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Abstract-Buildings account for nearly 40% of global energy 
consumption. About 40% and 15% of that are consumed, respec­
tively, by HVAC and lighting. These energy uses can be reduced 
by integrated control of active and passive sources of heating, 
cooling, lighting, shading and ventilation. However, rigorous 
studies of such control strategies are lacking since computation­
ally tractable models are not available. In this paper, a novel 
formulation capturing key interactions of the above building 
functions is established to minimize the total daily energy cost. 
To obtain effective integrated strategies in a timely manner, a 
methodology that combines stochastic dynamic programming 
(DP) and the rollout technique is developed within the price-based 
coordination framework. For easy implementation, DP-derived 
heuristic rules are developed to coordinate shading blinds and 
natural ventilation, with simplified optimization strategies for 
HVAC and lighting systems. Numerical simulation results show 
that these strategies are scalable, and can effectively reduce energy 
costs and improve human comfort. 

Note to Practitioners-Reducing demand on HVAC and lighting 
systems by effectively using free natural resources is a good way 
to conserve energy. This paper presents an integrated control of 
HVACs, lights, shading blinds, and natural ventilation to minimize 
the total daily energy cost. A novel model is established to capture 
the key interactions among the above devices. To overcome com­
putational difficulties and obtain effective strategies in a timely 
manner, a price-based coordination methodology is developed to 
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manage couplings among rooms that share an HVAC system with 
a limited capacity. Interactions of these devices is then resolved 
within each room by using stochastic dynamic programming. 
These strategies are further refined to obtain heuristic rules for 
shading blinds and natural ventilation, and simplified optimiza­
tion strategies for HVACs and lights. The methods are scalable 
and shown to result in significant energy cost savings as compared 
with selected traditional control strategies. 

Index Terms-HVAC, integrated control, lighting, natural venti­
lation, rollout, shading, surrogate optimization. 

1. INTRODUCTION 

B UILDINGS account for nearly 40% of global energy con­
sumption [1]. About 40% and 15% of that are consumed, 

respectively, by HVAC and lighting systems. In view of the 
increasing energy cost, government mandates for energy effi­
ciency [2], and the rising human comfort requirements, con­
trolling shading blinds and natural ventilation to make effective 
use of natural resources can reduce energy consumption and is 
therefore of great interest [3], [4]. In addition, improving the 
HVAC control can also result in significant cost savings [5]. 

HVACs, lights, shading blinds, and natural ventilation in­
teract with each other in energy consumption via thermal 
phenomena and in satisfying human comfort requirements for 
temperature, humidity, fresh air quantified by CO2 concentra­
tion, and illuminance in each room. As shown in Fig. 1, indoor 
temperature is affected by all the above-mentioned devices; 
both indoor humidity and CO2 concentration are affected by 
HVAC and natural ventilation; and illuminance by lights and 
shading blinds. In summer, for example, if blinds are open 
to use the daylight, energy consumption of lights is reduced. 
However, energy consumed by HVAC will increase due to the 
increased solar heat brought by inlet sunlight [3]. Therefore, 
the control of blinds must consider not only the energy con­
sumption of lights but also that of HVAC. Integrated control 
of these devices is important to manage such interactions. In 
addition, individual rooms share an HVAC system, and are 
coupled in competing for its limited capacity. Integrated control 
of these devices is therefore also important for preventing the 
cooling demand from exceeding HVAC capacity and essential 
for human comfort [5]. 

In most of buildings, active and passive sources of heating, 
cooling, lighting, shading, and ventilation, however, are not co­
ordinated. Analytical studies on their optimal integrated control 
have not been found in the literature. Possible reasons might 
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Ventilation by window Oaylighting by blinds 

Fig. l. Couplings of different devices on human comfort. T: temperature, H: 
humidity; L: illuminance; C: CO2 concentration. 

be that: 1) it is difficult to establish models which have a good 
balance between accuracy and simplicity for optimization; 
2) models are difficult to calibrate [6]; and 3) the interac­
tions between devices and the coupling among rooms make it 
time consuming to search for the optimal or effective control 
strategy. While there are many advanced model calibration 
methods [7], this paper focuses on managing issues 1 and 3. 

In Section ill, a new problem formulation is developed, in 
which HVAC, lights, shading blinds and natural ventilation are 
controlled jointly while satisfying system dynamics, equipment 
capacities, and human comfort under uncertain weather condi­
tions and numbers of occupants. Simplified gray-box models of 
buildings are first established based on mass and energy con­
servation to capture key interactions among the above devices. 
For each discretized time interval, e.g., 10 min, these devices 
are controlled to minimize the expected total energy cost of the 
following 24 h. To keep a good balance between model accu­
racy and simplicity for optimization, two time scales are used, 
a large one for making decisions and a small one for system 
dynamics. Also, suitable variables are selected as decision vari­
ables to avoid physical device details and enable easy imple­
mentation of close-loop control. The problem is not separable 
because rooms share an HVAC with nonlinearities. 

In Section N, to manage the coupling of rooms competing 
for the limited HVAC capacity, Lagrangian relaxation (LR) a 
price-based decomposition and coordination approach is used. 
To overcome the computational difficulty due to the insepara­
bility of HVAC, the surrogate optimization framework is used. 
The key idea is that all decision variables associated with one 
particular room are collected to form a subproblem. By keeping 
the decision variables not belonging to this room at their latest 
available values, a method combining Stochastic Dynamic Pro­
gramming (SDP) and the rollout technique is developed to re­
solve the interactions of devices in the subproblem. To obtain 
effective feasible strategies, two heuristics are developed based 
on the strategies obtained by SDP and the rollout. For practical 
implementation in large buildings, the strategies are further re­
fined to obtain DP-derived heuristic rules for shading blinds and 
natural ventilation, and a simplified optimization problem for 
HVAC and lights. 

In Section V, to evaluate the performance of the problem 
formulation and the solution methodology, the strategies ob­
tained are applied in detailed building models which are imple­
mented in the building simulation software DeST [8]. The nu­
merical results of three examples are presented to demonstrate 
that the strategies can effectively reduce energy costs and im­
prove human comfort compared with traditional individual con-
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trol strategies. Besides,. the methodology developed saves sig­
nificant computation time compared with several other methods 
and are scalable for large buildings. The results also show that 
the DP-derived rules, which consider key interactions among 
devices, are more effective than individual rules now used in 
buildings. 

n. LITERATURE REVIEW 

Although no rigorous studies on integrated control of HV AC, 
lights, shading blinds, and natural ventilation have been found in 
the literatw=@, ther@ are studies on the integrated eofttrol of some 
of the above devices [3], [4], [9]. However, these studies focused 
on rule-based control but not the optimal control. For example, 
shading blinds were controlled considering energy consumption 
of both HV ACs and lights in [4] by using a rule based on out­
side radiation and indoor temperature. As for optimal control of 
HVAC alone, there are many studies on model-based optimal 
control, and some of them also have the same three difficulties 
presented in Section I. 

A typical approach to optimal control of HVAC is first to es­
tablish and calibrate models. The models are used to predict fu­
ture building behavior and energy costs of devices according 
to selected control strategies for devices and predicted weather 
and numbers of occupants, etc. Optimization methods are then 
used to obtain the optimal control strategy [6]. The following is 
a review on models and optimal control methods based on the 
models. 

There are three types of models: detailed physical models [6], 
[10], black-box models such as neural network models [5], [11], 
and gray-box models [12]. Physical models are usually too com­
plicated for optimization because there are too many parameters 
to be calibrated and it is time consuming to predict building be­
havior and energy costs based on physical models. However, 
they can be used as simulation models to evaluate strategies ob­
tained by optimization methods [6], [10], [12]. 

Compared with physical models, black-box models are 
much more simplified because they use only measured inputs 
and outputs to represent key characteristics of buildings and 
devices. Artificial neural networks are in common use to es­
tablish models of buildings and devices [5], [13]. For example, 
in [5], a neural network model was trained b~sed on measured 
data to calculate energy consumption of HVACs. Since energy 
consumption of HV ACs was affected by many key factors such 
as set points for indoor temperature and humidity, thermal load, 
weather, day of week and time of day, a lot of data was needed 
for calibration and the data should cover large ranges of the key 
factors. That made the calibration of the neural network model 
too complicated. 

Compared with black-box models, gray-box models use 
physical knowledge about buildings in combination with mea­
sured data. Since parameters in gray-box models have physical 
meanings, calibration of gray-box models tends to be easier. For 
example, a gray-box model of a building was used in [12] for 
the optimal control of a multi-zone variable air volume 01AV) 
air-conditioning system. This model was established based on 
mass and energy conservations, and was calibrated using online 
measurements. For each time interval of 60 s, decisions were 
made to optimize the energy cost of the following 300 s. To 
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mmimize daily energy costs, looking forward 300 s, however, 
usually is not enough because it does not facilitate: 1) the use 
of precooling to take advantage of lower electricity prices at 
night; 2) natural ventilation during nights for precooling; and 
3) the use of precooling to reduce peak cooling demand so that 
it will not exceed the HVAC capacity. 

Based on the above-mentioned models of buildings and de­
vices, numerous methods are developed to obtain optimal or ef­
fective strategies for the control of devices. 

Model predictive control (MPC) is popular for building con­
trol [14] It uses building models to predict building behavior 

and energy costs in according to different control strategies of 
devices. An optimization problem is solved to obtain the op­
timal control strategy. Energy costs can be saved by efficient use 
of building thermal mass [15], building thermal storage [16], a 
variable energy price [17], etc. In addition, energy peak can also 
be reduced by MPC [18]. 

Another method in common use for building control is fuzzy 
logic controllers [19]-[21]. A large number of studies have 
demonstrated that fuzzy logic controllers can save significant 
energy costs and maintain human comfort. For example, in [19], 
five fuzzy logic controllers were developed to control shading, 
lighting, cooling, heating, and air changing. A coordinator 
composed of fuzzy rules and fuzzy negotiation machines was 
developed to eliminate inconsistencies between these five fuzzy 
logic controllers. Simulation results showed that the fuzzy 
control system successfully managed energy conservation and 
maintained human comfort. 

As presented in Section I, a major difficulty related to model­
based control is that interactions between devices and couplings 
among rooms make it time consuming to search for the optimal 
control strategy. To overcome this computational difficulty, two 
types of methods are usually used-intelligent optimization al­
gorithms such as genetic algorithm (GA) [10], [12], and decom­
position and coordination methodologies, such as Lagrangian 
relaxation (LR) [5]. In [12], set points for indoor temperatures 
in all rooms and the flow rate of fresh air shared by all rooms 
were controlled using a GA. Since mUltiple rooms were coupled 
in sharing the same multi-zone VAV air-conditioning system, 
the computational time would increase exponentially when the 
number of rooms increases. In [5], multiple HVAC systems were 
controlled to minimize energy costs. The problem had coupling 
constraints that were separable. It was solved using LR, which 
is effective in solving problems with separable coupling con­
straints. However, in an HVAC system with nonlinearities in 
couplings among rooms, the problem will not be separable. As 
a result, the LR method in [5] cannot be directly used. To deal 
with such inseparability, a method is developed based on LR for 
the optimal integrated control problem after the description of 
problem formulation in Section m. 

m. PROBLEM FORMULATION 

A novel problem formulation for daily building energy cost 
optimization is presented in this section. The human comfort re­
quirements are for indoor temperature, humidity, CO2 concen­
tration and illuminance. Devices, controlled to satisfy these re­
quirements, include fans and water valves in fresh air unit (FAU) 
and fan coil units (FCUs) (FAU and FCUs are major components 

Blinds 

Window 

Fig. 2. A schematic of blinds, lights, and a window for natural ventilation. 

of the HVAC studied in this paper), fresh air valves in rooms, 
lights, blinds, and windows for natural ventilation. Indoor tem­
perature is affected by all the devices and indoor humidity by all 
the devices except lights and blinds. Indoor CO2 concentration 
is affected by the FAU fan, the fresh air valve in each room and 
natural ventilation. Illummance is affected by lights and blinds. 
Simplified models of these devices and also buildings are de­
veloped for optimization purpose. Device models and their de­
cision variables are presented in Subsection A. Dynamics of 
buildings capturing key interactions among devices, and human 
comfort requirements are presented in Subsection B. Dynamics 
of devices are ignored because their time constants are too small 
compared with those of buildings. Uncertainties in weather and 
numbers of occupants have large effects on energy consump­
tion, and are presented in Subsection C. The objective function 
for the integrated control is then presented in Subsection D. 

A. Device Models and Decision Variables 

Assume that a building consists of I individual rooms, with 
room index i ranging from 1 to I. The time horizon of the 
problem is the following 24 hours from the current time on. It is 
divided into K discrete time intervals of equal duration At (e.g., 
10 minutes), with time index k ranging from 1 to K. Each room 
has a glass curtain wall facing outside, blinds for sun shading, 
and a window for natural ventilation as shown in the schematic 
of a room in Fig. 2. Each room is also equipped with a fan coil 
unit (FCU) and all rooms share an FAU. All the devices are ex­
plained in details next. 

Models of Blinds, Lights, and Natural Ventilation: The blinds 
are installed on the upper half of the glass wall. The transmit­
tance of the blinds varies with different weather, time of a day, 
day of a year, and blind angle. It is measured by experiment in 
[22]. To avoid glare, a lower bound is set for the blind angle 
to prevent direct sunlight from coming into the room. The gap 
between daylight illuminance and the illuminance required by 
human comfort is filled by dirnnllng lights with controllable 
power Plight [23]. The window is located in the lower half of 
the glass wall and has no overlap with the window, as shown in 
Fig. 2. Natural ventilation flow rate is calculated based on out­
side wind speed and direction, and pressure due to temperature 
difference between indoor and outdoor air [24]. 

Model of the HVAC System: An HVAC system is used to 
maintain comfortable indoor temperature and humidity, and 
provide fresh air. The HVAC system studied here is widely 
used and depicted in Fig. 3. For summer days, indoor air is 
first supplied to the FCU by a fan, cooled and dehumidified by 
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Fig. 3. An HVAC system. 

chilled water, and then supplied to the room to decrease indoor 
air temperature and humidity. The chilled water is produced 
by a chiller and its flow rate is controlled by the FCU water 
valve. Fresh air required by occupants is provided by an FAU 
shared by all rooms. Since supplying outside hot and humid 
fresh air directly into rooms would make occupants uncomfort­
able, fresh air should be cooled and dehumidified in the FAU 
before supplied into rooms. This paper focuses on the control 
of terminal devices in rooms, and therefore other devices in 
the HVAC system, such as cooling towers and pumps, are not 
plotted in Fig. 3. For winter days, the chiller produces hot 
water rather than chilled water, and the FCDs and FAU work 
in the same way. The problem formulation and methodology 
developed in the rest part of this paper are based on summer 
days for simplicity, but they can also be applied for winter days. 

In the FAU, outlet fresh air temperature TFAU is affected by 
air flow rate, water flow rate, inlet fresh air temperature and hu­
midity, and inlet water temperature. It is calculated using an 
FAD model in [25]. Fresh air temperatures supplied from the 
FAU to all rooms at time k are assumed to be the same for 
simplicity and equal to FAU outlet air temperature T;AU' Since 
fresh air in the FAU is dehumidified by condensation, outlet air 
humidity H~AU equals the lower of outside air humidity H~ and 
the saturation humidity HTk of FAU outlet air temperature as 

FAU 

(1) 

The FAU fan supplies fresh air to all rooms. Fresh air flow rate 
to room i at time k, G1a,i' is controlled by a valve in the room. 
The FAU air flow rate should equal the summation of fresh air 
flow rates to all rooms as I:;=1 G1a,i' The power of the FAU 
fan, Pf~n,FAU' is nonlinear to the FAU air flow rate as [25] 

where Pfan,FAU,Rated and Ga,FAU,Rated are the rated FAU fan 
power and the rated FAU air flow rate, respectively. 

The FAD cooling power C~AU equals the difference be­
tween inlet air enthalpy EN~AU,inlet and outlet air enthalpy 
ENiAU outlet. The enthalpy indicates the energy contained in 
the air ~d the water vapor in the air. It equals the air flow rate 
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times the energy contained in per unit air and the water vapor. 
The C~AU is therefore given as [25] 

C~AU = EN~AU,inlet - ENiAU,outlet 
I 

= L G1a,i [CpT: + H~ (2500 + 1. 84T:) ] 
i=l 

I 

- L G1a,i [CpT;AU + H~AU(2500 + 1.84T;AU)] 
i=l 

(3) 

where Cp is the air specific heat and T: outside temperature. 
The model for an FCU is very similar to that of FAU, and the 
difference is that the inlet air for an FCU is indoor air while for 
the FAD it is outside air. 

The chiller, used to produce chilled water, is shared by the 
FAD and FCDs. Since the chiller has a limited capacity, the 
cooling power of the HV AC system has an upper bound CHVAC. 

As a result, the summation of cooling power of the FAD and 
FCUs should be less than or equal to the capacity limit, C HVAC , 

and rooms are coupled in satisfying the HVAC capacity con­
straints as 

I 

C~AU + L C~CU,i ~ CHVAC , k = 1, ... , K. (4) 
i=l 

Decision Variables: For the integrated control of devices, 
fans and water valves in FAD and FCDs are not suitable to be 
controlled directly because, taking the water valve as an ex­
ample, if the water valve opening of one FCU is changed, the 
water flow rates of all FCU s and FAU are affected through the 
water network. As a result, if the fans and water valves are di­
rectly controlled, there is no way to use a decomposition and 
coordination method to deal with the curse of dimensionality 
as the number of rooms increases, which is presented later in 
Section ill-D. 

Set points for indoor temperature and humidity are usually 
selected as decision variables for an HVAC as in [5] to make it 
easy to calculate cooling demand for the HVAC. However, FCU 
air flow rate Ga,FCU and FCD outlet air temperature TFcu need 
to be calculated to check if these set points for indoor tempera­
ture and humidity can be satisfied and to obtain energy cost of 
the FCD fan. The calculation is complicated because indoor air 
temperature is a function of the product of Ga,FCU and TFCU . 
In addition, if a look-up table is established to obtain Ga,FCU 

and TFCU, then another set point for indoor CO2 concentration 
is needed to control the fresh air flow rate, and the FAU water 
valve can be controlled directly. 

In our problem formulation, fresh air flow rate G fa, FAU 
outlet air temperature TFAU, FCU air flow rate Ga,FCU, and 
FCD outlet air temperature TFCU are selected as decision vari­
ables. Both cooling demand for the HVAC and energy cost of 
fans can be easily calculated. In addition, in practical close-loop 
implementation it is easy to control fans and valves by PID con­
trollers to satisfy set points for these air flow rates and outlet 
air temperatures, respectively. As for lights, blinds and win­
dows, it is easy to control power of lights, angles of blinds, and 
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open/close of windows directly. From the above, decision vari­
able for room i at time k is 

[Tk k k k]T 
FAU, VI' V2' ... , VI (5) 

with 

k _ [Tk Gk Gk p,k Ok Wk] T 
Vi - FCU,i' fa,i, a,FCU,i' light,i' i' i , 

i = 1, ... , I, (6) 

where FAU and FCU outlet air temperatures T#AU and T#CU,i 
are discretized into three values, representing low, middle, and 
high temperatures. Flow rates G1a,i and G~,FCU,i can be zero, 
half or full of their rated flow rates. The blind angle Of, from 0° 
to 80° , is discretized into nine steps (each is 10°) for simplicity. 
The opening of the window W ik has two values, zero for close 
and one for open. 

B. State Variables and System Dynamics 

Indoor air temperature, wall temperature, indoor humidity, 
and indoor CO2 concentration are chosen as elements of the 
state variable because indoor air can store energy, water vapor 
and CO2 and walls can store energy. 

Assumptions: The calculation of building dynamics would 
be very complicated and time-consuming if nonuniform distri­
butions of temperature, humidity and C02 concentration and 
slight changes of indoor air mass are considered. To simply the 
calculation for our optimization purpose, the following four as­
sumptions are made. 

Assumption 1: It is assumed that air in a room has a uni­
form temperature Ta , humidity H, and carbon dioxide concen­
tration CO2 for simplicity [10]. Taking indoor temperature as 
an example, the assumption is reasonable because it is accurate 
enough to use the uniform indoor temperature as the average in­
door temperature for the calculation of: 1) heat transferred be­
tween indoor air and walls and 2) temperature of the mixture of 
indoor air, air from FAU and FCU, and natural ventilated air. 

Assumption 2: Interior walls (i.e., walls with no surface 
facing outside) in a room have a uniform temperature Tw for 
simplicity [10]. The assumption is reasonable because temper­
atures of interior walls are mainly affected by indoor air tem­
peratures. Since heat transferred between indoor air and an in­
terior wall is linear to their temperature difference, it is accu­
rate enough to use the average temperature of interior walls and 
the average indoor temperature to calculate heat transferred be­
tween them. As for heat transferred between indoor and outdoor 
air through the exterior glass curtain wall, as presented later in 
(8), it is calculated based on temperature difference between 
indoor and outdoor air and the heat transfer coefficient of the 
glass wall. Since indoor temperatures are very close in different 
rooms, the heat transferred between two adjacent rooms through 
an interior wall is ignored. 

Assumption 3: Since room air pressure is almost constant, 
the air mass in a room is assumed to remain constant to ignore 
slight changes in indoor air mass for simplicity. This assumption 
is in common use in building simulation [10]. 

Assumption 4: It is assumed that the full state information 
of indoor air temperature Ta , humidity H, carbon dioxide con­
centration CO2, and wall temperature Tw is available. In prac­
tice, Ta, H, and CO2 can be measured by sensors. Although Tw 
can also be measured by sensors, such sensors are not available 
in most buildings and installing a sensor for each wall is ex­
pensive and not practical [26]. An alternative way is to utilize a 
Kalman filter to estimate Tw in each room based on system dy­
namics of Ta and T w (presented later in (8) and (9)) using mea­
sured indoor air temperatures, outdoor air temperatures, out­
sjde solar radjation, numbers of occnpants (e g , measured by 
an RFID reader installed beside doors), etc. 

State Variable for a Room: Based on the above assumptions, 
the state variable for room i at time k is 

(7) 

Four sets of system dynamic equations for the state variable are 
obtained based on mass and energy conservations as follows. 

Dynamics of Indoor Air Temperature: The indoor tempera­
ture at time k + 1 is affected by: 1) heat generated by occu­
pants, lights, and other equipment; 2) heat transferred from in­
terior walls; 3) heat transferred between indoor and outdoor air 
through the glass curtain wall facing outside; 4) heat provided 
by the FAU, the FCU, and natural ventilation; and 5) heat con­
tained in the remaining indoor air, i.e., the indoor air except for 
that from the FAU, the FCU, and natural ventilation. The en­
ergy conservation applied to indoor air in room i lead to the 
following: 

maiT:/I 

= At [OfQg + QITght,i + Q~,i + hgsAgs,i (T; - T:,i) 

+hw,inAw,i (T~,i - T:,i)] lOp 

+ At (G1a,iT#AU + G~,FCU,iT#cU,i + G~v,iT;) 
+ T:i [mai - At (G}a,i + G~,FCU,i + G~v,i)] (8) 

where mai is the mass of air in room i, Oi number of occupants, 
Qg heat generation rate per person, Qlight,i and Qe,i heat gen­
erated by lights and other equipment, respectively, hw,in heat 
convection coefficient between interior walls and indoor air, hgs 
heat transfer coefficient between outdoor and indoor air through 
the glass curtain wall facing outside, Aw,i area of interior walls, 
Ags area of the glass curtain wall, and Gnv,i natural ventilation 
flow rate. The last line in (8) is the energy contained in the re­
maining indoor air. 

Dynamics of Wall Temperature: The interior wall tempera­
ture is affected by heat convection between the wall and indoor 
air and solar heat gains Sw (0), which is resulted from radiation 
incident through the blinds and then on the wall surfaces and is 
a function of blind angle O. The energy conservation applied to 
the interior walls of room i leads to the following: 

G mw,i (Tk-l;l _ Tk .) 
w 2 w,~ W,~ 

= At [hwAw,i (T:,i - T~,i) + Sw(Oi)] ' (9) 

where Ow is the wall capacitance, mw,'i the wall mass, and hw 
the convection coefficient between interior wall and indoor air. 
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The wall mass is divided by two because an interior wall is used for determining decision variables. During each time in­
shared by two adjacent rooms. Since the heat transferred be- terval, decision variables and state variables are kept constant. 
tween indoor and outdoor air through the exterior glass curtain From time k to time k + 1, however, the indoor and wall tem­
wall is calculated based on the temperature difference between peratures are affected by each other. Keeping either one of them 
indoor and outdoor air as in (8), there is no need for the dynamic constant in a large time interval to calculate the other may re­
of gall curtain wall temperature. suIt in large inaccuracy. In addition, mixing the total air volume 

Dynamics of Indoor Air Humidity: The indoor humidity is naturally ventilated during one time interval 6.t with indoor air 
affected by humidity: 1) generated by occupants; 2) provided immediately would cause large inaccuracy. Therefore, another 
by the FAU, the FCU, and natural ventilation; and 3) contained finer time interval, e.g., one minute, is used for (8)-(11) to have 
in the remaining indoor air. The mass conservation for the hu- a better calculation of indoor air temperature, wall temperature, 
midity in room i is thus given .bJr~ ____ ~ ______ ~...uin.lld.lloll.o1J.r-,allirL.lJb.ull.um.uiud.uity:y....<allDLLdl..!C'-'-0.lf2f-JCUOJln.uc.:.te;.l.,nl.Utrw;au.tiu.oJl.nk-------------~ 

maiHik+l = 6.t07 Hg + 6.t (Gj",iH;AU+G~,FCU,iH;cU,i 
+G~v,iH~) + Hf [mai 

- 6.t (Gja,i + G~,FCU,i + G~v,;) 1 (10) 

where Hg is the humidity generation rate per person, and H~ 
the outside air humidity. 

Dynamics of Indoor CO2 Concentration: The mass conser­
vation applied to CO2 concentration is similar to that applied 
to humidity, except that the CO2 concentrations is not affected 
by the FCU since no fresh air is supplied to the FCU. The CO2 
mass conservation in room i is thus given by 

m ai C027+l = 6.t07C02g + 6.t (G'",i + G~v,i) C02~ 
+C027 [mai - 6.t (GJa,i + G~v"i)l (11) 

where C02g is carbon dioxide generation rate per person and 
C020 outside air carbon dioxide concentration. 

With the above system dynamics (8)-(11), the interaction of 
devices within each room are well captured. For example, the 
blind angle () first affects solar heat gains on the wall surface, 
Sw. The solar heat gains Sw affect the wall temperature Tw in 
(9) and Tw then affects the indoor temperature Ta in (8). In 
addition, the blind angle () also affects the daylight illuminance 
and thus the required power of lights, Plight. The heat generated 
by the lights, Qlight, then affects the indoor temperature Ta in 
(8). Finally, energy costs of HVAC and lights are both affected 
by the blind angle (). 

Discretization of State Variables: The discretization step size 
for indoor temperature is 10 and that for indoor humidity is 5% 
of relative humidity. The discretization step size for C02 con­
centration is 100 ppm and that for wall temperature is 0.1 degree. 
Sometimes, the wall temperature changes slightly in one time 
interval6.t (e.g., 10 min), and the change is much smaller than 
the discretization step size. Nevertheless, these small changes 
cannot be neglected, because the accumulation of them may 
have a significant lasting effect on the energy cost via heat con­
vection between walls and indoor air. Although the step size for 
wall temperature can be reduced to overcome this difficulty, the 
increase in computation requirements could be prohibitive. Our 
solution is to accumulate the small changes, and to update the 
wall temperature only when the accumulated change is larger 
than the discretization step size. 

Two Time Scales: To keep a balance between accuracy and 
simplicity for optimization, two time scales are used. A larger 
time scale, e.g., the time interval 6.t is set to ten minutes, is 

Human Comfort: The human comfort requirements during 
occupied periods are given as [5] 

Ta E [22°C, 26°C], H E [40%,60%]' 

C02::; 900ppm,L;::: 400lx. (12) 

During unoccupied periods, there are no requirements for hu­
midity, CO2 concentration or illuminance. The required indoor 
temperature range can be lager as 

(13) 

Compared with occupied periods, the lower bound of Ta during 
unoccupied periods is lower to allow for precooling especially 
when outside temperature is much lower than indoor tempera­
ture at night or when the electricity price is much lower at night 
than that in the daytime. The upper bound ofTa during unoccu­
pied periods is higher and is beneficial to save energy. 

C. Uncertainties in Future Outside Temperatures and 
Numbers of Occupants 

Uncertainties in outside temperatures and numbers of occu­
pants have an impact on both energy cost and peak cooling de­
mand, which should be no more than the HVAC capacity as in 
(4). For example, if a room will be occupied by a large number 
of occupants with a high probability around noon time, the inte­
grated control needs to precool the room so that human comfort 
requirements and HVAC capacity constraints will be satisfied. 

Since outside temperatures predicted by weather stations 
might be inaccurate, normally distributed noises are added to 
outside temperatures predicted. Means and variances of the 
noises are calculated using errors between real temperatures 
and predicted ones in the past several (e.g., 24) hours. 

Numbers of occupants in room i are described by a single­
state Markov chain with one-step transition matrix [5] 

P {07 = b107-1 = a} = "lrabi, i = 1" ." Ii a, b ::; Pi (14) 

where P'i is the maximum number of occupants in room i, and a 
and b are possible numbers of occupants at time k-1 and time k, 
respectively. Numbers of occupants are updated using the larger 
time scale with the time interval 6.t, which is also used for the 
updating of decision variables. 

D. The Objective Function 

Since the control action at the current time affects immediate 
as well as future energy cost, the objective is to find the current 
time's optimal control to minimize the expected total costs of 
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HV AC and lights in a moving time window of the following 
24 h. 

In the HVAC, energy is consumed by fans in the FAU and 
FCUs, chillers, pumps, and cooling towers. This paper focuses 
on the control ofFAU and FCUs and the energy consumption of 
the fans in the FAU and FCUs are calculated using their models 
(2). Energy consumption of the rest of the above-mentioned de­
vices is calculated using a coefficient of performance (COP) for 
simplicity. The COP is defined as the ratio of cooling power 
of the FAU and FCUs to the electric power of chillers, pumps, 
and cooling towers It is dimensionless and is obtained based on 
measured data in several office buildings. The energy consump­
tion of lights is calculated based on the power of lights, Hight. 
After obtaining hourly energy consumption of the HVAC and 
lights, a time-of-day electricity rate commonly used in Beijing, 
with the price at time k as eTc, is used to calculate the energy 
cost. The price is lower at night than that in the day, which al­
lows precooling rooms at night to save daily energy cost. The 
problem formulation can also be applied for the flat rate and be 
extended to the dynamic rate with predictive future electricity 
prices. 

At the current time, i.e., time 1, the energy cost optimization 
problem is given by 

minJ, with J 

== E { !J.t ~ eTc [t (C~cu,dCOP + Pl'an,FCU,i 

+P11ghts,i) + C~AU/COP + Pl'an,FAU]} (15) 

subject to HVAC capacity constraints (4), system dynamics 
(8)-(11), and human comfort requirements (12)-(13). In the 
above, !J.t is the time interval, K the number of time intervals in 
the time window of 24 h, and the expectation is over the uncer­
tain outside temperatures and numbers of occupants. To obtain 
current time's optimal decision and then apply it to control 
the devices, the computation time of solving the optimization 
problem should be less than one time interval !J.t, e.g., 10 min. 
After the devices are controlled, the time window will move 
ahead one time interval !J.t and the same optimization problem 
as in (15) will be formulated for the next 10 min. 

The optimization problem has a two-level structure. The low 
level is to control FCUs, lights, shading blinds, and natural ven­
tilation in individual rooms. The high level is to control the FAU 
that is shared by all rooms and to satisfy the HV AC capacity con­
straints on the FAU and all FCUs. In addition, this problem is 
similar to the unit commitment problem in power systems and is 
believed to be NP-hard [5]. In order to obtain a near-optimal so­
lution, a possible method is to use a decomposition and coordi­
nation approach. It divides the entire problem into subproblems 
each related to one room and also forms a high-level problem to 
coordinate all rooms. This kind of methods requires the original 
problem to be separable. The problem is, however, not sepa­
rable because: 1) the FAU is shared by all rooms and its deci­
sion variable, FAU outlet air temperature TFAU, cannot be deter­
mined by individual rooms and 2) the FAU fan power Pfan,FAU 
is nonlinear to the sum of fresh air flow rates to all rooms as in 
(2) and, therefore, the FAU fan energy cost allocated to a room 
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cannot be calculated only based on the fresh air flow rate to this 
room alone. The problem therefore cannot be solved by directly 
using a decomposition and coordination approach. Our solution 
methodology is presented in the next section. 

IV. SOLUTION METHODOLOGY 

In order to overcome the inseparability difficulty and then 
form subproblems, new decision variables are introduced and 
the surrogate optimization framework is used in Section IV- A. 
In the surrogate optimization framework, stochastic dynamic 
programnnng (SDP) IS used ill Section IV-B to solve subprob­
lems. The high-level dual problem, which manages the cou­
plings among rooms, is solved in Section IV-C. Two heuris­
tics are developed to obtain feasible strategies in Section IV-D. 
To reduce the computational time, a rollout scheme is used in 
Section IV-E. For easy implementation of the solution method­
ology in large buildings, the feasible strategies are further re­
fined to obtain DP-derived control rules for shading blinds and 
natural ventilation, and a simplified optimization problem for 
HVACs and lights in Section IV-F. 

A. Overcoming the Inseparability Difficulty 

To solve the optimization problem with the coupling HVAC 
capacity constraints (4), Lagrangian relaxation (LR) is used to 
obtain a near-optimal solution. LR is a decomposition and co­
ordination approach. It is applicable for separable problems. As 
presented at the end of last section, the problem formulated, 
however, is not separable because: 1) the outlet air temperature 
of the shared FAU, TFAU, cannot be determined by individual 
rooms and 2) the energy cost of the shared FAU fan cannot 
be calculated by individual rooms since the FAU fan power 
Pfan,FAU is nonlinear to the sum of fresh air flow rates to all 
rooms as in (2). 

To overcome the inseparability difficulty caused by the FAU 
outlet air temperature T;AU' new decision variables, T;AU i' 
i = 1, ... , I, are introduced, representing fresh air temperatur~s 
supplied by the FAU to I individual rooms at time k. Since these 
fresh air temperatures at time k should be the same (all are equal 
to the FAU outlet air temperature T;AU)' new constraints are in­
troduced as 

rpTc _ TTc 
.LFAU,i - FAU,i+l, i = 1, ... ,I; k = 1, ... ,K (16) 

where T;AU,I+l is defined as T;AU,I' 
The decision variables are therefore changed from (5) to 

Tc [Tc Tc k]T 
U = ul' u2' ... , U I (17) 

with 

U~ = [G1a,i' T;AU,i' G~,FCU,i' T;CU,i' P 11ght,i' B~, Wf] , 
i = 1, ... ,I (18) 

where T;AU i is discretized into three values, representing low, 
middle, and 'high temperatures as T;AU is. 

The HVAC capacity constraints (4) and the FAU fresh 
air temperature constraints (16) just introduced are relaxed 
using Lagrangian multipliers {A k , k 1, ... ,K} and 
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{ttf, k = 1, ... , K; i = 1, ... , I}, respectively. The re­
laxed problem is to minimize the Lagrangian L as 

minL, with L 

== E { t::..t ~ ck [~ (C;cu,dCOP 

+ Pfan,FCU,i +P/;'ghts,i) + C;AU/COP + Pf~n,FAU]} 
K I 

+ L)..k E C;AU + L C;CU,i - CHVAC 

K I 

+ L L ttf (T;AU,i - T;AU,i+1) (19) 
k=li=l 

subject to system dynamics (8)-(11) and human comfort re­
quirements (12)-(13). 

The relaxed problem (19) is still inseparable because of the 
nonlinearity of FAU fan power Pfan,FAU, and the LR approach 
therefore cannot be directly used. To overcome this insepara­
bility, the surrogate optimization framework [27] is used. Tue 
key idea is to collect all terms related to a particular room i from 
the Lagrangian to form a subproblem as below 

minu~,k=l, ... KLi' with Li 

== E {~[(ckt::..t/COP + )..k) 

X (C;AU + C;CU,i) 

+ ck t::..t (Pfan,FAU,i + Pf~n,FCU,i + Pl~ghts,i) 

+ (ttf - ttL1) TFAU,i] } . (20) 

subject to system dynamics (8)-(11) and human comfort re­
quirements (12) and (13). Decision variables belong to other 
rooms are kept at their latest available values. There are totally I 
subproblems (each related to one room) formed in this way and 
will be solved in the next subsection. Coordination of the I sub­
problems will be achieved through iteratively updating the mul­
tipliers in a high-level dual problem in Section IV-C and using 
the updated multipliers to resolve subproblems. 

B. Solving a Subproblem 

The subproblem formulated in the last subsection is a mul­
tistage stochastic optimization problem. It is solved by using 
backward stochastic dynamic programming (SDP) considering 
all possible discretized outside temperatures, numbers of occu­
pants and values of decision variables. The optimal cost-to-go 
at stage k for state variable xf is 

where xf and uf are used to calculate xf+1 based on system 
dynamics (8)-(11), and Sf is the current stage cost given by 

Sf (xf,u7) = (ckt::..t/COP + )..k) (C;AU + C;CU,i) 

+ ck t::..t (Pfan,FAU + Pfan,FCU,i + Pl~ghts,i) 

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 

(22) 

After SDP moves from stage K backward and ends at stage 1, 
the total optimal cost related to room i, Li, equals the optimal 
cost-to-go Lt*(x[) at stage 1 for the given initial state x[. 

The computational complexity for solving a subproblem is 
determined by the complexity of SDP. Since for each stage in 
SDP, all possible values of the state variable and the decision 
variable are traversed to calculate the system dynamics (8)-(11) 
and the energy cost, the complexity is O(K· S· D), where K 
is the number of sta es, S the size of the state s ace, and D the 
number of all possible values of decision variable [28]. 

C. Solving the Dual Problem 

Since all rooms are coupled by the HVAC capacity constraints 
(4) and the FAU fresh air temperature constraints (16), these 
constraints might not be satisfied if subproblems are solved in­
dividually. Therefore, subproblems need to be coordinated at 
a high level. Since the Lagrangian multipliers in the relaxed 
problem (19) are the prices for the dissatisfaction of these con­
straints, subproblem solutions are coordinated through the iter­
ative updating of the multipliers to maximize the high-level dual 
function 

I N 

~axq, with q == L Lt* (xt) - L )..kCHVAC . (23) 
,/" i=l k=l 

The standard way to solve the dual problem is to use the sub­
gradient method. It solves all the subproblems optimally to ob­
tain the subgradient direction for updating multipliers. To have 
a fast convergence of the multipliers, the surrogate sub gradient 
(SSG) method [27] rather than the sub gradient method is used 
in our method to update the multipliers. The key idea of the SSG 
method is that a proper search direction for multipliers can be 
obtained without optimally solving all subproblems. Rather, op­
timization for one subproblem is enough to obtain a proper SSG 
direction if the optimal decision variable for room i at the nth 
iteration, Ui,n, can reduce the Lagrangian, i.e., satisfy the fol­
lowing surrogate optimization condition (see [27, eq. (26)]): 

L()..n' ttn, Ui,n, Uj:jopi,n-1) 
< L()..n' ttn, Ui,n-1, Uj:#i,n-1). (24) 

If the condition is satisfied, the SSG components with respect 
to )..~ and ttf,n at iteration n are, respectively, given by 

gk ()..~) = E (C;AU + ~ C;CU,i) - CHVAC (25) 

and 

(26) 

The multipliers are then updated in the SSG direction as 

(27) 

and 
k k k(k) tti,n+l = tti,n + Cing tti,n (28) 
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where an is the step size at iteration n and given by 

(3n [LU - L:[=i L}* (xI)] 
a - (29) 

n - 9 (An? 9 (An) + 9 (Ibn? 9 (Ibn) 

where LU is an estimated upper bound of the optimal value L, 
and 0 < (3n < l. 

If the surrogate optimization condition is not satisfied, the 
subproblem related to the next room will be solved. This sur­
rogate optimization framework allows more frequent multiplier 
updating and less computation time while overcoming the in-
separability difficulties as compared to the standard subgradient 
method. 

After solving the dual problem, the algorithm moves to solve 
subproblems with the updated multipliers unless the stopping 
criterion is satisfied, i.e., Ilun - Un-ill < r;: (r;: is a given small 
positive number) or 1 - q/ J < 1% or the computation time is 
higher than one time interval flt, e.g., 10 min. After the entire 
optimization problem is solved, the current time's decision u i 

is implemented, and the time window then moves one time in­
terval flt ahead. The next time slot becomes the current time 
and the same optimization problem as (15) is formulated. The 
multipliers of the previous problem are used to initialize the new 
problem just formulated. In this way, the SSG method requires 
less iteration. 

D. Obtaining Feasible Solutions 

Subproblem solutions, when put together, are generally infea­
sible, i.e., HVAC capacity constraints and FAU fresh air temper­
ature constraints may not be satisfied. Two heuristics have been 
developed based on subproblem solutions. 

1) The first heuristic checks from stage 1 and moves forward 
to stage K. If the cooling power of the FAU and FCUs at 
stage k exceeds the HV AC capacity, the method backtracks 
from stage k - 1 until a room is found with its FCU fan not 
at the full speed or its water valve not fully opened. That 
room is then precooled by increasing fan speed or valve 
opening. 

2) If the FAU fresh air temperature constraints at stage k is 
not satisfied, i.e., the FAU fresh air temperatures required 
by all rooms are not the same, then all the FAU outlet fresh 
air temperature is set to the minimum of the required tem­
peratures. This is because by decreasing fresh air tempera­
ture in a room, more cooling demand of that room will be 
satisfied by the FAU and less by the FCU. As a result, the 
FCU fan speed can be reduced and the energy cost of the 
FCU fan is saved. 

E. Using the Rollout to Reduce Computation Time 

The computation time of solving the overall optimization 
problem should be less than one time interval flt so that the 
decision of the current time, u i , can be obtained and then 
applied to control devices. Since stochastic dynamic program­
ming (SDP) is the most time-consuming part in the algorithm, 
reducing the computation time of SDP is important for saving 
the whole computation time for large problems. 

As presented in (21), the optimal cost-to-go at stage k for 
room i, L~*, equals the current stage cost at stage k, Sf, plus 
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the optimal cost-to-go at stage k + 1, Lf+h. Since the control 
of devices far into the future has little impact on Sf or Lf+h 
and only u 1 will actually be implemented, there is no need to 
obtain the exact optimal cost-to-go for all the stages. Rather, 
approximate calculation of the optimal cost-to-go is generally 
good enough to obtain the optimal or a good u i . Therefore, 
the rollout technique [29] is used to reduce computation time 
of SDP. The idea is to approximately calculate the optimal 
costs-to-go at stage N (smaller than K) by using simple 
rules to control the devices from stage N + 1 to stage K. A 
£\:lie Cl:1ffootly l:lsed ifl some bl:lildings is selected: 1) eontrol 
blinds based on the schedule, e.g., closing the blinds only from 
10:00 am to 2:59 pm; 2) control natural ventilation based on 
the enthalpy difference between indoor and outdoor air; and 
3) control the FAU and FCDs using the greedy algorithm, which 
does not consider the impact of current time' control on future 
energy cost but minimizes only the current stage's energy cost. 

In the rollout from stage N + 1 to stage K, rooms are 
controlled individually and there are no multipliers used as the 
prices for the dissatisfaction of the HVAC capacity constraints 
(4). Therefore, the decision u i obtained might cause the peak 
demand exceeding the HV AC capacity in the future. The 
peak demand can be reduced by using precooling. However, 
precooling can only be derived in SDP. Therefore, to reduce 
the peak demand without much increasing computation time, 
our idea is to: 1) predict the peak time when the peak demand 
happens and the precooling time when the precooling is needed 
and 2) adaptively adjust the number of SDP stages N so that if 
precooling is needed, the time period of SDP is larger enough 
to cover the peak time. Otherwise, N is reduced to a small 
value, e.g., K/6, to save computational time. Since the peak 
time and the precooling time are usually around noon, they are 
predicted by using SDP without the rollout to solve the entire 
optimization problem (15) at the first time interval of each day. 

F. DP-Derived Rules for Blinds and Natural Ventilation 

The optinrization is time consuming and the cost of com­
puting devices is a major concern in practice. Therefore for easy 
implementation of the above-developed method, hereinafter re­
ferred to as LR-DP method, in large buildings, our idea is first to 
develop rules for controlling blinds and natural ventilation. The 
rules should consider the interaction between HVACs, lights, 
shading blinds, and natural ventilation and, therefore, be es­
tablished based on the LR-DP strategy obtained by the LR-DP 
method. These rules are referred to as DP-derived rules in the 
rest of this paper. Then, a simplified optimization problem for 
the HVAC system and lights, with much fewer decision vari­
ables than the original problem (15), is formulated and solved 
by a similar LR-DP method. 

To establish the DP-derived rule for blinds, the idea is 
to find key factors affecting the control of blinds and their 
relationship with blind angles. The key factors are found by: 
1) calculating the correlation coefficients of the blind angles 
and other variables such as hour of day and outside radiation 
based on the data points from the LR-DP strategies and 2) then 
selecting the variables whose correlation coefficients are higher 
than a given threshold. Their relationship with blind angles 
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is described by using a classifier. The inputs of the classifier 
are the factors found, and the output is the discretized blind 
angles. After training by using data points from the LR-DP 
strategies, the classifier can be used as a rule to control blinds. 
As for natural ventilation, the DP-derived rule is established in 
the similar way. The DP-derived rules for blinds and natural 
ventilation can also be used to improve rules currently used in 
many buildings. 

V. NUMERICAL TEsTING RESULTS AND DISCUSSION 

The LR-DP method was implemented in Matlab on a Core 
i7 2.67 GHz PC with 4 GB memory. The LR-DP strategies are 
obtained for three examples by solving optimization problems. 
They are then applied in detailed building models, which are 
implemented in the building simulation software DeST [8]. In 
the first example, a simple system with two rooms in a building 
is tested to show that integrated control strategy outperforms 
several other strategies in improving human comfort by shifting 
demand. In addition, the LR-DP method with the rollout tech­
nique saves significant computation time compared with several 
other methods. The second example with a three-floor building 
shows that energy costs are reduced in two typical days by inte­
grated control and that the LR-DP strategies are robust to predic­
tion errors in outside temperatures and numbers of occupants. In 
the third example, the solution methodology is implemented for 
a six-floor building with 144 rooms. The result shows that the 
LR-DP method has a good scalability, and the DP-derived rules 
save significant energy cost and computational time. 

In the examples, results under four strategies are compared 
and analyzed, including: two existing individual control strate­
gies: strategy A and strategy B, the greedy strategy, and the 
LR-DP strategy obtained by the LR-DP method. Strategy A 
always opens blinds at 80° (i.e., fully opened) and uses no 
natural ventilation. It controls the FAD and FCDs using a 
greedy algorithm, which optimizes the HVAC energy cost only 
at each current stage. Strategy B is the same as that used in 
the rollout scheme in Section IV-E. It controls: 1) blinds based 
on the schedule, i.e., closing blinds only from 10:00 am to 
2:59 pm; 2) natural ventilation based on the enthalpy difference 
between indoor and outdoor air; and 3) the FAD and FCDs in 
the same way as in Strategy A. The greedy strategy controls all 
the devices to minimize total energy costs of HVAC and lights 
only at each current stage. 

Example 1: Two Rooms in a Building: Two rooms in a 
building in Beijing are selected to demonstrate how the LR-DP 
algorithm shifts the cooling demand to satisfy chiller capacity 
limits and improve human comfort. Both rooms are seven me­
ters long, six meters wide, and four meters high. Each room has 
a window facing south. Rooms are occupied from 7:00 am to 
10:00 pm, which is common in office buildings in universities. 
The coefficient of performance (COP) used to calculate energy 
consumption of chillers, pumps and cooling towers in (15) is 
set to 2.71, the average value measured in nine office buildings 
in Beijing [30]. The time-of-day energy price of Beijing is used. 
It is 0.81 RMBIKWh from 7 am to 10 pm and 0.35 RMBIKWh 
during other hours [31]. The larger time interval D.t is set to 
10 min and the finer one for calculating state variables is 1 min. 
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Fig. 4. Cooling power of the FAU and FCUs in two rooms. 

The day August 2nd, which has the largest cooling and dehu­
midifying demand of a typical meteorological year, is consid­
ered. If devices are controlled by Strategy A, or Strategy B or 
the greedy strategy, the peak: demand in that day will exceed the 
HVAC capacity, and temperature and humidity requirements in 
some of the rooms will not be satisfied. Shifting the demand is 
therefore important. 

Coordination of Two Rooms to Improve Comfort and Save 
Cost: To coordinate the two rooms and control the devices 
jointly, the energy optimization problem (15) is solved every 
10 min by using the LR-DP method. The cooling power sup­
plied by the FAD and two FCDs into the two rooms is presented 
in Fig. 4. It shows that the peak: demand happens between 2 pm 
and 3 pm. In order to prevent the peak: demand from exceeding 
the HVAC capacity limit, one of the rooms is precooled from 
around 1 :00 pm, one hour before the peak: demand happens. As 
a result, part of the peak: demand is shifted. 

In addition, two FCDs do not work at high -ower levels at 
the same time from 1 pm to 3 pm, and the total cooling power 
does not exceed the HV AC capacity limit. 

In Fig. 4, it can also be seen that the LR-DP strategy pre-cools 
rooms from 4:00 am to 6:59 am when the rooms are unoccu­
pied. This precooling, with the low energy price, reduces tem­
peratures of walls which have a large heat capacity. The heat 
transferred from walls to indoor air is therefore reduced after 
7:00 am, and the total HVAC energy cost is reduced as well. 

Efficiency of the LR-DP Method in Saving Computational 
Time: To evaluate the efficiency of the LR-DP method with 
the rollout in saving computational time, two other methods are 
used to solve the optimization problem (15) for comparison. The 
first one uses DP but without LR or the rollout, i.e., controls the 
two rooms together rather than in a decomposition and coordi­
nation way. The second one uses LR and DP but without the 
rollout. The energy costs and the computation time are shown 
in Table I. It shows that LR-DP method with the rollout saves 
much computation time and only causes a little increase in en­
ergy cost compared with the other two methods. 

Example 2: A Three-Floor Building With 15 Rooms: A three­
floor building with 15 rooms in Beijing is selected and three 
cases are studied based on the building. The first two cases 
demonstrate how energy cost is saved by the integrated control 
in two typical days, with the first case focusing on the control 
of blinds and the second on the control of natural ventilation. 
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Fig. 5. Hourly energy costs in a hot and humid summer day. 

Fig. 6. Blind angles and solar radiation in a hot and humid summer day. 
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TABLE I 
COMP!lliISON OF THREE METHODS 

Feasible Duality Computation 

37.4 38.3 

37.2 38.5 

TABLE II 

0.8 % 

1.3% 

time 
314.2 sec. 

13.2 sec. 

1.8 sec. 

ENERGY COST IN RMB OF THE FOUR STRATEGIES FOR THE Two CASES 

Case 1 
Case 2 

Str.A 
228.2 
178.8 

Str.B 
224.6 
170.4 

Greed 
218.6 
176.9 

LR-OP 
207.1 
159.0 

In the third case, the sensitivity testing is carried out to demon­
strate that our LR-DP strategies are robust to prediction errors 
in future outside temperatures and numbers of occupants. 

Case 1: A Hot and Humid Summer Day: A hot and humid 
summer day in August is considered. The outside temperature 
is more than 27°C even at night. Solar radiation incident on 
windows is high around noon time. 

The total energy costs of this day under the four strategies are 
presented in the second line in Table II. The LR-DP strategy, 
which controls the HVAC and blinds jointly, saves 9.3%, 7.7%, 
and 5.3% of the costs of Strategy A, Strategy B, and the greedy 
strategy, respectively. 

The hourly energy costs of the four strategies are shown in 
Fig. 5. It can be seen that energy is consumed by the HVAC from 
5:00 am to 6:59 am in the LR-DP strategy to precool rooms with 
the low energy price. This precooling reduces wall temperatures 
and energy costs after 7 am in the same way as in Example 1. 

In Fig. 6, the blind angles (averaged in each hour) in one of 
the rooms facing south and solar radiation on the exterior sur­
face of the glass curtain wall are presented. The solar radiation 
is high around noon time so that the control of blinds is of im­
portance to minimize the total energy cost of the HVAC and 
lights. When solar radiation reaches its highest from 10:00 am 
to 10:59 am (normally it reaches its highest from lOam to 2 pm 
and in the day we selected for this example there might be some 

clouds blocking the sunlight after 11 am), the blind angle of the 
LR-DP strategy is lower than those of Strategy A and the greedy 
strategy. The lower the blind angle is, the less solar radiation is 
gained by walls and the lower the wall temperature is. Therefore, 
the wall temperature in the LR-DP strategy is lower than those 
of the other two strategies. Consequently, in the LR-DP strategy, 
less heat is transferred from walls to indoor air in the rest hours 
of the day, and less energy is consumed by the HV AC. Although 
in the LR-DP strategy, extra energy is consumed by lights from 
10:00 am to 10:59 am, the energy saved by the HVAC is more 
than that increased by lights. Therefore, integrated control in the 
LR-DP strategy keeps a good balance between the energy costs 
of the HVAC and lights, and can save more energy cost than in­
dividual control in Strategy A and the greedy strategy. 

The average computational time of using LR-DP method to 
resolve the optimization problem is about 12.2 seconds, much 
less than the time interval, 10 min. 

Case 2: A Summer Day With a Large Temperature Difference 
between Day and Night: Consider a summer day in July with 
a large temperature difference between day and night. When 
the outside temperature is low at night, natural ventilation can 
be used to precool rooms to reduce the high daytime cooling 
demand for the HVAC. The integrated control of the HVAC and 
natural ventilation is shown in this case. 

For unoccupied hours before 7:00 am, there is no comfort 
requirement for humidity. If outside temperature is lower than 
indoor temperature, natural ventilation is good for precooling 
rooms. Therefore, the LR-DP strategy uses natural ventilation 
from 0:00 pm to 6:59 am, as shown in Fig. 7. Wall temperatures 
under LR-DP strategy is thus lower than those under other three 
strategies after 7:00, and 6.5%-11.1 % (derived from the third 
line of Table II) of energy cost is saved by the LR-DP strategy 
compared with other three strategies. 

For occupied hours after 7:00 am, a common rule is that nat­
ural ventilation is used only if outside air enthalpy is lower than 
indoor air enthalpy. This rule is used in Strategy B and works 
well for most of the time since the enthalpy indicates the energy 
contained in the air and the water vapor. However, an exception 
to the rule is found by the LR-DP strategy which controls the 
HV AC and natural ventilation jointly. From 7 :00 am to 7 :59 am, 
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Fig. 7. N amral ventilation and relationships between outdoor temperatures and 
indoor temperature set points. 

although the outside air enthalpy is lower than the indoor air en­
thalpy, the LR-DP strategy does not use natural ventilation. The 
reason is presented as follows. As presented in (2), enthalpy 
is a function of both air temperature and air humidity. From 
7:00 am to 7:59 am, the enthalpy ofthe outside air is lower be­
cause of its lower temperature. The outside humidity, however, 
is higher than that of indoor air. The extra humidity coming from 
natural ventilation plus what is generated by occupants would 
exceed the FAD and FCDs' dehumidifying capacity. The inte­
grated control of the HV AC and the natural ventilation therefore 
does not use the natural ventilation, although it can save energy 
cost. In this way, the human comfort is improved in the LR-DP 
strategy. 

Since indoor temperatures under the LR-DP strategy in Fig. 7 
can also be viewed as temperature set points that are satisfied 
by the integrated control of devices, relationships between in­
door temperature set points and outside temperatures can be 
seen from Fig. 7. When the outdoor temperature is low at night, 
the indoor temperature set points are lower than those in the day 
and are near its lower bond of the comfort range to take advan­
tage of natural ventilation as much as possible to precool the 
room. 

Case 3: Sensitivity Testing: As presented in Section III-C, 
the values of uncertain outside temperatures and numbers of oc­
cupants in the next 24 h are predicted and then used to obtain 
the LR-DP strategy. Their prediction errors may affect the en­
ergy-saving performance of the LR-DP strategy. To evaluate the 
robustness of the strategy, sensitivity testing is performed and 
presented below. 

The hot and humid summer day in Case 1 is considered. For 
simplicity but not losing generality, it is assumed that: 1) predic­
tion errors of outside temperatures in the next 24 h by a weather 
station are equal to a constant D..To and 2) prediction errors of 
numbers of occupants in the next 24 h are equal to a constant 
D..O when rooms are occupied from 7:00am to 10:00 pm. As for 
the outside temperature and number of occupants in the current 
time, it is assumed that they are measured accurately. Dnder dif­
ferent combinations of values of D..To and D.. 0, for each 10 min, 
the LR-DP strategies are obtained by using the LR-DP method 
to solve energy cost optimization problems and then the current 
time's decisions are used to control the devices. Hourly energy 
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TABLEm 
ENERGY COSTS IN RMB FOR SENSmVITY TEsTING 

L1To=O L1To=1 L1To=-1 L1To=O L1To=O 
L10=0 L10=0 L10=0 L10=1 L10=-1 

Hour 6 1.52 1.77 1.42 1.92 1.10 
Hour 7 2.27 2.47 2.18 2.51 1.81 
Hour 8 6.58 6.43 6.69 6.34 7.13 
Hour 9 5.98 5.90 6.08 5.86 6.43 
Hour 10 5.14 5.12 5.17 5.11 5.42 
Hour 11 5.63 5.61 5.65 5.60 5.83 
Hour 12 4.78 4.78 4.79 4.77 4.90 

Hour 14 6.29 6.29 6.29 6.30 6.30 
Hour 15 6.54 6.54 6.54 6.44 6.54 
Hour 16 5.96 5.96 5.96 5.96 5.96 
Hour 17 7.01 7.01 7.01 7.01 7.01 
Hour 18 7.53 7.53 7.53 7.53 7.53 
Hour 19 8.21 8.21 8.21 8.21 8.21 
Hour 20 8.27 8.27 8.27 8.27 8.27 
Hour 21 8.29 8.29 8.29 8.29 8.29 
Hour 22 8.36 8.36 8.36 8.36 8.36 

Total 103.56 103.74 103.65 103.87 104.36 

costs are presented in Table III (energy costs before 5 am and 
after 11 pm are all zero). 

From the table, it can been seen that the inaccurate predic­
tions of outside temperatures and numbers of occupants mainly 
affect the energy costs for precooling and consequently the en­
ergy costs in the first several office hours. That is because the 
prediction information is mainly used to precool rooms and shift 
cooling demand over time through building thermal mass [15]. 
Compared with energy costs under accurate predictions in the 
first column, the increase in energy costs caused by the inaccu­
rate predictions is less than 1 %. This slight increase in energy 
costs can be ignored compared with the 5.3%-9.3% energy cost 
savings by our LR-DP strategies in the Case 1. Therefore, our 
LR-DP strategy is robust to the prediction accuracy of future 
outside air temperatures and numbers of occupants. 

Example 3: A Six-Floor Building With 144 Rooms: To 
demonstrate the scalability of the formulation and the LR-DP 
method, a six-floor building with each floor having 24 rooms is 
used for testing. In this example, the DP-derived rules for blinds 
and natural ventilation are also obtained and their performance 
in saving energy costs and computational time is examined. 

The LR-DP method is implemented for every ten minutes in 
all 30 days in June. Based on the LR-DP strategies for the 144 
rooms, DP-derived rules for blinds and natural ventilation are 
obtained by finding key factors that affect the control of blinds 
and natural ventilation and training the classifiers based on the 
key factors. These classifiers are then used to control blinds and 
natural ventilation in July. For the HVAC and lights, a simpli­
fied optimization problem is formulated and solved by a similar 
LR-DP method. 

Energy Savings: The DP-derived rules, together with the 
LR-DP strategies for the HVAC and lights, are much more 
effective in reducing the total energy cost than rules now used 
in buildings-about 9.1 % and 7.9% of the costs are saved 
compared with Strategy A, and Strategy B, respectively. So 
much energy cost is saved mainly because of the following 
three reasons. 
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1) The rule for blinds is derived from LR-DP strategies which 
control HVAC and lights jointly and therefore keeps a good 
balance between energy costs of HVAC and lights. 

2) The rule obtained for natural ventilation is based on time 
of day, number of occupants, CO2 concentration, indoor 
temperature and humidity, and outside temperature and hu­
midity. It controls natural ventilation not only to provide 
fresh air, but also to cool and dehumidify indoor air. The 
rule coordinates well with the control of HVAC. 

3) The simplified optimization problem for HVAC and lights 
eM: still tlse PCDs to preeool fOOlm vyith low priee dee 
tricity and coordinate the FAU and all FCUs. 

Scalability of the Method: For this 144-room problem, the 
computational time to obtain the LR-DP strategy is about 89.1 
s, while it is 1.8 s for a two-room problem in Example 1 and 
12.2 s for a 15-room problem in Case 1 of Example 2. The com­
putational time is nearly linear to the number of rooms. Since 
89.1 s are much less than the time interval, 10 min, the LR-DP 
strategy can be obtained online and then implemented to con­
trol devices in practice. As presented in Section IV-C, after a 
problem is solved and decisions are applied, the move window 
moves to the next 10 min and formulate a new problem. The 
multipliers of the previous problem are used to initialize the 
new problem. If the multipliers are not initialized in this way but 
are initialized to a given value, e.g., one, the average computa­
tional time is 364 s. Therefore, using multipliers of the previous 
problem for initialization saves about three quarters of the com­
putational time. 

The average computational time of solving the simplified op­
timization problem is 8.5 s. Compared with the 89.1 s for the 
original optimization problem, the DP-derived rules save about 
90% of the computation time. That is because the dimension­
ality of the decision space is reduced by using the DP-derived 
rules for blinds and natural ventilation, and the computational 
time for the SDP decreases approximately exponentially as this 
dimensionality decreases. Compared with the LR-DP strategy, 
only about 1 % of the energy cost is increased by the DP-derived 
rules. Therefore, the DP-derived rules are efficient in saving 
energy cost and computation time, and are scalable for large 
buildings. 

Impact of the Assumptions on Model Accuracy: LR-DP 
strategies are obtained by using the model we developed with 
four assumptions as presented in Section ill-B. The strate­
gies are then tested in a simulation model developed in the 
building simulation software DeST. Therefore, in the absence 
of actual implementation, the impact of our assumptions on 
model accuracy can only be examined by comparing the 
indoor temperature, humidity, etc., under the two models. 
Since Assumption 4 (the full state information assumption) 
has nothing to do with model accuracy and the DeST model 
also has Assumption 1 and Assumption 3 as our model does, 
we can only use the above-mentioned comparison to evaluate 
the impact of Assumption 2 concerning about temperatures of 
interior walls. The results show that the mean of the difference 
between the wall temperatures under the two models is 0.05° 
and the standard deviation is 0.04°; and the mean and standard 
deviation of the difference between the indoor temperatures 
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under the two models are 0.07° and 0.06°, respectively. There­
fore, Assumption 2 has little impact on the model accuracy and 
is reasonable. 

VI. CONCLUSION 

Traditionally, heating, cooling, lighting, shading, and ven­
tilation are controlled separately, particularly in situations in­
volving passive and active systems that have distinct time scales 
and introduce nonlinearity in the coupled system behavior. To 
minimize daily energy cost of HV AC and lights and maintain 
occupant comfort, a novel formulation for controlling and co­
ordinating the above-mentioned functions and associated de­
vices is developed to obtain a near-optimal strategy. The formu­
lated daily cost optimization problem is solved by combining 
Lagrangian relaxation, stochastic dynamic progranuning, and 
rollout technique within the surrogate optimization framework. 
Numerical simulation results show that the near-optimal inte­
grated control strategy and the further derived rules for blinds 
and natural ventilation obtained work efficiently in saving en­
ergy costs and ensuring occupant comfort. 

The problem formulation and methodology are developed 
based on specific devices that are nonlinear and coupled with 
each other. For terminal devices that are common in HVACs but 
not studied in this paper, such as humidifiers and VAV boxes, our 
problem formulation can be extended by modifying constraints, 
system dynamics, and the objective accordingly. For example if 
a humidifier is added to a room, we need to modify the system 
dynamics according to how the humidifier affects indoor tem­
perature, indoor humidity, etc., and include its energy cost in 
the objective. Our methodology can also be extended because 
major difficulties that might be caused by these new devices, 
such as inseparability difficulties due to the sharing of devices 
by multiple rooms and nonlinearities in devices, have already 
been overcome in the methodology. 

Aw,i 

C02g 

COP 

c 

Ga,FCU,i 

Gja,i 

APPENDIX 

APPENDIX: LIST OF SYMBOLS 

Area of walls in room i. 

FAU cooling power. 

Upper bound of cooling power of an HVAC. 

Air specific heat. 

Heat capacitance of walls. 

Indoor air carbon dioxide concentration in 
room i. 

Carbon dioxide generation rate per person. 

Ratio of cooling power of FAU and FCUs to 
electric power of chillers, pumps, and cooling 
towers. 

Electricity price. 

FCU air flow rate in room .i 

Fresh air flow rate from FAU to room i. 
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Natural ventilation flow rate in romp i. 

Outlet air humidity from FAD. 

Indoor air humidity in room i. 

Humidity generation rate per person. 

Outside air humidity. 

hw,in Wall convection coefficient with indoor air. 

I Number of rooms. 

i RooHl: ind&. 

K Number of time intervals in 24 hours. 

k Time index. 

L Lagrangian function. 

Li Total optimal cost related to room i. 

L7* Optimal cost-to-go at stage k for room i. 

mai Mass of the air in room i. 

mw,i Mass of walls in room i. 

n Iteration index. 

Oi Number of occupants in room i. 

Pfan,FAU Power of FAD fan. 

Plight,i Power of lights in room i. 

Qe,i Heat generated by equipment in room i. 

Q 9 Heat generation rate per person. 

Qlight,i Heat generated by lights in room i. 

Sw,in Solar heat gains on the interior wall surface. 

S~ Current stage cost at stage k for room i. , 
Ta,i Indoor air temperature in room i. 

TFAu FAD outlet air temperature. 

TFAu,i Fresh air temperatures supplied by FAD to 
room i. 

TFcu,i FCD outlet air temperature in room i. 

To Outside temperature. 

Tw,i Wall temperature in room i. 

u Decision variable. 

Wi Opening of window in room i. 

x State variable. 

an Step size at iteration n. 

flt Time interval. 

()i Blind angle in room i. 

).k Lagrangian multipliers for relaxing HVAC 
capacity constraints. 

Ilk Lagrangian multipliers for relaxing FAD fresh 
air temperature constraints. 
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