitting a computational verb into two or more
computational verbs will be addressed. In Section IX, some
concluding remarks will be included.

II. A BRIEF HISTORY OF COMPUTATIONAL VERB THEORY

As the first paradigm shift for solving engineering prob-
lems by using verbs, the computational verb theory[28] and
physical linguistics[31], [48], [22] have undergone a rapid
growth since the birth of computational verb in the De-
partment of Electrical Engineering and Computer Sciences,
University of California at Berkeley in 1997[13], [14]. The
paradigm of implementing verbs in machines was coined
as computational verb theory[28]. The building blocks of
computational theory are computational verbs[23], [17], [15],
[24], [29]. The relation between verbs and adverbs was math-
ematically defined in [16]. The logic operations between verb
statements were studied in [18]. The applications of verb
logic to verb reasoning were addressed in [19] and further
studied in [28]. A logic paradox was solved based on verb

2 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 4, DECEMBER 2008

logic[25]. The mathematical concept of set was generalized
into verb set in[21]. Similarly, for measurable attributes, the
number systems can be generalized into verb numbers[26].
The applications of computational verbs to predictions were
studied in [20]. In [30] fuzzy dynamic systems were used
to model a special kind of computational verb that evolves
in fuzzy spaces. The relation between computational verb
theory and traditional linguistics was studied in [28], [31]. The
theoretical basis of developing computational cognition from
a unified theory of fuzzy and computational verb theory is the
theory of the UNICOGSE that was studied in [31], [36]. The
issues of simulating cognition using computational verbs were
studied in [32]. In [57] the correlation between computational
verbs was studied. A method of implementing feelings in
machines was proposed based on grounded computational
verbs and computational nouns in [38]. In [45] a theory
of how to design stable computational verb controllers was
given. In [39] the rule-wise linear computational verb systems
and their applications to the design of stable computational
verb controllers and chaos in computational verb systems
were presented. In [43] the concept of computational verb
entropy was used to construct computational verb decision
tree for data-mining applications. In [42] the relation between
computational verbs and fuzzy sets was studied by using com-
putational verb collapses and computational verb extension
principles. In [44] the distances and similarities of saturated
computational verbs were defined as normalized measures of
the distances and similarities between computational verbs.
Based on saturated computational verbs, the verb distances
and similarities are related to each other with a simple relation.
The distances and similarities between verbs with different life
spans can be defined based on saturated computational verbs
as well. In [46] the methods of using computational verbs to
cluster trajectories and curves were presented. To cluster a
bank of trajectories into a few representative computational
verbs is to discover knowledge from database of time series.
We use cluster centers to represent complex waveforms at
symbolic levels. In [11] computational verb controllers were
used to control a chaotic circuit model known as Chua’s
circuit. Computational verb controllers were designed based
on verb control rules for different dynamics of the region-
wise linear model of the control plant. In [10] computational
verb controllers were used to synchronize discrete-time chaotic
systems known as Hénon maps. Different verb control rules
are designed for synchronizing different kinds of dynamics. In
[50], how can computational verb theory functions as the most
essential building block of cognitive engineering and cognitive
industries was addressed. Computational verb theory will play
a critical important role in personalizing services in the next
fifty years. In [47], [49] computational verb theory was used
to design an accurate flame-detecting systems based on CCTV
signal. In [53] the learning algorithms were presented for
learning computational verb rules from training data. In [51]
the structures and learning algorithms of computational verb
neural networks were presented. In [55] the ambiguities of the
states and dynamics of computational verbs were studied. In
[52] the history and milestones in the first ten years of the
studies of computational verb theory were given. In [3] a case

study of modeling adverbs as modifiers of computational verbs
was presented. In [12] computational verb rules were used to
improve the training processes of neural networks.

The theory of computational verb has been taught in some
university classrooms since 20051. The latest active applica-
tions of computational verb theory are listed as follows.

1) Computational Verb Controllers. The applications of
computational verbs to different kinds of control prob-
lems were studied on different occassions[27], [28].
For the advanced applications of computational verbs
to control problems, a few papers reporting the latest
advances had been published[34], [33], [45], [39], [58].
The design of computational verb controllers was also
presented in a textbook in 2005[1].

2) Computational Verb Image Processing and Image Un-
derstanding. The recent results of image processing by
using computational verbs can be found in[35]. The
applications of computational verbs to image under-
standing can be found in [37]. The authors of [2]
applied computational verb image processing to design
the vision systems of RoboCup small-size robots.

3) Stock Market Modeling and Prediction based on compu-
tational verbs. The product of Cognitive Stock Charts[6]
was based on the advanced modeling and computing
reported in [40]. Computational verb theory was used
to study the trends of stock markets known as Russell
reconstruction patterns [41].

Computational verb theory has been successfully applied
to many industrial and commercial products. Some of these
products are listed as follows.

1) Visual Card Counters. The YangSky-MAGIC card
counter[8], developed by Yang’s Scientific Research
Institute and Wuxi Xingcard Technology Co. Ltd., was
the first visual card counter to use computational verb
image processing technology to achieve high accuracy of
card and paper board counting based on cheap webcams.

2) CCTV Automatic Driver Qualify Test System. The
DriveQfy CCTV automatic driver qualify test system[9]
was the first vehicle trajectory reconstruction and stop
time measuring system using computational verb image
processing technology.

3) Visual Flame Detecting System. The FireEye visual
flame detecting system[4] was the first CCTV or we-
bcam based flame detecting system, which works under
color and black & white conditions, for surveillance and
security monitoring system.

4) Smart Pornographic Image and Video Detection Sys-
tems. The PornSeer[7] pornographic image and video
detection systems are the first cognitive feature based
smart porno detection and removal software.

1Dr. G. Chen, EE 64152 - Introduction to Fuzzy Informatics and Intelligent
Systems, Department of Electronic Engineering, City University of Hong
Kong. Dr. Mahir Sabra, EELE 6306: Intelligent Control, Electrical and
Computer Engineering Department, The Islamic University of Gaza. Dr.
D. H. Guo, Artificial Intelligence, Department of Electronic Engineering,
Xiamen University. Prof. T. Yang, Computational Methodologies in Intelligent
Systems, Department of Electronic Engineering, Xiamen University.

YANG, INTERACTIONS BETWEEN COMPUTATIONAL VERBS 3

5) Webcam Barcode Scanner. The BarSeer[5] webcam bar-
code scanner took advantage of the computational verb
image processing to make the scan of barcode by using
cheap webcam possible.

6) Cognitive Stock Charts. By applying computational
verbs to the modeling of trends and cognitive behaviors
of stock trading activities, cognitive stock charts can
provide the traders with the “feelings” of stock markets
by using simple and intuitive indexes.

7) TrafGo ITS SDK. Computational verbs were applied to
model vehicle trajectories and dynamics of optical field
and many other aspects of dynamics in complex en-
vironments for applications in intelligent transportation
systems (ITS).

III. INTERACTIONS BETWEEN TWO COMPUTATIONAL
VERBS

Assume that the evolving systems of two computational
verbs V1 and V2, are given by the following ordinary dif-
ferential equations(ODEs), respectively.

E1 : ẋ1 = f1(x1),
E2 : ẋ2 = f2(x2) (1)

where x1 ∈ Rm and x2 ∈ Rn are states of the two
computational verbs, respectively. In general, f1(·) and f2(·)
are two nonlinear functions. Observe that both ODEs are
independent because no interaction is set up between two
verbs. The evolving functions of V1 and V2 are outputs of
their evolving systems.

Since the interactions between two computational verbs are
rooted from the input-output structure of computational verbs,
it is more convenient to study the interactions between com-
putational verbs based on their evolving systems rather than
their evolving functions. In many cases, since the interactions
may result in the changes of parameters or even structures of
computational verbs, to study the interaction based on evolving
systems is the only feasible way.

The interactions between two computational verbs might
have the following types.

1) Weak interaction. The interaction is weak if and only
if the qualitative properties of all coupled verbs keep
unchanged; namely, the interaction doesn’t change the
qualitative behaviors of both verbs. Since qualitative
behaviors of a computational verb are mathematically
modeled in the continuum of the phase-space config-
urations of the computational verb, to keep the same
qualitative behavior of the computational verb is to
keep its phase-space configurations within a given range.
Topological equivalence is one necessary condition of
keeping qualitative behaviors the same. Furthermore, to
keep qualitative behaviors the same is to make them
“feel” the same or similar. The measurement of “feeling
the same” is dependent on the mathematical model
of computational verb feel, which is one of the most
difficult verbs to model.

2) Strong interaction. The interaction is strong if and only if
the qualitative properties of at least one verb is changed;

namely, the interaction changes the following aspects of
at least one verb.
• The number of equilibrium points of the computa-

tional verb.
• The types of equilibrium points of the computational

verb. For example, to change a node into a saddle.
• The topological equivalence.
• The invariant sets. For example, to change a node

into a limit cycle; to change a limit cycle into a
strange attractor.

3) Mutual interaction. The interaction between two verbs
are bi-directional. Since the interaction between two
verbs can only influence both verbs from their input
ports, which change either the states and/or the param-
eters of verbs, a mutual interaction doesn’t distinguish
the cause-effect of the interaction.

4) One-directional interaction. The interaction is directed
from the master verb to the slave verb and the master
verb is not affected by the slave verb. The states of the
master verb can change the states and/or the parameters
of the slave verb. In this configuration, the master verb
is the cause and the slave verb is the effect of the
interaction.

Since the above-mentioned types of interactions between com-
putational verbs are categorized from coupling strengthes and
coupling directions, there are many other categories based on
the combinations of coupling strengthes and directions. For
example, an interaction can be weak and mutual or strong and
one-directional.

A. Couplings Between Two Computational Verbs

When the interaction between two computational verbs
doesn’t change the structure and parameters of evolving sys-
tems, we usually call this kind of interaction as coupling. In
engineering applications, coupling is usually injected from the
input ports of an engineering system.

Example 1 (Two Coupled Pendulums): As shown in Fig. 1,
two pendulums mutually coupled through a beam. The stiff-
ness of the beam and the pole determines the strength of the
the coupling. The coupling from one pendulum to the other
is though the motions of the pole and the beam. In this case,
the interaction between two dynamical systems didn’t change
either the structures or parameters of two pendulums. The
couplings are fed from input ports.

beam

Concrete base

pole

Fig. 1. Mutual coupling between two pendulums.

4 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 4, DECEMBER 2008

The interaction between the two computational verbs in
Eq. (1) can be modeled as the following mutual coupled
dynamical system

E1 : ẋ1 = f1(x1) + g1(x1, x2),
E2 : ẋ2 = f2(x2) + g2(x1, x2) (2)

where g1(·, ·) and g2(·, ·) are two coupling functions. When
two verbs coupled to each other, the coupling can have
different effects on both verbs. Since in a one-directional
coupling scheme, there is a master and a slave verb, we
explicitly distinguish the difference between the master verb
and the slave verb as follow.

E1 : ẋ1 = f1(x1),
E2 : ẋ2 = f2(x2) + g(x1, x2) (3)

where E1 and E2 are master and slave verbs, respectively.
g(x1,x2) is the one-directional coupling function from the
master verb to the slave verb. Observe that in this case, E1 is
independent while E2 is driven by E1.

B. Coupling with Differences of States

The coupling functions in Eqs. (2) and (3) can be any
functions. When x1 and x2 are vectors of the same dimension,
in many cases, we are more interested in a class of coupling
functions, of which the variables are the difference between
the states of computational verbs. It will be easier to study
the differences between two computational verbs when we
consider how near two computational verbs approach to each
other after coupling to each other. In this case, the mutual
coupling between two verbs can be explicitly represented as

E1 : ẋ1 = f1(x1) + g1(x1 − x2),
E2 : ẋ2 = f2(x2) + g2(x1 − x2) (4)

and the one-directional case is given by

E1 : ẋ1 = f1(x1),
E2 : ẋ2 = f2(x2) + g(x1 − x2). (5)

C. Parameter Modulations Between Two Computational Verbs

When the interaction between two computational verbs
changes the parameters of at least one computational verb, we
call this kind of interaction as parameter modulation. Since
the parameters must be adjustable in a parameter modulation,
we need to explicitly represent the parameter vectors in the
evolving systems of computational verbs as follows.

E1 : ẋ1 = f1(p1, x1),
ṗ1 = g1(x1, x2) + h1(p1, p2),

E2 : ẋ2 = f2(p2, x2),
ṗ2 = g2(x1, x2) + h2(p1, p2) (6)

where p1 ∈ Rp and p2 ∈ Rq are two parameter vectors. In
this case, the couplings are fed into the evolving systems by
constantly changing the values of their parameters. Since the
changes of their parameters can result in changes of structures
of computational verbs, the parameter modulation can result

in qualitative changes of dynamics. If the interaction is one-
directional, then Eq. (6) becomes

E1 : ẋ1 = f1(p1, x1),
E2 : ẋ2 = f2(p2, x2), ṗ2 = g(x1, x2) + h(p1, p2).

(7)

If the parameter modulation is based on the differences
between the states of computational verbs, then for mutual
interaction we have

E1 : ẋ1 = f1(p1, x1), ṗ1 = g1(x1 − x2) + h1(p1 − p2),
E2 : ẋ2 = f2(p2, x2), ṗ2 = g2(x1 − x2) + h2(p1 − p2),

(8)

and for one-directional interaction we have

E1 : ẋ1 = f1(p1, x1),
E2 : ẋ2 = f2(p2, x2), ṗ2 = g(x1 − x2) + h(p1 − p2).

(9)

The effects of interactions on the behaviors of computational
verbs have a very wide spectrum, the author will focus on the
most commonly known behaviors; namely, synchronization.
Synchronization between two verbs is easier to study in the
phase spaces of verbs. It is a process, in which two initially
unrelated verbs become related to each other. When the
uncorrelated initial states of verbs die out, we say the synchro-
nization is achieved, and both verbs become closely correlated.
Different correlation between verbs result in different types of
synchronization.

IV. IDENTICAL SYNCHRONIZATION: SYNONYMS

If two verbs are synonyms, then their evolving systems
are either identical or with the same structure. Two verb
synonyms are at least topologically equivalent or topologically
similar. Here we only study the cases when both of them are
topologically equivalent. If E1 and E2 are identical, then in the
case of coupling, Eqs. (4) and (5) become

E1 : ẋ1 = f(x1) + g1(x1 − x2),
E2 : ẋ2 = f(x2) + g2(x1 − x2) (10)

and

E1 : ẋ1 = f(x1),
E2 : ẋ2 = f(x2) + g(x1 − x2), (11)

respectively. In the case of parameter modulation, Eqs. (8) and
(9) become

E1 : ẋ1 = f(p1, x1), ṗ1 = g1(x1 − x2) + h1(p1),
E2 : ẋ2 = f(p2, x2), ṗ2 = g2(x1 − x2) + h2(p2)

(12)

and

E1 : ẋ1 = f(p1,x1),
E2 : ẋ2 = f(p2,x2), ṗ2 = g(x1 − x2) + h(p1 − p2),

(13)

respectively.

YANG, INTERACTIONS BETWEEN COMPUTATIONAL VERBS 5

A. Analysis

Identical synchronization between two computational verbs
can be achieved for different types of interactions. When
an identical synchronization is achieved, both computational
verbs act as one computational verb. Since two identically
synchronized computational verbs have the same states, it
is easier to study the dynamics of synchronization by using
the difference in the states of both computational verbs. Let
us define the error vector as e(t) = x1(t) − x2(t), when
the identical synchronization is achieved, we have e(t) =
0. Therefore, the stability of the identical synchronization
between two computational verb is equivalent to the stability
of the origin of the error system.

1) Coupling: For mutual coupling in Eq. (10), the error
system is given by

ė = f(x1)− f(x2) + g1(e)− g2(e). (14)

For one-direction coupling in Eq. (11), the error system is
given by

ė = f(x1)− f(x2)− g(e). (15)

Two coupled computational verbs can be identically syn-
chronized to each other if and only if the origins of error
systems (14) and (15) are asymptotically stable.

Example 2: The Chinese verb lai() has a meaning of
come, if we set the origin of a reference frame as the
destination of lai(), then we can assume its evolving system
as

ẋ = f(x) =



−1 0 0
0 −1 0
0 0 −1







x1

x2

x3


 , (16)

from which we have

f(x1)− f(x2) =



−1 0 0
0 −1 0
0 0 −1


 e. (17)

In Eqs. (14) and (15), let us assume

g1(e)− g2(e) = −g(e) = 0, (18)

then the error systems for mutual coupling and one-directional
coupling are the same and is given by

ė =



−1 0 0
0 −1 0
0 0 −1


 e, (19)

of which the origin is asymptotically stable. When two lai()
couples to each other, they become identically synchronized
no matter what initial difference between their states was. Be-
cause of this identical synchronization, in Chinese by repeating
lai(), we can get a new verb lailai(), which has the same
trajectories as that of lai() when the trajectories are near
enough to the destination of lai(). However, since there are
two dynamical systems in verb lailai(), it can have more
than two sets of initial conditions; namely, it can represent the
meaning of “coming from different locations at the same time”
while lai() can only represent the meaning of “coming from

one location”. Therefore, lailai() can represent a group of
people lai() at the same time.

Example 3: The Chinese verb wang() has a meaning of
go away, if we set the origin of a reference frame as the
starting point of wang(), then we can assume its evolving
system as

ẋ = f(x) =




1 0 0
0 1 0
0 0 1







x1

x2

x3


 , (20)

from which we have

f(x1)− f(x2) =




1 0 0
0 1 0
0 0 1


 e. (21)

In Eqs. (14) and (15), let us assume

g1(e)− g2(e) = −g(e) =



−2 0 0
0 −2 0
0 0 −2


 e, (22)

then the error systems for mutual coupling and one-directional
coupling are the same and is given by

ė =



−1 0 0
0 −1 0
0 0 −1


 e, (23)

of which the origin is asymptotically stable. When two
wang() couples to each other, they become identically syn-
chronized no matter the distance between their initial locations.
Because of this identical synchronization, in Chinese by re-
peating wang(), we construct a new verb wangwang(),
which has the same trajectories as that of wang() when
the trajectories leave the origin far enough and the initial
difference between them dies out. However, since there are
two dynamical systems in verb wangwang(), it can
have more than two sets of initial conditions; namely, it can
represent the meaning of “go from different locations at the
same time” while wang() can only represent the meaning
of “go from one location”. Therefore, wangwang() can
represent a group of people wang() at the same time.

2) Parameter Modulation: To achieve identical synchro-
nization, the parameter vectors of both computational verbs
approach to each other while the synchronization errors ap-
proach zero. It follows from Eqs. (12) that the error systems
for states and parameters are given by

ė = f(p1,x1)− f(p2, x2),
ėp = g1(e)− g2(e) + h1(p1)− h2(p2) (24)

where ep = p1 − p2 is the error vector of parameters.
It follows from Eqs. (13) that the error systems for states

and parameters are given by

ė = f(p1, x1)− f(p2, x2),
ėp = −g(e)− h(ep). (25)

Both computational verbs are identically synchronized if
and only if error systems Eqs. (24) and (25) are asymptotically
stable at the origin of ẽ , (e> e>p)>.

6 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 4, DECEMBER 2008

Example 4: We add a parameter vector into Eq. (16) as
follow

f(x) =



−1 0 0
0 −1 0
0 0 −1







x1

x2

x3


−




p1

p2

p3


 , (26)

f(x1)− f(x2) =



−1 0 0
0 −1 0
0 0 −1


 e

+



−1 0 0
0 −1 0
0 0 −1


 ep. (27)

In Eqs. (24) and (25), let us assume

g1(e)− g2(e) = −g(e) = 0,

h1(p1)− h2(p2) = −h(ep) =



−1 0 0
0 −1 0
0 0 −1


 ep,

(28)

then the error systems for mutual coupling and one-directional
coupling are the same and is given by

˙̃e =




−1 0 0 −1 0 0
0 −1 0 0 −1 0
0 0 −1 0 0 −1
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




ẽ, (29)

of which the origin is asymptotically stable.

B. Linguistic Implications

When two computational verbs achieve identical synchro-
nization, both computational verbs can be viewed to have the
same meaning while the difference in their initial conditions
is the only attribute to distinguish both computational verbs.
Two identically synchronized computational verbs form a new
computational verb in Chinese by enclosing two identical
dynamical systems into one. The identically synchronized
computational verbs provide us with a pair of identical trajec-
tories to make the dynamics more collective and to make the
dynamics to have more variations at the same time. By doing
so, we can represent the collection of actions, which are the
same type and happen at the same time period, by repeating
the verb. For example, when we say lai(), we mean only
one person come here and when we repeat it as lailai(),
we mean many people come here.

Since the identical synchronization between two computa-
tional verbs makes two computational verbs to function as one,
to repeat two verbs can not intensify the dynamics. Therefore,
the purpose of repeating two verbs in the identical synchro-
nization is to show the diversity of the initial conditions of
verbs; namely, to show the collective actions of the same verb.
From this point of view, we can conjugate that to repeat two
synchronized verbs in identical synchronization is to show that
• many people take the same action simultaneously;
• the same action takes place many times;

• different agents go thought the same process at the same
time;

• the same process is repeated many times.

V. REVERSE SYNCHRONIZATION: ANTONYMS

When a verb synchronized with its antonym, the process is
called reverse synchronization because the identical synchro-
nization can only be achieved when the time in the antonym
reversed. Let’s assume that the verb and its antonym as

E1 : ẋ1(t) = f1(x1(t)),
E2 : ẋ2(t) = f2(x2(t)). (30)

Let us reverse the time in E2 and form a new verb E2. Since
E2 is an antonym of E1, E2 is an synonym of E1. E2 is given
by

E2 : ẋ2(−t) = −f2(x2(−t)). (31)

Therefore, it follows from the results in Sec. IV that f1(·) =
−f2(·) can guarantee the identical synchronization between
E1 and E2 by applying different interactions between them.

Example 5: Let the evolving system of lai() be the same
as that in Example 2, and the evolving system of wang()
be the same as that in Example 3, then the identical synchro-
nization between lai() and reverse of wang() form a new
verb laiwang().

The linguistic implications of reverse synchronization be-
tween computational verbs are listed as follows.
• To display two reversible actions at the same time.

In Chinese, the verb laiwang() has the sense of
embedding the actions of “come and go” simultane-
ously. However, since laiwang() contains time of
two reversed directions, the only possible way to make
them synchronized is to eliminate the difference between
directions of time. Or, to apply an absolute value to
time in both verbs. This might result in reducing the
importance of the role that time plays in both verbs when
they reversely synchronized into a new verb. In other
words, the dynamics of the individual verbs might be
sacrificed when they are reversely synchronized.

• To make simple process complex. By reversely synchro-
nize two verbs, the boundary between both verbs is
blurred and the trajectories of both verbs mix to each
other and to make it more complex, the time directions
of these trajectories become blurred as well. This is
because it is impossible to distinguish two synchronized
verbs. Therefore, even if the process represented by
each individual verb is clear and simple, the process
represented by the reversely synchronized verb pair can
be much more complex than individual verbs.

• To make representations of dynamics less consistent.
Since a reversely synchronized verb pair can start from
the same initial condition and go to two different direc-
tions along time, this introduces inconsistency in the new
verb.

• To make representations of dynamics uncertain. Since
each trajectory in the reversely synchronized verb pair
can go backward and forward at the same time, extra

YANG, INTERACTIONS BETWEEN COMPUTATIONAL VERBS 7

uncertainties are brought in even if the individual verbs
are simple and crisp.

Therefore, when a verb and its antonym are reversely synchro-
nized, different kinds of linguistic phenomena can arise from
the reverse synchronization and therefore can result in a rich
pool of linguistic phenomena. The examples of this kind of
richness in Chinese will be reported in other publications.

VI. LINEAR GENERALIZED SYNCHRONIZATION

When two verbs interact to each other in such a way
that the states of one verb related to those of the other
with a linear transformation, then both verbs are in linear
generalized synchronization(GS). Linear GS is the simplest
form of GS between two dynamical systems. The simplest
linear generalized synchronization is to scale down an attractor
by a scalar factor and keep both verb synchronized. Let us use
an example to show how this can be achieved.

Example 6: This example was first reported in [54]. The
evolving systems of two computational verbs are modeled as
the following two Lorenz systems.

E1 :





ẋ = −σx + σy,
ẏ = rx− y − xz,
ż = xy − bz,

E2 :





˙̃x = −σx̃ + σỹ,
˙̃y = λ(r − µ)x + µx̃− ỹ − λxz,
˙̃z = λxy − bz̃,

(32)

where σ, r, b are constant parameters. Observe that there is
a one-directional coupling from E1 to E2. Based on the con-
ditions provided in [54], a scaled generalized synchronization
can be achieved between E1 and E2

The simulation results with λ = 0.5 are shown in Fig. 2.
Figure 2(a) shows the attractor of E1. Figure 2(b) shows the
attractor of E2. Observe that the attractor of E2 is a down-
scaled version of that of E1 by a scaling factor λ = 0.5. Figures
2(c), (d) and (e) show the relations of x versus x̃, y versus ỹ
and z versus z̃, respectively.

When E1 controls E2 into a down-scaled replication of
itself, the interaction between E1 and E2 results in the loss
of dynamical range of E2; namely, E1 changes E2 from an
“active” verb into a “less active” verb. If we decrease the scale
factor λ to a value such that the range of the attractor of E2

becomes so small that is comparable to the lowest resolution
of human perceptions, then E2 loses its property of verb. In
Chinese, this interaction can change E2 into a preposition.

A more general linear GS between two verbs results in
linear distortions in the attractors of the verbs shown in the
following example[56], [54].

Example 7: In this example, the evolving systems of two
computational verbs are modeled as the following two Lorenz
systems.

E1 :





ẋ = −σx + σy,
ẏ = rx− y − xz,
ż = xy − bz,

E2 :





˙̃x = −σx̃ + σỹ + σx(r − µ− z),
˙̃y = µx̃− ỹ − x(r − µ− z),
˙̃z = −bz̃ − bxy.

(33)

If the linear GS between E1 and E2 is achieved, the following
relations should be satisfied

x̃ = −σx + σy
∆= f1(x, y),

ỹ = µx− y
∆= f2(x, y),

z̃ = −bz. (34)

The simulation results are shown in Fig. 3. Figure 3(a)
shows the attractor of E2. Observe that this attractor is com-
pletely different to the famous “butterfly” attractor as shown
in Fig. 2(a) though the former is only a linearly transformed
version of the latter. Figures 3(b) and (c) show the plots of
x̃ versus f1(x, y) and ỹ versus f2(x, y), respectively. Observe
that the linear verb similarity transformation is true. Figure
3(d) shows the plot of z̃ versus z. We show the x̃ versus x
plot and ỹ versus y plot in Figs. 3(e) and 3(f), respectively.

Remark 1: When a master verb drives a slave verb into
a generalized synchronization, the following scenarios can
happen.
• The master verb suppresses the ranges of the slave verb

into a smaller region comparing that for a uncoupled
slave verb. In the cases of different scaling factors, which
change the ranges of the slave verb, the slave verb might
lose its dynamical activities to different degree. In many
cases, the slave verb might function less and less like a
verb and finally result in a preposition. This phenomena
were widely found in Chinese.

• The master verb can also dramatically enhance the dy-
namical activities of the slave verb. In this case, the
master verb functions more like an adverb rather than a
verb. The result can be most likely to change the master
verb into an adverb. Or, on the other hand, if both master
verb and the slave verb are synonyms before the GS
happens, it is also very possible that the GS will turn the
range of the slave verb too big such that the master verb
become less significant, in this sense, the master verb can
be less “active” and might even become a preposition.

• Both master verb and slave verb can keep their ranges
of attractor comparable even after the GS is achieved.
In this case, both verbs are most likely to keep their
own properties and the synchronized verbs become a
compound verb as a whole to have a new level of
meaning.

VII. MERGE MORE THAN ONE COMPUTATIONAL VERB
INTO ONE

The interaction between two or more computational verbs
can merge these computational verbs into one. To merge two
computational verbs into one is to mix up the phase spaces of
two dynamical systems, there are many ways to do so. Some
scenarios, which constitute only a portion of all possible cases,
are listed as follows.
• Two computational verbs have the same kind of phase

space, the merging result keeps all equilibrium points of
both computational verbs.

• Two computational verbs have the same kind of phase
space, the merging result eliminates some equilibrium
points of one or both computational verbs.

8 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 4, DECEMBER 2008

0

50

100

−50

0

50
−40

−20

0

20

40

zy

x

0

50

100

−50

0

50
−40

−20

0

20

40

~z~y

~
x

−30 −20 −10 0 10 20 30
−15

−10

−5

0

5

10

15

x

~
x

(a) (b) (c)

−40 −20 0 20 40
−20

−15

−10

−5

0

5

10

15

20

y

~
y

10 20 30 40 50 60 70 80
5

10

15

20

25

30

35

40

z

~
z

(d) (e)

Fig. 2. Scaled GS of two Lorenz systems for modeling verb similarity. (a) The attractor of E1. (b) The attractor of E2. (c) x versus x̃ plot. (d) y versus ỹ
plot. (e) z versus z̃ plot.

• Two computational verbs have the same kind of phase
space, the merging result gives birth to new equilibrium
points that are not previously existing in both computa-
tional verbs.

• Two computational verbs have different types of phase
spaces, the merging result constructs a new phase space,
which contains the phase spaces of both verbs as its
subspaces. The number of equilibrium points of the
merging result can be any cases.

• Two computational verbs have different types of phase
spaces, the merging result constructs a new phase space,
which contains partially the phase space of one and the
entire phase space of the other verb as its subspaces, or
partially the phase spaces of both verbs as its subspaces.

A. Keep All Equilibrium Points

Assume that the two computational verbs in Eq. (1) have
the same phase space and are coupled in such a way that all
their equilibrium points are kept in the new compound verb
V, of which the evolving function is given by

E : ẋ = g1(f1(x))g2(f2(x)) (35)

where g1 and g2 are smooth in the vicinity of equilibrium
points and satisfy

g1(0) = 0, g2(0) = 0. (36)

It is easy to see that all solution of f1(x) = 0 and f2(x) = 0
are the equilibrium points of evolving system (35). However,
the stability of each equilibrium point may change in the
compound computational verb. Observe that functions g1

and g2 may introduce extra nonlinearity into the compound
computational verb and result in more complex behaviors that
can’t observe from the individual computational verbs. The
linguistic implication of this phenomenon is that by merging
two simple verbs we can construct a more “complex verb”.
For example, we can merging two simple verbs into a chaotic
verb.

Example 8: Let the two computational verbs be

E1 : ẋ =




x1 − 1 0 0
0 x2 − 1 0
0 0 x3 − 1


 ,

E2 : ẋ =




x1 + 1 0 0
0 x2 + 1 0
0 0 x3 + 1


 , (37)

YANG, INTERACTIONS BETWEEN COMPUTATIONAL VERBS 9

−400
−200

0
200

400

−20

0

20

40
−300

−250

−200

−150

−100

−50

0

~x~y

~
z

−400 −300 −200 −100 0 100 200 300
−400

−300

−200

−100

0

100

200

300

~x

f1
(x

,y
)

−20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

25

~y

f2
(x

,y
)

(a) (b) (c)

−300 −250 −200 −150 −100 −50 0
10

20

30

40

50

60

70

80

~z

z

−400 −300 −200 −100 0 100 200 300
−30

−20

−10

0

10

20

30

~x

x

−20 −10 0 10 20 30
−40

−30

−20

−10

0

10

20

30

40

~y

y

(d) (e) (f)

Fig. 3. Linear generalized synchronization of two Lorenz systems for modeling verb similarity with linear transformation. (a) The attractor of E2. (b) x̃
versus f1(x, y) plot. (c) ỹ versus f2(x, y) plot. (d) z̃ versus z plot. (e) x̃ versus x plot. (f) ỹ versus y plot.

then the following merged computational verbs keep the all
equilibrium points of E1 and E2

E : ẋ =




x1 − 1 0 0
0 x2 − 1 0
0 0 x3 − 1







x1 + 1 0 0
0 x2 + 1 0
0 0 x3 + 1


 .

E : ẋ =




(x1 − 1)2 0 0
0 tan−1(x2 − 1) 0
0 0 tan(x3 − 1)







x1 + 1 0 0
0 (x2 + 1)3 0
0 0 sin(x3 + 1)


 .

(38)

B. Eliminate Some Equilibrium Points
In this case, the merge of two computational verbs partially

keeps the equilibrium points of both verbs. One way of
implementing such scenario is to choose g1 and g2 in Eq. (35)
such that at least one of them doesn’t satisfy the condition
Eq. (36).

Example 9: Let the two computational verbs be

E1 : ẋ =




(x1 − 1)3 0 0
0 x2 0
0 0 x3


 ,

E2 : ẋ =




x1 + 1 0 0
0 x2 + 1 0
0 0 x3 + 1


 . (39)

Choose g1 such that

E : ẋ =




0 0 0
0 1 0
0 0 1







(x1 − 1)3 0 0
0 x2 0
0 0 x3







x1 + 1 0 0
0 x2 + 1 0
0 0 x3 + 1




=




0 0 0
0 x2 0
0 0 x3







x1 + 1 0 0
0 x2 + 1 0
0 0 x3 + 1


 .

(40)

Observe that the equilibrium points at (1 0 0)> for the first
verb were eliminated.

10 INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 6, NO. 4, DECEMBER 2008

The other scenarios can be constructed based on the similar
ways. More studies of merging verbs in Chinese will be
presented in further papers.

VIII. SPLIT A COMPUTATIONAL VERB INTO TWO OR
MORE

The interaction between two computational verbs can also
result in the split of one computational verb into two or more
computational verbs in many ways, of which a partial list is
given as follows.

• Under the influence of the interaction between two verbs,
the equilibrium points of one verb are regrouped into two
or more groups, of which each becomes a new verb.

• Under the influence of the interaction between two verbs,
the equilibrium points of two verbs are regrouped into
three or more groups, of which each becomes a new verb.

Also, as a reverse process of merging two verbs, the split
of a verb into two or more can also happen without explicit
interaction between verbs. However, since in the evolution of
any natural language, it is impossible to change the property
of a verb in a very short time, we expect to see the interaction
between the two sub-verbs. And this kind of interaction be-
tween sub-verbs are more likely to be repelling than attractive
such that the sub-verbs evolving into independent verbs along
the evolution of natural languages.

One example of splitting verb is to reconstruct the following
two verbs from the verb in Eq. (35)

E1 : ẋ = f1(x),
E2 : ẋ = f2(x). (41)

Therefore, the problem of splitting a verb into two is to split
a dynamical system into two. Since a dynamical system can
be split into different combinations of sub-dynamical systems,
one might wonder what kind of way of splitting a verb is
the right way. To find the right way, we must consider the
meaning of the sub-verbs. For example, if one verb was split
into a node verb and a focus verb, then we must regroup the
equilibrium points of the verb into a set of nodes and a set of
focuses. Since each scenario is context-dependent, the study
of split of verb will be most likely case by case.

IX. CONCLUDING REMARKS

The interaction between computational verbs reveals a very
wide spectrum of phenomena, amount which the synchro-
nization between computational verbs were studied in details
in this paper. The purpose of this paper is to provide a
platform, which is as universal as possible, for modeling
different types of interactions between computational verbs.
The future work will take advantage of the predicting ability
provided by the mathematical models proposed in this paper
to inspect different linguistic materials in a much more crisp
and mathematical way. For example, the evolution of Chinese
propositions will be studied based on the results presented
here.

REFERENCES

[1] Guanrong Chen and Trung Tat Pham. Introduction to Fuzzy Systems.
Chapman & Hall/CRC, November 2005. ISBN:1-58488-531-9.

[2] Wanmi Chen, Yanqin Wei, Minrui Fei, and Huosheng Hu. Applications
of computational verbs to image processing of RoboCup small-size
robots. In Intelligent Control and Automation, volume 344/2006 of
Lecture Notes in Control and Information Sciences, pages 494–499.
Springer, Berlin / Heidelberg, 2006.

[3] Yi Guo. A study of adverbs as modifiers of computational verbs. Inter-
national Journal of Computational Cognition, 6(1):31–35, March 2008
[available online at http : //www.YangSky.com/ijcc/ijcc61.htm,
http : //www.YangSky.us/ijcc/ijcc61.htm].

[4] Yang’s Scientific Research Institute LLC. FireEye Visual Flame
Detecting Systems. http://www.yangsky.us/products/flamesky/index.htm,
http://www.yangsky.com/products/flamesky/index.htm, 2005.

[5] Yang’s Scientific Research Institute LLC. BarSeer Webcam
Barcode Scanner. http://www.yangsky.us/demos/barseer/barseer.htm,
http://www.yangsky.com/demos/barseer/barseer.htm, 2006.

[6] Yang’s Scientific Research Institute LLC. Cognitive
Stock Charts. http://www.yangsky.us/products/stock/,
http://www.yangsky.com/products/stock/, 2006.

[7] Yang’s Scientific Research Institute LLC. PornSeer
Pornographic Image and Video Detection Systems.
http://www.yangsky.us/products/dshowseer/porndetection/PornSeePro.htm,
http://www.yangsky.com/products/dshowseer/porndetection/PornSeePro.htm,
2006.

[8] Yang’s Scientific Research Institute LLC. and Wuxi
Xingcard Technology Ltd. YangSky-MAGIC Visual Card
Counters. http://www.yangsky.us/products/cardsky/cardsky.htm,
http://www.yangsky.com/products/cardsky/cardsky.htm, 2004.

[9] Yang’s Scientific Research Institute LLC. and Chinese Traf-
fic Management Research Institute of the Ministry of Public
Security(TMRI-China). DriveQfy Automatic CCTV Driver Qualify
Testing Systems. http://www.yangsky.us/products/driveqfy/driveqfy.htm,
http://www.yangsky.com/products/driveqfy/driveqfy.htm, 2005.

[10] R. Tonelli and T. Yang. Synchronizing Hénon maps using computational
verb controllers. Phys. Rev. E., 2007. submitted.

[11] R. Tonelli and T. Yang. Controlling Chua’s circuits using computational
verb controllers. International Journal of Robust and Nonlinear Control,
18(17):1622–1636, Nov. 25 2008.

[12] H.-B. Wang and T. Yang. Training neural networks
using computational verb rules. International Journal of
Computational Cognition, 6(2):17–32, June 2008 [available
online at http : //www.YangSky.us/ijcc/ijcc62.htm,
http : //www.YangSky.com/ijcc/ijcc62.htm].

[13] T. Yang. Verbal paradigms—Part I: Modeling with verbs. Technical
Report Memorandum No. UCB/ERL M97/64, Electronics Research
Laboratory, College of Engineering, University of California, Berkeley,
CA 94720, 9 Sept. 1997. page 1-15.

[14] T. Yang. Verbal paradigms—Part II: Computing with verbs. Technical
Report Memorandum No. UCB/ERL M97/66, Electronics Research
Laboratory, College of Engineering, University of California, Berkeley,
CA 94720, 18 Sept. 1997. page 1-27.

[15] T. Yang. Computational verb systems: Computing with verbs and
applications. International Journal of General Systems, 28(1):1–36,
1999.

[16] T. Yang. Computational verb systems: Adverbs and adverbials as
modifiers of verbs. Information Sciences, 121(1-2):39–60, Dec. 1999.

[17] T. Yang. Computational verb systems: Modeling with verbs and
applications. Information Sciences, 117(3-4):147–175, Aug. 1999.

[18] T. Yang. Computational verb systems: Verb logic. International Journal
of Intelligent Systems, 14(11):1071–1087, Nov. 1999.

[19] T. Yang. Computational verb systems: A new paradigm for artificial
intelligence. Information Sciences—An International Journal, 124(1-
4):103–123, 2000.

[20] T. Yang. Computational verb systems: Verb predictions and their
applications. International Journal of Intelligent Systems, 15(11):1087–
1102, Nov. 2000.

[21] T. Yang. Computational verb systems: Verb sets. International Journal
of General Systems, 20(6):941–964, 2000.

[22] T. Yang. Computational verb systems: Towards a unified paradigm
for artificial languages. In Proceedings of the Fifth Joint Conference
on Information Sciences(JCIS 2000), pages 29–32, Atlantic City, NJ,
Feb. 27-Mar. 03 2000.

[23] T. Yang. Advances in Computational Verb Systems. Nova Science
Publishers, Inc., Huntington, NY, May 2001. ISBN 1-56072-971-6.

YANG, INTERACTIONS BETWEEN COMPUTATIONAL VERBS 11

[24] T. Yang. Computational verb systems: Computing with perceptions of
dynamics. Information Sciences, 134(1-4):167–248, Jun. 2001.

[25] T. Yang. Computational verb systems: The paradox of the liar. Inter-
national Journal of Intelligent Systems, 16(9):1053–1067, Sept. 2001.

[26] T. Yang. Computational verb systems: Verb numbers. International
Journal of Intelligent Systems, 16(5):655–678, May 2001.

[27] T. Yang. Impulsive Control Theory, volume 272 of Lecture Notes in
Control and Information Sciences. Spinger-Verlag, Berlin, Aug. 2001.
ISBN 354042296X.

[28] T. Yang. Computational Verb Theory: From Engineering, Dynamic
Systems to Physical Linguistics, volume 2 of YangSky.com Monographs
in Information Sciences. Yang’s Scientific Research Institute, Tucson,
AZ, Oct. 2002. ISBN:0-9721212-1-8.

[29] T. Yang. Computational verb systems: Verbs and dynamic systems.
International Journal of Computational Cognition, 1(3):1–50, Sept.
2003.

[30] T. Yang. Fuzzy Dynamic Systems and Computational Verbs Represented
by Fuzzy Mathematics, volume 3 of YangSky.com Monographs in In-
formation Sciences. Yang’s Scientific Press, Tucson, AZ, Sept. 2003.
ISBN:0-9721212-2-6.

[31] T. Yang. Physical Linguistics: Measurable Linguistics and Duality
Between Universe and Cognition, volume 5 of YangSky.com Monographs
in Information Sciences. Yang’s Scientific Press, Tucson, AZ, Dec. 2004.

[32] T. Yang. Simulating human cognition using computational verb theory.
Journal of Shanghai University(Natural Sciences), 10(s):133–142, Oct.
2004.

[33] T. Yang. Architectures of computational verb controllers: Towards
a new paradigm of intelligent control. International Journal
of Computational Cognition, 3(2):74–101, June 2005 [available
online at http : //www.YangSky.com/ijcc/ijcc32.htm,
http : //www.YangSky.us/ijcc/ijcc32.htm].

[34] T. Yang. Applications of computational verbs to the
design of P-controllers. International Journal of Com-
putational Cognition, 3(2):52–60, June 2005 [available
online at http : //www.YangSky.us/ijcc/ijcc32.htm,
http : //www.YangSky.com/ijcc/ijcc32.htm].

[35] T. Yang. Applications of computational verbs to digital
image processing. International Journal of Computa-
tional Cognition, 3(3):31–40, September 2005 [available
online at http : //www.YangSky.us/ijcc/ijcc33.htm,
http : //www.YangSky.com/ijcc/ijcc33.htm].

[36] T. Yang. Bridging the Universe and the Cognition. Interna-
tional Journal of Computational Cognition, 3(4):1–15, December 2005
[available online at http : //www.YangSky.us/ijcc/ijcc34.htm,
http : //www.YangSky.com/ijcc/ijcc34.htm].

[37] T. Yang. Applications of computational verbs to effective
and realtime image understanding. International Journal of
Computational Cognition, 4(1):49–67, March 2006 [available
online at http : //www.YangSky.com/ijcc/ijcc41.htm,
http : //www.YangSky.us/ijcc/ijcc41.htm].

[38] T. Yang. Applications of computational verbs to feeling
retrieval from texts. International Journal of Computa-
tional Cognition, 4(3):28–45, September 2006 [available
online at http : //www.YangSky.com/ijcc/ijcc43.htm,
http : //www.YangSky.us/ijcc/ijcc43.htm].

[39] T. Yang. Rule-wise linear computational verb systems:
Dynamics and control. International Journal of Compu-
tational Cognition, 4(4):18–33, December 2006 [available
online at http : //www.YangSky.com/ijcc/ijcc44.htm,
http : //www.YangSky.us/ijcc/ijcc44.htm].

[40] T. Yang. Applications of computational verbs to cognitive
models of stock markets. International Journal of
Computational Cognition, 4(2):1–13, June 2006 [available
online at http : //www.YangSky.us/ijcc/ijcc42.htm,
http : //www.YangSky.com/ijcc/ijcc42.htm].

[41] T. Yang. Applications of computational verbs to the study of the effects
of Russell’s annual index reconstitution on stock markets. Interna-
tional Journal of Computational Cognition, 4(3):1–8, September 2006
[available online at http : //www.YangSky.us/ijcc/ijcc43.htm,
http : //www.YangSky.com/ijcc/ijcc43.htm].

[42] T. Yang. Bridging computational verbs and fuzzy member-
ship functions using computational verb collapses. International
Journal of Computational Cognition, 4(4):47–61, December 2006
[available online at http : //www.YangSky.us/ijcc/ijcc44.htm,
http : //www.YangSky.com/ijcc/ijcc44.htm].

[43] T. Yang. Computational verb decision trees. International
Journal of Computational Cognition, 4(4):34–46, December 2006
[available online at http : //www.YangSky.us/ijcc/ijcc44.htm,
http : //www.YangSky.com/ijcc/ijcc44.htm].

[44] T. Yang. Distances and similarities of saturated com-
putational verbs. International Journal of Computa-
tional Cognition, 4(4):62–77, December 2006 [available
online at http : //www.YangSky.us/ijcc/ijcc44.htm,
http : //www.YangSky.com/ijcc/ijcc44.htm].

[45] T. Yang. Stable computational verb controllers. International
Journal of Computational Cognition, 4(4):9–17, December 2006
[available online at http : //www.YangSky.us/ijcc/ijcc44.htm,
http : //www.YangSky.com/ijcc/ijcc44.htm].

[46] T. Yang. Using computational verbs to cluster trajec-
tories and curves. International Journal of Computa-
tional Cognition, 4(4):78–87, December 2006 [available
online at http : //www.YangSky.us/ijcc/ijcc44.htm,
http : //www.YangSky.com/ijcc/ijcc44.htm].

[47] T. Yang. Accurate video flame-detecting system based on computational
verb theory. AS Installer, (42):154–157, August 2007. (in Chinese).

[48] T. Yang. The Mathematical Principles of Natural Languages: The First
Course in Physical Linguistics, volume 6 of YangSky.com Monographs
in Information Sciences. Yang’s Scientific Press, Tucson, AZ, Dec. 2007.
ISBN:0-9721212-4-2.

[49] T. Yang. Applications of computational verb theory to the de-
sign of accurate video flame-detecting systems. International
Journal of Computational Cognition, 5(3):25–42, September 2007
[available online at http : //www.YangSky.us/ijcc/ijcc53.htm,
http : //www.YangSky.com/ijcc/ijcc53.htm].

[50] T. Yang. Cognitive engineering and cognitive industry. Interna-
tional Journal of Computational Cognition, 5(3):1–24, September 2007
[available online at http : //www.YangSky.us/ijcc/ijcc53.htm,
http : //www.YangSky.com/ijcc/ijcc53.htm].

[51] T. Yang. Computational verb neural networks. International
Journal of Computational Cognition, 5(3):57–62, September 2007
[available online at http : //www.YangSky.us/ijcc/ijcc53.htm,
http : //www.YangSky.com/ijcc/ijcc53.htm].

[52] T. Yang. Computational verb theory: Ten years later. Interna-
tional Journal of Computational Cognition, 5(3):63–86, September 2007
[available online at http : //www.YangSky.us/ijcc/ijcc53.htm,
http : //www.YangSky.com/ijcc/ijcc53.htm].

[53] T. Yang. Learning computational verb rules. International
Journal of Computational Cognition, 5(3):43–56, September 2007
[available online at http : //www.YangSky.us/ijcc/ijcc53.htm,
http : //www.YangSky.com/ijcc/ijcc53.htm].

[54] T. Yang and L.O. Chua. Channel-independent chaotic secure communi-
cation. International Journal of Bifurcation and Chaos, 6(12B):2653–
2660, Dec. 1996.

[55] T. Yang and Y. Guo. Measures of ambiguity of computa-
tional verbs based on computational verb collapses. International
Journal of Computational Cognition, 5(4):1–12, December 2007
[available online at http : //www.YangSky.us/ijcc/ijcc54.htm,
http : //www.YangSky.com/ijcc/ijcc54.htm].

[56] T. Yang and S.M. Shahruz. Channel-independent chaotic secure com-
munication system using general chaotic synchronization. Telecommu-
nications Review, 7(2):240–254, Mar.-Apr. 1997.

[57] Jian Zhang and Minrui Fei. Determination of verb similarity
in computational verb theory. International Journal of
Computational Cognition, 3(3):74–77, September 2005 [available
online at http : //www.YangSky.us/ijcc/ijcc33.htm,
http : //www.YangSky.com/ijcc/ijcc33.htm].

[58] Sheng Zhu, Zhong-Jie Wang, Yong Liu, and Bao-Liang Xia. An
improvement of the design of computational verb PID-controllers.
System Simulation Technology, 2(1):25–30, Jan. 2006. (in Chinese).

