
To appear in Neurocomputing: Special Issue on Radial Basis Function Networks.

Normalized Gaussian Radial Basis Function Networks.

Guido Bugmann

Centre for Neural and Adaptive Systems, School of Computing,

University of Plymouth, Plymouth PL4 8AA, United Kingdom.

gbugmann@soc.plym.ac.uk, tel. (+44) 1752 23 25 66, fax (+44) 1752 23 25 40

March 1998

Abstract: The performances of Normalised RBF (NRBF) nets and standard RBF nets

are compared in simple classification and mapping problems. In Normalized RBF

networks, the traditional roles of weights and activities in the hidden layer are

switched. Hidden nodes perform a function similar to a Voronoi tessellation of the

input space, and the output weights become the network's output over the partition

defined by the hidden nodes. Consequently, NRBF nets loose the localized

characteristics of standard RBF nets and exhibit excellent generalization properties,

to the extent that hidden nodes need to be recruited only for training data at the

boundaries of class domains. Reflecting this, a new learning rule is proposed that

greatly reduces the number of hidden nodes needed in classification tasks. As for

mapping applications, it is shown that NRBF nets may outperform standard RBFs

nets and exhibit more uniform errors. In both applications, the width of basis

functions is uncritical, which makes NRBF nets easy to use.

Keywords: Radial Basis Functions, Interpolation, Generalisation, Function
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1. Introduction

Normalized Radial Basis Functions (NRBF) differ from standard Radial Basis

Functions (RBF) by a seemingly minor modification of their equation (section 2). This

results in novel computational properties which have attracted little attention in the

neural network community. Moody and Darken (1989) were first to mention

Normalised RBF nets without elaborating on their functional significance. However.

Servin and Cuevas (1993) noted that normalization gave RBF nets the "same

classification properties as nets using sigmoid functions". Cha and Kassam (1995)

proposed that "a normalized Gaussian basis function features either localized behavior

similar to that of a Gaussian or nonlocalized behavior like that of a sigmoid, depending

on the location of its centre". Rao et al. (1997) interpreted NRBF nets as mixture of

1



To appear in Neurocomputing: Special Issue on Radial Basis Function Networks.

expert models and Jang & Sun (1993) saw similarities with fuzzy inference systems.

These multiple views reflect the fact that NRBF nodes in the hidden layer behave more

like case indicators rather than basis functions proper, as is elaborated in section 2.

This property leads to excellent performances in classification tasks, as shown in

section 3. One of the key features of NRBF nets is their excellent generalization, a

property that can be exploited to reduce the number of hidden nodes in classification

tasks. This is achieved by using a new learning rule proposed in section 4 that is

demonstrated in classification and mapping examples. NRBF nets have also given very

good results in another class of application, trajectory learning in robotics (Althoefer

and Bugmann, 1995, Bugmann et al, 1998).

2. Normalized Radial Basis Function networks

Figure 1: Network architecture for standard RBF nets and Normalized RBF nets (two

inputs and one output shown).

Standard Radial Basis Functions (RBF) nets comprise a hidden layer of RBF nodes and

an output layer with linear nodes (Broomhead and Lowe, 1988, Moody and Darken,

1989). The function of these nets is given by:
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where yi is the activity of the output node i, φ(x-xj)is the activity of the hidden node j,

with a RBF function centred on the vector xj, x is the actual input vector and wij are

the weights from the RBF nodes in the hidden layer to the linear output node. Such a

net is a universal function approximator according to Powell (1987).

The RBF function φ(x-xj) of a hidden node j used here is the Gaussian Radial Basis

Function:
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where σ is the width of the Gaussian and K is the dimension of the input space. The

"weights" wjk between node k in the input layer and node j in the hidden layer do not

act multiplicatively as in other neuron models, but define the input vector xj =

(wj1,...,wjK) eliciting the maximum response of node j (xj  is the "centre of the

receptive field").

In normalised RBF nets, the output activity is normalised by the total input activity in

the hidden layer:
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Moody and Darken (1989) proposed that normalisation be performed by the hidden

nodes before the summation stage in the output node. In their approach, normalization

is a non-local operation, requiring each hidden node to "know" about the outputs of

the other hidden nodes. Hence a computationally costly convergence process is

required. A similar view is taken in (Rao et al., 1997). In contrast, in our

implementation the normalisation is done in the output layer. As it receives already

information from all hidden units, the locality of the computational processes is

preserved..

Equation 2 shows that, as a result of the normalization, the output activity becomes an

activity-weighted average of the input weights in which the weights from the most

active inputs contribute most to the value of the output activity. In other words, the

roles of output weights and hidden nodes activities are switched. In standard RBF nets,

the weights determine how much each hidden node contributes to the output. In NRBF

nets, the activity of the hidden nodes determine which weights contribute most to the

output. For instance, in the extreme case where only one of the hidden nodes is active,

then the output of the net becomes equal to the weight corresponding to that hidden

node, whatever its level of activity.
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Figure 2. Illustration of the effects of normalization in RBF nets. Full line: output y of

a NRBF net. Dotted line: Output of a standard RBF net. Both nets use three hidden

nodes centred on the three training data indicated in the Figure.

Figure 2 shows that hidden nodes have a domain of influence in the input space in

which they determine the output of the net. This domain is only limited by conflicts

with other hidden nodes and has no limits outside of the domain covered by training

data. This explains the "sigmoid-like" behaviour noted by Servin and Cuevas (1993)

and Cha and Kassam (1995).

When the size of the Gaussians is small, the decay of the hidden nodes activity with

distance is so fast that, for most point of the input space, there is usually only one

hidden node that contributes significantly to equation 2. As a result, hidden nodes

perform a parcelation of the input space similar to a Voronoi tessellation. This is also

illustrated by a two-dimensional example in section 4. Due to normalization, RBF

nodes become here case indicators rather than basis functions proper. In that sense,

NRBF nets are similar to fuzzy inference systems, as discussed in (Jang & Sun, 1993,

Andersen et al., 1998). In these systems normalization is a key element of the "centre

of gravity defuzzification method (Brown and Harris, 1994, pp 388-404).

In equation 2, normalization is a way to select which weight becomes the output of the

net. This is a special case of a more general approach where whole functions are

selected. For instance in (Shao et al., 1993) the output yi is a combination of linear

functions Lij(x) weighted by the activity of their respective hidden nodes j.
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Two types of networks are compared in this paper: a standard RBF net, as in equation

(1) and a net with a normalizing output node as in equation (2). In both nets the hidden

nodes have Gaussian receptive fields, with a width σ indicated in figure captions. The

networks (Figure 1) have two inputs, one output and a number of hidden nodes

determined by the recruitment procedures during training (section 3.1 and 4.1).

Simulations are done on a PC with the neural network development package

CORTEX-PRO1.

3. Classification with Normalized and standard RBF nets.

3.1 Standard training procedure.

For the results shown in this section, training is done in a standard way (Bishop, 1995,

p. 170), by recruiting hidden nodes in the first epoch, then, in subsequent epochs,

adjusting the positions of the centres of the nodes and the weights to the output node

to minimize the output error. Normalized RBF nets and standard RBF nets are trained

with the same procedure:

i) recruiting a new hidden node centred on an input vector that was beyond a radius of

0.5σ from the centre of an existing node, or slowly shifting the centre xj of an existing

hidden node towards the new vector x using: xj(t+1) = 0.8xj(t)+ 0.2x,

ii) modifying the output weight of the hidden nodes j within a radius 0.5σ of the

current input vector x so that the output yi becomes closer to the desired output yid ,

using: wij(t+1) = wij(t) + learnrate (yid - y) (typically, learnrate = 0.5).

iii) showing the input vectors repeatedly to the net.

In this procedure, the recruitment of hidden node is purely input-driven, as it depends

only on the distribution of training data in the input space. It is a simple procedure that

converges rapidly .The number of epoch is indicated in figure captions.

The optimal width of the Gaussian basis functions differs for Normalized and standard

RBF nets, and can be estimated by a simple calculation discussed in section 3.2.

                                                       
1Unistat Ltd, Unistat House, 4 Shirland Mews, London W9 3DY, UK. http://www.unistat.com
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3.2 The "plateau-valleys" classification problem.

A simple example is used here to illustrate the difference between normalized RBF net

and standard RBF nets. The insights gained will then motivate the design of a new

learning procedure (section 4). In this example, a function f(x1,x2) is used to divide the

input space into two regions: a "plateau" where the f(x1,x2) = 0.5  and "valleys" where

f(x1,x2)= - 0.5 (Figure 3).  The problem is to train a network that classifies the regions

of the input space by using 70 data points picked at random from the function f(x1,x2).

The location of most of these points can be inferred from Figure 4.

  A)

     B)

Figure 3. "Plateau" function y = f(x1,x2) used in this example. The data are sampled in

the domain  -1<x1<1, -1<x2<1. The output y =-0.5 everywhere except for -0.4<x1<0.4,

where y = 0.5. A) Cross-section of the function along the plane {x1, y}. B) Perspective

view of the function in the sampling domain. The base grid is placed at y = -0.5.
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Figure 4: Function of a standard RBF net (equation 1) trained on 70 points sampled

from the function shown in Figure 3. The net produces an output close to y = 0 over a

significant proportion of the input space.  The heights of the peaks are either y =-0.5 or

y = 0.5. The base grid is located at y = -0.5. Parameters: σ = 0.05, Average RMS error

< 0.003 after 15 epochs. 69 hidden nodes were recruited by the standard training

procedure (section 3.1).

Figure 5: Function of the Normalized RBF net (equation 2) trained on the same points

as in Figure 4 with the standard procedure (section 3.1). The outputs of the net are

mostly either  y =-0.5 or y = 0.5.  Parameters: σ = 0.05, Average RMS error < 0.0002

after 2 epochs. 69 hidden nodes recruited by the standard procedure (section 3.1).
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Figures 4 and 5 show the functions learned by the standard RBF net and the NRBF net

using the same small width for the basis functions. A striking effect of normalization is

the improved interpolation. Even in regions of the input space where no RBF hidden

node produces a strong response, NRBF nodes with receptive fields in surrounding

regions can generate a large output value.  In contrast, in standard RBF nets, a

significant output requires a hidden node with its centre close to the input vector.
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Figure 6: Generalisation error for Normalized and standard RBF nets in a

classification task. The RBF net was trained with the standard procedure (section 3.1).

The Normalized RBF net was trained with the standard and the new procedure

(section 4.1). Both networks were able to classify correctly all training data for

Gaussian widths up to 0.29. The curves show the proportion of incorrect

classifications of a set of 70 test data randomly selected in the same way as the training

data (section 3.1).

In order to estimate the optimal width σ of basis functions, the generalisation error was

measured with a test set containing 70 random points selected in the same way as the

training data (section 3.1). Figure 6 shows, as expected, that standard RBF nets need

basis function sizes large enough for interpolating between data. Their performance

then stays relatively stable for larger sizes. This is in part due to the progressively

smaller number of nodes recruited as the size increases. In contrast, NRBF nets trained

with the standard procedure show a good performance over a wide range of sizes, with

better performances for small sizes. Interestingly, the best performance is achieved for

a size σ = 0.12 which is exactly the average distance between a data point and its

nearest neighbour in this training set. This size leads also to good generalization in

mapping problems (section 4.3). This points to a simple rule of thumb for an initial

selection of the sizes of basis functions for NRBF nets.
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For standard RBF nets, the optimal size σ tends to be closer to one half of the largest

distance between nearest neighbours (which is here 0.46), reflecting the need to ensure

large enough output values over the largest empty space between training data.

3. 3 The two-spirals classification problem.

Figure 7 illustrates the extrapolation properties of NRBF networks with the two-spirals

benchmark problem. The network was trained with all 194 data points shown in Figure

7. It can be seen that areas outside of the immediate neighbourhood of training data are

classified according to their nearest neighbour in the training data, or more precisely

their nearest hidden node centre. This results in a function very similar to the one

obtained with Multi-Layer Perceptrons using sigmoid functions in the hidden layers

(Lang & Witbrock, 1988). Indeed training is much faster here, with no classification

errors after 4 epochs, and good generalisation may be inferred from Figure 7.

Figure 7: Two spirals classification. White and black areas indicate the two classes

assigned to these areas by a Normalised RBF net. The hashed areas indicate

unclassified areas due to activities of hidden nodes smaller than the precision of the

computer. The 194 training data2 are indicated by filled and empty symbols . Network

parameters: σ = 0.28, Average RMS error = 0.057 after 4 epochs, 96 nodes recruited

using the modified training procedure (section 4.1). Figure range: -7 < x1 < 7, -7 < x2
< 7.

                                                       
2 Data from the Carnegie Mellon AI repository: http://www-cgi.cs.cmu.edu/afs/cs/project/ai-
repository/ai/areas/neural/bench/cmu/
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NRBF nets have also been applied to the IRIS benchmark problem, matching the best

published performances (Grant & Bugmann, in preparation).

4. Towards using less hidden nodes.

4.1 Modified training procedure.

The good interpolation and extrapolation properties shown in the previous section

suggests that hidden nodes may need to be recruited only in crucial points, close to

boundaries between two classes. To verify this hypothesis, the training procedure in

section 3.1 was modified so that no new nodes are recruited if the network indicates

the correct class by using existing nodes. The details of the modified procedure are:

i). Check if the output vector y of the net is correct, i.e. |y-ydesired| < tolerance, where

a tolerance = 0.4 is adequate for classification problems (it may be reduced to much

smaller values for mapping problems, where it represents the desired accuracy).

ii). If the output is correct. Do nothing, go to the next training data.

iii). If the output is incorrect and there is no node with its centre close to the current

data point, recruit a new node centred on the data point and set its output weights to

the desired output vector.

iv). If the output is incorrect and there is a node with centre close to input vector x,

move its centre xj closer to the new vector x using: xj(t+1) = 0.8xj(t)+ 0.2x,  and

modify its output weights using: wij(t+1) = wij(t) + learnrate.(yid - yi).

The main difference of this procedure with the standard one is that the recruitment of

hidden nodes is also output-driven.  It results in progressively less new nodes being

recruited at each epoch, as the coverage of the class domains is refined. Generally,

after 3 epochs, recruitment ceases and performance improvements are solely due to

weights and centre modifications. It is not a optimal procedure3, because the location

of the centres of the recruited nodes depends on the order of presentation of the

training data. This explains the variability of the curve in Figure 6.

                                                       
3This is of no consequence for the demonstration of the principle in this paper.
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4.2 Classification with the modified learning rule.

Figure 8A shows the function of a Normalized RBF net trained with the new

procedure on the same data as in the previous section. All training data are correctly

classified using only 15 nodes, as compared to the 69 recruited by the standard

procedure (Figure 4). Comparing Figure 5 and 8A reveals small differences such as a

slightly wider plateau in front and a more narrow middle section in Figure 8A. As there

are less nodes in the NRBF net for Figure 8A, each node is in charge of a wider area of

the input domain. Figure 8C shows that some of the domains covered by each hidden

nodes contain class boundaries. Thus coarser parcelation explains the larger

generalisation errors of the modified procedure compared to the standard one (Figure

6).

 A)   B)

 C)

Figure 8: A) Function of the Normalized RBF net trained with the new procedure

(section 4). Parameters: σ = 0.05, Average RMS error = 0.0041, 15 hidden nodes

recruited. B) Non normalized output of the net, plotted to indicate the positions of the

recruited nodes. C) Partitions of the input space generated by the recruited hidden

nodes. The two vertical grey lines indicate the boundaries of the "plateau". Other grey

lines indicate regions where neighbouring nodes have similar activities within a 20%

margin.
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Figure 8B shows the location of the recruited nodes. Comparison with Figure 4

indicates that recruited nodes are now mainly located at class boundaries, tending to

form polarised pairs, with one member on each side of the boundary. This suggests

that anti-symmetric basis functions reminiscent of the Gabor functions observed in

visual cortex (Marcelja, 1980; Jones & Palmer, 1987), may constitute ideal oriented

basis functions for classification problems with normalizing nets. The simplest

candidate is probably:
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Where d is the distance from the class boundary, positive on one side and negative on

the other.

4.3 Function mapping with the modified learning rule.

Normalization gives a wider range of action to each hidden node in NRBF nets. Over

the whole of this extended range, a hidden node tends to cause the net to produce the

same output value. This makes NRBF nets well suited to classification tasks. Thus it is

somehow against expectations that NRBF nets perform also well in mapping tasks.

The example used here as target function is a half cylinder from which 70 training data

have been sampled at random (Figure 9A). Normalized and standard RBF nets were

trained with sizes of basis functions producing optimal generalization, determined from

Figure 10. Generalization was tested using a set of 70 test data picked at random in the

input domain -1 < x1 <1, -1 < x2 < 1.

Comparing the parameters of Figure 9B and 9C shows that the NRBF net trained with

the modified learning procedure uses slightly more nodes than the standard RBF net

and generalizes slightly better. The NRBF net has a smaller training error and the

outputs for all the training data are within the required 5% tolerance set in the

procedure. The performances of the NRBF net can be improved by setting a smaller

tolerance. For instance, with a tolerance of 1%, the av. RMS error drops to 0.007 in

100 epochs, with an Av. RMS generalization error of 0.051 but with 6% of training

data still out of tolerance and 59 nodes being recruited. The standard RBF net cannot

achieve such a small training error, due to the large size of the basis functions required

for best generalization. It also cannot reach the 5% tolerance criteria for 9% of the
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data points. Hence NRBF nets trained with the modified procedure produce better and

more consistent performances.

 A)  B)

 C)

Figure 9. Function mapping with Normalized and standard RBF nets with parameters

of best generalization determined in Figure 10. A) Function from which 70 training and

test data points have been selected at random. The function is a half cylinder of radius

0.6 placed on a base at y = - 0.5. All other dimensions as in Figure 2. B) Mapping

learnt by a NRBF net. Parameters: σ = 0.12, Av. RMS training error = 0.019 after 24

epochs (network output within a 5% tolerance for all training data), Av. RMS test

error = 0.056. 46 nodes recruited using the modified procedure (section 4.1). C)

Mapping learnt by a standard RBF net. Parameters: σ = 0.37, Av. RMS training error

= 0.039 after 15 epochs (training stopped to avoid overfitting). The network output

was not within the 5% tolerance for 9% of the training data. Av. RMS test error =

0.074. 43 nodes recruited by the standard training procedure (section 3.1).
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Figure 10: Generalisation error for Normalized and standard RBF nets in a mapping

task. The RBF net was trained with the standard procedure (section 3.1). The

Normalized RBF net was trained with the modified procedure (section 4.1). The

generalization error was determined with 70 test data randomly selected in the same

way as the training data (section 4.3).

5. Conclusion

These initial results show that Normalized RBF nets have very good generalisation

properties that are beneficial in classification tasks. This is due to the property of

normalised RBF nets to produce a significant output even for input vectors far from

the centre of the receptive field of any of the hidden nodes.

Taking advantage of this, a modified learning procedure has been proposed in which

hidden nodes are recruited only when neighbouring nodes do not point to the same

output value. The modified learning procedure enables NRBF nets to operate with

significantly less hidden nodes in classification tasks.

When applied to classification problems, the modified learning procedure results in

nodes being recruited mainly along class boundaries. This obviates the need for a dense

coverage of class domains, in contrast to standard RBF nets. Thus NRBF nets may

contribute to soften the curse of dimensionality associated with networks of localized

basis functions.

The modified learning rule also performes well in a function mapping example where

the NRBF net outperforms the standard RBF network, in terms of training error and
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generalization error. Interestingly, it leads to a more uniform performance over the

training domain.

A very positive aspect of NRBF nets is that the size of basis functions is relatively

uncritical for the performance in classification and mapping. That makes this type of

network very easy to use.
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