
Adoption and Focus:
Practical Linear Types for Imperative Programming

Manuel Fähndrich Robert DeLine
Microsoft Research
One Microsoft Way

Redmond, WA 98052-6399

{maf,rdeline}@microsoft.com

ABSTRACT

A type system with linearity is useful for checking soft-
ware protocols and resource management at compile
time. Linearity provides powerful reasoning about state
changes, but at the price of restrictions on aliasing. The
hard division between linear and nonlinear types forces
the programmer to make a trade-off between checking
a protocol on an object and aliasing the object. Most
onerous is the restriction that any type with a linear
component must itself be linear. Because of this, check-
ing a protocol on an object imposes aliasing restrictions
on any data structure that directly or indirectly points
to the object. We propose a new type system that re-
duces these restrictions with the adoption and focus con-
structs. Adoption safely allows a programmer to alias
objects on which she is checking protocols, and focus
allows the reverse. A programmer can alias data struc-
tures that point to linear objects and use focus for safe
access to those objects. We discuss how we implemented
these ideas in the Vault programming language.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Con-
structs and Features; F.3.3 [Logics and Meaning of
Programs]: Studies of Program Constructs—Type struc-
ture; F.3.1 [Logics and Meaning of Programs]: Spec-
ifying and Verifying and Reasoning about Programs—
Pre- and post-conditions, Specification techniques; D.3.4
[Programming Languages]: Processors—Memory man-
agement

General Terms

Design, Languages, Reliability, Verification

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ..$5.00.

Keywords

Linear types, heap aliasing, region-based memory man-
agement

1. INTRODUCTION
Successful use of a software component often requires
more than just familiarity with the types of the func-
tions and data in the component’s interface. Rules gov-
erning proper interaction with that interface must be
gleaned from the component’s documentation or, as is
often the case, learned from local folklore. These rules,
which we call the interface protocol, govern the order
in which the interface’s functions may be called and its
data accessed [14]. As a familiar example, a file system’s
interface protocol typically has the following rules: a file
must be opened before it is read or written; a file may
be read or written until it is closed; and every file that is
opened must eventually be closed. In the context of the
Vault programming language, we studied a type system
that tracks the lifetime and symbolic state of objects.
To enforce our file system protocol in Vault, we give the
file type the states “open” and “closed” and specify that
the read and write functions expect an “open” file and
that the close function changes a file from state “open”
to “closed.”
Checking the states associated with objects requires

the ability to tell different objects apart. For instance,
the code sequence close(a);read(b) obeys our inter-
face protocol if a and b refer to different files, but is
incorrect if these variables alias the same file. To solve
this problem, Vault’s type system splits the program’s
values into two groups: those on which we can check
protocols, but to which aliasing restrictions apply (val-
ues of linear type); and those on which we cannot check
protocols, but which are free of aliasing restrictions (val-
ues of nonlinear type). Although this distinction is nec-
essary for tractability, the trade-off between protocol
checking and aliasing is an annoyance to programmers.
The division between linear and nonlinear types pre-

sents one further annoyance. A linear type system typ-
ically restricts how a programmer must design her data
structures by forbidding a nonlinear type from having
linear components. For instance, if a and b were nonlin-
ear records whose f fields refer to linear files, then the

13

code sequence close(a.f);read(b.f) could be unsafe,
since a and b could be aliases due to their nonlinear
types. To prevent such safety violations, a linear type
system restricts aliasing not only to those objects on
which we check protocols, but also to any object which
directly or indirectly refers to them.
Because of these restrictions, checking protocols on

more than a few types of objects in a large program is
impractical. The aliasing restrictions quickly spread to
all of the program’s data structures, including those, like
graphs and caches, which inherently involve aliasing.
To make protocol checking more practical, this paper

presents a new type system that removes these restric-
tions. Our contributions are: 1) We allow linear com-
ponents in nonlinear containers, but control access to
ensure safety. 2) We introduce the adoption construct,
which safely allows aliasing of objects on which we check
protocols and those that refer to them. 3) We introduce
the focus operator, which provides a temporary scope
in which we can check a protocol on an aliased object.
Together, these features allow us to check Vault code

like the following1 :

struct fileptr { tracked(@open) file f; };

void reset_logs($G:fileptr msgs, $G:fileptr errs)

{

tracked fileptr log = msgs;

close(log.f);

log.f = open(MSG_LOG_FILENAME);

log = errs;

close(log.f);

log.f = open(ERR_LOG_FILENAME);

}

Previous linear type systems would reject both the dec-
laration of the nonlinear type fileptr due to its linear
(tracked) field f and the code in reset logs due to
the potential aliasing between msgs and errs. Our type
system’s acceptance of this code demonstrates the focus
operation. We automatically infer one focus operation
around the first three statements and a second focus op-
eration around the last three statements. The first focus
temporarily gives log, an alias for msgs, a linear type
so that its field f may be updated. For safety, in the
scope of this focus, access to any potential alias of msgs
(namely errs) is illegal. The potential aliases are known
due to the presence of guards on nonlinear types. The
same guard $G means errs and msgs could be aliases.
Through the use of guards, focus prevents access to po-
tential aliases. The second focus works similarly. The
adoption operation (not shown) allows a fileptr object
to be allocated at a linear type (to initialize its field),
then given a nonlinear type to allow it to be aliased.

2. OVERVIEW
We present the details of our techniques in Sections 3
and 4 through a small expression language and a type
system. Section 6 discusses extensions and Section 7 de-

1In Vault, structs are reference types, i.e., pointers.

scribes how the presented ideas are realized and applied
in Vault. Section 8 discusses related work.
This section introduces the four concepts we use to

relax the boundary between linear and nonlinear types,
provides an overview of our techniques, and an example
used throughout the paper.

A unified view of object allocation and deallocation.
In contrast to previous work in which heap objects are
either linear or nonlinear, all objects in our model are
allocated at linear type and deallocated at linear type.
This model is intuitive, since at object creation, there
cannot be aliases for the object. Similarly, when an
object is freed, all aliases to the object must be dead, if
we are to avoid accesses through dangling references.

Adoption. Since all objects start out with linear type
and since it is impractical to program without aliasing,
we need a way to obtain aliases (of nonlinear type) to
existing objects. We propose the adoption construct,
adopt e1 by e2, which takes an adoptee o1 (the result of
e1) and an adopter o2 (the result of e2), both of lin-
ear type. The construct consumes the linear reference
to o1 by creating an internal reference from o2 to o1.
Therefore, each adoptee has exactly one adopter. The
result of the adoption expression is a reference at non-
linear type to the adoptee. This adoptee’s nonlinear
type is its previous linear type with only the top-level
type constructor changed from linear to nonlinear.
The nonlinear reference to the adoptee is valid for the

lifetime of the adopter, since we disallow access to o1

through the internal reference of the adopter. Any lin-
ear components of object o1 cannot be directly accessed
through the nonlinear reference. To do so would lead
to uncontrolled shared access to objects of linear type.
The linear components of o1 may however be accessed
in the scope of a focus operation (discussed below).
When the adopter is freed, all nonlinear references to

the adopted object become inaccessible, using the mech-
anism described next. The adopter returns its internal
linear reference to the adoptee, thereby reinstating the
adoptee’s linear type. Through multiple adoption ex-
pressions, an adopter object can adopt any number of
other objects.

Access control for nonlinear references. Because our
adoption construct allows temporary aliases to a linear
object, our type system must ensure that these aliases
become invalid when the object recovers its linear type
when it is unadopted. Otherwise, aliases could unsafely
witness changes to the object made through the linear
type. In our adoption approach, an adoptee recovers
its linear type when its adopter is freed. Hence, our
approach to invalidating aliases is to tie the lifetime of
the aliases to the lifetime of the adopter.
Our solution builds on techniques developed by Crary

et al. to deal with explicit region deallocation in the
Capability Calculus [2], as well as the work on alias
types by Walker et al. [18]. In this paper, we use a
superscripted dot to denote linear types and the absence
of a dot to denote nonlinear types. Since our desired
lifetime correlation is on a per-object basis, we first give
static names to objects of linear type τ• so that we can

14

tell them apart. In our type system, an object of linear
type is given the singleton type tr(ρ) for some static
name ρ. We call the static names keys and the singleton
types tracked types. At each point in the program, our
type system maintains the keys of those tracked objects
that are allocated before the given program point and
deallocated after that point. We call this set of keys
the capabilities. Each entry {ρ �→ τ} in the capabilities
means that the object tracked by key ρ has type τ and
is alive at the given program point. In short, a tracked
object’s allocation lifetime is the set of program points
for which its key is in the capabilities.
To correlate a nonlinear reference to an allocation life-

time we use a guarded type of the form ρ � τ . An object
of guarded type may be used in an expression requiring
a value of type τ at any program point where key ρ is in
the capabilities. Guarded types are nonlinear and can
be shared freely. When an object of type tr(ρ) adopts
an object with linear type τ•, the result of the adoption
has guarded type ρ � τ . When the adopter is freed, the
key ρ is removed from the capabilities, and thereafter
all references of type ρ � τ are invalid.

Focus. The final and most important novel concept is
a construct we call focus, which temporarily provides a
linear view on an object of nonlinear type. The insight
is that we can violate any type invariant of a nonlinear
object (including its very existence), as long as no alias
for the object can witness the violation.
The focus construct, letx = focus e1 in e2, requires

e1 to evaluate to an object of a guarded type ρ1 � τ .
This object is called the focused object. We change the
context in which e2 is type-checked in two ways. First,
we bind x to the focused object, but we give x a tracked
type tr(ρ) for some fresh key ρ and add {ρ �→ τ} to
the capabilities. Because of x’s tracked type, expression
e2 can change the underlying type associated with ρ,
can remove ρ from the capabilities, and can access and
replace linear components of τ .
Second, to ensure that no aliases can witness these

changes, within the context of e2, we remove the original
guarding key ρ1 from the capabilities. By temporarily
revoking this key, we are guaranteed that no aliases of
the focused object are accessible during e2.
Finally, at the end of e2, the capabilities must contain

{ρ �→ τ}, i.e., ρ is live and the final type τ matches
the initial type of the focus. This guarantees that no
alias can witness effects on the focused object outside
the scope of the focus. We end the focus by revoking
the temporary key ρ and granting ρ1, thereby allowing
renewed access to all objects guarded by ρ1.

2.1 Motivating Example
To illustrate the benefits of our type system, we intro-
duce a simple example here and discuss it throughout
the paper. As we showed in previous work [3], check-
ing state-based protocols, like our file example, requires
the same typing machinery as checking memory safety.
Namely, we use the same type system to check that an
object is not referenced after deletion and all objects are
eventually deleted. To keep our example simple, we use
memory safety as our protocol.

fun dict_lookup(phone:int, ssn:int,

d:dictionary) {

... let c = newCell(d) in ...

}

fun add_amount(cell:ref<int[]>, elem:int) {

... resize(cell, newsize) ...

}

fun add_entry(d:dictionary, phone:int,

ssn:int, amount:int) {

let cell = dict_lookup(phone, ssn, d)

in

add_amount(cell, amount)

}

Figure 1: Pseudo code for our motivating exam-
ple.

Our example’s central data structure is a resizable
array. Consider a program that builds a dictionary to
hold sequences of monetary amounts, which can be in-
dexed by a person’s Social Security Number and phone
number, as sketched in Figure 1. The program uses the
function add entry to add a new amount to a person’s
entry in the dictionary. The program stores each per-
son’s data in a resizable array, which grows when it is
full. The dictionary contains two references to each ar-
ray, one indexed by the Social Security Number and the
other by the phone number.
The natural representation for a resizable array is a

mutable cell containing the array (ref<int[]>). Since
we want to be able to free the array during resize op-
erations, the array should have linear type, but the cell
itself is shared and thus should have nonlinear type. In
our pseudo code, we assume that the function dict lookup

allocates a fresh, but sharable entry via a call to newCell,
if the entry is not found. Similarly, the function add amount

calls resize when the array is full. We will show later in
detail how the implementation of newCell and resize

are type checked.
The example is ill suited to previous type systems

with linearity. In a traditional linear type system, each
cell would need to be given the nonlinear type ref〈int[]〉
in order to be shared in the dictionary. To support the
destructive resize operation, we want the array to have
a linear type. However, since a linear type cannot be a
component of a nonlinear type, we must also give the cell
a linear type: ref〈int[]•〉•. We cannot assign the cells
the incompatible types ref〈int[]〉 and ref〈int[]•〉•.
In his seminal paper on linear types [17], Wadler be-

gan to soften the boundary between linear and nonlin-
ear types. He used a let! construct to give a tempo-
rary nonlinear type to a linear object. The construct
let! (x) y = e1 in e2 recursively changes the variable
x’s linear type to nonlinear form for the scope of the
expression e1, then returns it to its linear type for the
scope of expression e2. Wadler used a syntactic restric-
tion on the type of e1 to prevent the escape of nonlinear
references[17]. Odersky later proposed observer types

15

to prevent this escape [9].
Could we give our cell the linear type ref〈int[]•〉•

and then use Wadler’s let! to obtain a reference of
nonlinear type to the cell? Unfortunately, there are two
issues that make let! unsuitable in this case.
First, while let! is sound in its original setting of a

functional language, it is unsound if applied to types of
mutable storage. As a case in point, applying let! to
view a cell of linear type ref〈int[]•〉• at nonlinear type
ref〈int[]〉, allows us to unsafely update the cell with a
shared array, as shown in the following example:

fun crash (a:int[], r:ref〈int[]•〉•) {

let! (r) _ = (r := a)

in free(r); return sub(a,0);

}

Here, let! gives r the type ref〈int[]〉 for the scope of
the assignment r := a. The assignment overwrites the
unique array pointer stored in the cell, thus creating
a leak. Furthermore, the subsequent free of the cell
also frees the array a, which causes the index operation
sub(a,0) to access freed memory.
The second problem with let! is its reliance on a

lexical scope, which does not allow the implementation
of newCell, where a fresh, but sharable object is created
and returned to the context under a nonlinear type. In
short, let! does not allow us to represent our dictionary.
The new type system presented in this paper removes

the restriction that nonlinear types may not contain lin-
ear types as components and provides adoption as an
alternative to let!. Adoption handles mutable types
and does not rely on lexical scoping. For our example,
we track the dictionary under key ρd and adopt the cells
to the dictionary. This gives the cells the type

ρd � ref〈int[]•〉
which allows the cells to be shared (because they are
nonlinear) and the arrays to support deallocation during
resize (because they are linear).
Whenever the contained linear array needs to be ac-

cessed, a focus operation on the cell will temporarily
revoke ρd, but provide a fresh key ρ for the focused cell.
It is then possible to access the contained linear array
and to replace it in the resize operation. During the fo-
cus, no possible alias of the cell is accessible, since such
access would require key ρd.

3. TYPES AND EXPRESSIONS
To illustrate how adopt and focus allow programs like
our dictionary example to type check, this section presents
a small type and expression language. Section 4 presents
the typing rules.

3.1 Types
We use the type language in Figure 2 to formalize the
ideas discussed in the previous sections. The type lan-
guage distinguishes several kinds of types. Heap types
h represent mutable tuples and arrays that are stored
in the heap. Objects of these types are adoptable and
focusable. We represent the type ref〈int[]〉 from the
introduction as a 1-tuple of the form 〈int[]〉.

heap type h ::= 〈σ1..σn〉 | τ []
type τ ::= int | tr(ρ) | G � h

| ∀[∆].(C1, σ1)→ (C2, σ2)
linear type σ ::= ∃[ρ|{ρ �→ h}]. tr(ρ) | τ
guard G ::= ρ
capability C ::= · | {ρ �→ h}⊗C | ε⊗C
type context ∆ ::= · | ρ,∆ | ε,∆

Figure 2: Type language

Ordinary types τ include integers, tracked types tr(ρ),
and guarded types G � h. Tracked types are singleton
types tr(ρ), where the key ρ is a static name for the
address of the object being tracked. Hence, two objects
with the same key ρ are stored at the same address in
the heap and are hence aliases for the same memory
block. The contents of the memory at ρ is of heap type,
which is given separately by a capability of the form
{ρ �→ h}. Note that guarded types always refer to a
heap type.
In this type system, we separate the handle to a linear

object, tr(ρ), from the capability to access that object,
{ρ �→ h}. A traditional linear type system couples these
two in the linear type h•. To express such a linear type
σ, the handle and its capability are combined in an ex-
istential package [18]:

h• = ∃[ρ|{ρ �→ h}]. tr(ρ)

When storing a linear object in a data structure, the
object’s particular address is not important, so long as
we have the capability to access the object at that ad-
dress. This use of an existential type binds the address
to its capability and makes the address “anonymous.”
Whereas the universal quantification for function types
captures the intuition that functions operate uniformly
over objects at different addresses, the existential quan-
tification for linear types captures the intuition that a
data structure is stored some particular way in the heap,
although exactly how is irrelevant.
To convert from a linear type h• to an ordinary tracked

type tr(ρ), the capability is unpacked and added to the
capabilities at the current program point. Similarly, to
convert from a tracked type tr(ρ) to a linear type h•, we
extract the capability {ρ �→ h} from the current capa-
bilities. These conversions are captured by the relation
C1;σ1 � C2;σ2 shown in the Appendix.
The spatial conjunction of capabilities is formed via

C1⊗C2, expressing that keys in C1 are disjoint from
keys in C2.
Function types have the form ∀[∆].(C1, σ1)→ (C2, σ2),

where σ1 is the argument type, and σ2 the result type.
C1 is the “before” capability needed to call the function,
and C2 is the “after” capability provided at return. A
function that operates only on a heap object stored at a
particular address ρ would not be very useful. To avoid
this problem, we make functions reusable with paramet-
ric polymorphism. The type context ∆ allows a function
to abstract over names for keys and capabilities.

16

e ::= x | i | e.i | e.i := e | e(e) | e[c]
| new〈i〉 | free e | adopt e:h by e
| letx = e in e
| letx = focus e in e
| fun f [∆](x : σ) : σ pre C post C {e}

c ::= ρ | C | G

Figure 3: Expressions

3.2 Expressions
Figure 3 presents a small call-by-value expression lan-
guage for manipulating integers i, updatable tuples, and
functions. Expression e.i is used to obtain the ith com-
ponent of a tuple, e1.i := e2 updates the ith component
of e1 to e2. Function application of e1 to e2 is written
e1(e2). A tuple with i components is allocated by ex-
pression new〈i〉 and freed by expression free e. Adop-
tion of e1 by e2 is written adopt e1:h by e2, where the
type constraint h allows the programmer to specify the
form of the adopted type in order to pack particular
fields to linear types. The expression let x = e1 in e2

provides name binding with the usual lexical scoping
rules. In our examples, we use the expression e1; e2

as sugar for let = e1 in e2. The focus expression
letx = focus e1 in e2 focuses on e1 during e2. At the
end of e2, the focus is lost.
Expression fun f [∆](x:σ1):σ2 pre Cb post Ca {e} de-

fines a recursive function f , where x is the formal pa-
rameter of type σ1, and e is the body of type σ2. Cb and
Ca are respectively the before and after capabilities, and
∆ contains the universally quantified variables. Expres-
sion e[c] is used to instantiate polymorphic functions
to particular type arguments c (capabilities or keys).
In our examples, we will use multi-argument functions
without formalizing this trivial extension.
To reduce the size of our language, we do not provide

primitive expressions for creating, reading and updating
arrays, but rather rely on predefined functions. Our ex-
amples only use newarray(n) which allocates a tracked
array of size n.

3.3 Semantics
The operational semantics of the language is relatively
straight-forward. Expressions of the form e[c] are oper-
ationally equivalent to e, ie., the type instantiation has
no runtime effect. Similarly, a let-focus expression is
operationally equivalent to an ordinary let-expression.
The only non-standard construct is adoption. A sim-
ple implementation uses two special fields per object:
adoptees, and next. The adoptees field of an object o
is used to hold the list of objects adopted by o, which
are chained via their next fields. Adoption of o1 by o2

operationally corresponds to

o1.next = o2.adoptees;

o2.adoptees = o1;

The typing rules guarantee that the structures formed
through the next and adoptees fields are unshared trees.

To simplify the language and types, we assume that
free recursively frees all linear components and all ob-
ject reachable via next and adoptees fields. In Sec-
tion 4.3 we discuss alternative semantics to recover adop-
tees when adopters are freed.

4. TYPING RULES
We are now ready to show the details of how our typ-
ing discipline treats adoption and focus. Typing judge-
ments have the form ∆;Γ;C1 � e : τ ;C2 and express
that in type context ∆ and type environment Γ (map-
ping program variables to types τ) and given initial ca-
pabilities C1, expression e evaluates to a value of type τ
and final capabilities C2. The capabilities are threaded
throughout the expression evaluation and track the state
(heap type) and liveness of all tracked objects.
Unlike in standard linear type systems, type environ-

ments Γ map program variables to nonlinear types τ
only. Linearity is enforced via the capabilities, not via
environment splitting. Similarly, the type of an expres-
sion is always nonlinear.
The full set of typing rules is given in the Appendix.

Here, we highlight the most interesting rules by illus-
trating them on our example from the introduction.

4.1 Adoption
Ideally, we would use tracked types for all objects in
our program. However, because tracked types allow no
sharing, we use nonlinear guarded types where needed.
Objects of guarded type are obtained via adoption. An
adoption involves an adoptee o1 and an adopter oa.
Both objects have to be tracked at the moment of the
adoption2. Let ρ1 be the key of the adoptee and ρa the
key of the adopter. The type rule for adoption is

∆; Γ;C � e1 : tr(ρ1);C1

∆;Γ;C1 � e2 : tr(ρa); {ρ1 �→ h}⊗C2

∆ � C2 ≤ {ρa}
∆;Γ;C � adopt e1:h by e2 : ρa � h;C2

[adopt]

After typing e1, the adopted object and e2, the adopter,
we must have capability {ρ1 �→ h}⊗C2, which makes
sure that the to be adopted object is live and has type
h. We also check that the adopter is accessible, i.e., ρa

is live by the judgement ∆ � C2 ≤ {ρa}. The result
of the adoption has type ρa � h, where the guard ρa

reflects the key of the adopter and h is the heap type of
the adopted object. The final capability is C2, reflecting
that we have given up the key ρ1 of the adopted object.
Operationally, adoption adds a pointer from the adopter

oa to o1, thereby guaranteeing that we do not loose all
references to o1. The invariant that o1 is accessible only
via the guarded type ρa � h is enforced because, the key
ρ1 for tracked access is consumed, and is not recovered
until we free the adopter o2. For the same reason, an
object can be adopted by only one adopter at any given
time. Thus the pointers from adopters to adoptees form
a linear (unshared) tree.
Adoption allows a collection of tracked objects o1..on

to be adopted by a single object oa, and thus viewed

2We relax this requirement for the adopter later.

17

under a common type ρa � h. References of that type
can refer to any of the adopted objects, thus allowing
arbitrary aliasing. As an example of adoption, below is
the code used by the dictionary to allocate a fresh, but
sharable cell.

fun newCell(dct : tr(ρd)) : ρd � 〈int[]•〉
pre {ρd �→ dictionary}
post {ρd �→ dictionary}

{

let cell : tr(ρ) = new<1> in

cell.1 := newarray(10);

adopt cell:ρd � 〈int[]•〉 by dct

}

The function takes the dictionary as an argument, allo-
cates a fresh cell, initializes its contents to a fresh array
of size 10, and finally has the cell adopted by the dic-
tionary. After the evaluation of new, we have capability
{ρd �→ dictionary}⊗{ρ �→ 〈int〉}, where ρ is the key
of the freshly allocated 1-tuple with initial contents 0
(thus type int). Next, the call to newarray returns a
new tracked array of type tr(ρ2) for some fresh ρ2, along
with a new capability {ρ2 �→ int[]}. At this point we
use the tuple update rule [t-update] from the Appendix:

∆; Γ;C � e1 : tr(ρ);C1

∆;Γ;C1 � e2 : τ ; {ρ �→ h}⊗C2

h = 〈σ1..σi−1, τi, σi+1..σn〉
h′ = 〈σ1..σi−1, τ, σi+1..σn〉

∆; Γ;C � e1.i := e2 : τ ; {ρ �→ h′}⊗C2
[t-update]

We instantiate the update rule above with

τ = tr(ρ2)
C2 = {ρd �→ dictionary}⊗{ρ2 �→ int[]}
h = 〈int〉
h′ = 〈tr(ρ2)〉

After the update, the capabilities are {ρd �→ dictionary}
⊗{ρ �→ 〈tr(ρ2)〉}⊗{ρ2 �→ int[]}, i.e., we changed the
contents of ρ to refer to the new array of type tr(ρ2).
Note that this is a strong update at the type level, since
the content of the cell changed type from int to tr(ρ2).
At the point of adoption, we require the adopted cell

to have type h = 〈int[]•〉 as stated in the adopt expres-
sion. The current type associated with tr(ρ) however
is 〈tr(ρ2)〉. To form the desired linear type, we package
the capability {ρ2 �→ int[]} together with the reference
tr(ρ2) by applying rule [cap-transform] from the Ap-
pendix with judgement

{ρ �→ 〈tr(ρ2)〉}⊗{ρ2 �→ int[]} � {ρ �→ 〈int[]•〉}
The current capability is now {ρd �→ dictionary}⊗{ρ �→
〈int[]•〉}. The adopt rule then consumes key ρ and
leaves us with the new cell with guarded type ρd�〈int[]•〉,
which matches the expected return type of newCell.

4.2 Focus
Allowing nonlinear types with linear components would
not be useful without the focus operation, since the
linear components cannot be accessed from the nonlin-
ear container. Focusing on an object with guarded type
G � h allows temporary access to the linear components

of h. We illustrate focus through our running exam-
ple, by implementing the resize function of resizable ar-
rays. The function takes parameter cell of guarded
type ρd � 〈int[]•〉 containing the old array, and param-
eter size for the new array size. The function expects
a capability on entry that includes ρd, the key for the
dictionary guarding our cell.

fun resize[ρd](cell:ρd � 〈int[]•〉, size:int): int

pre {ρd �→ dictionary}
post {ρd �→ dictionary}

{

let newa = newarray(size) in

let fcell = focus cell in

let olda = fcell.1 in

copy(olda,newa);

fcell.1 := newa;

free olda

}

First, we allocate the new array and bind the result to
newa. Assuming that newarray returns a tracked integer
array, we assign newa the type tr(ρ1) for a fresh key ρ1.
Our current capability is {ρd �→ dictionary}⊗{ρ1 �→
int[]}. Next, we apply focus to cell and bind the fo-
cused reference to fcell. The typing rule for focus is

∆; Γ;C � e1 : G � h;C1⊗C2

∆ � C1 ≤ G
ρ fresh
∆; Γ[x : tr(ρ)];C2⊗{ρ �→ h} � e2 : τ2;C3⊗{ρ �→ h}
∆;Γ;C � let x = focus e1 in e2 : τ2;C1⊗C3

We instantiate the rule with

G = ρd

h = 〈int[]•〉
C1 = {ρd �→ dictionary}
C2 = {ρ1 �→ int[]}

We split the current capability into C1⊗C2, where C1

is sufficient to prove the guard G, and C2 is everything
that is not needed to prove the guard. In our case, the
dictionary key ρd is needed, but the key ρ1 for the new
array is not needed. We proceed in the body of focus
with capability

{ρ �→ 〈int[]•〉}⊗{ρ1 �→ int[]}
where ρ is the fresh key giving us linear access to the fo-
cused cell. Notice that we no longer have the dictionary
key ρd, because it was used for the focus. This prevents
focusing again on an alias to cell during the body of
the focus.
Next, we type the selection fcell.1. The appropriate

type rule for indexing from the Appendix is

∆; Γ;C � e : tr(ρ); {ρ �→ h}⊗C2

h = 〈σ1..σi−1, τi, σi+1..σn〉
∆;Γ;C � e.i : τi; {ρ �→ h}⊗C2

[t-index]

The rule requires that the type τi of the ith compo-
nent that is selected is non-linear (not σ) in order to
satisfy our type judgement invariant that expressions
evaluate to non-linear types. Thus in our example, the
heap type associated with fcell (ρ) first needs to be

18

transformed by unpacking the linear array type in our
cell, via the following judgement (rule [cap-transform]
in the Appendix)

{ρ �→ 〈int[]•〉} � {ρ �→ 〈tr(ρ2)〉}⊗{ρ2 �→ int[]}
This unpacking step simply names the hidden key within
int[]•, picking a fresh key name ρ2, and changes the
cell type to refer to tr(ρ2), while adding the capability
{ρ2 �→ int[]} to the current capability.
Now we can instantiate the [t-index] rule with h =

〈tr(ρ2)〉, and thus bind olda to tr(ρ2). The capabilities
at this point are {ρ �→ 〈tr(ρ2)〉}⊗{ρ2 �→ int[]}⊗{ρ1 �→
int[]}. Next, we copy the contents of the old array
to the new one, assuming that copy takes two tracked
arrays and does not change the capabilities.
Next, we update the cell via fcell.1:=newa, thereby

applying rule [t-update] as shown in the previous sec-
tion. The capabilities after this step are

{ρ �→ 〈tr(ρ1)〉}⊗{ρ1 �→ int[]}⊗{ρ2 �→ int[]},
reflecting that fcell now contains a pointer to the new
array ρ1.
Next, we free olda, thereby consuming key ρ2, leaving

us with capability {ρ �→ 〈tr(ρ1)〉}⊗{ρ1 �→ int[]}. At
this point, the scope of our focus ends. To apply the
remainder of the focus rule, we need to apply a packing
step to our cell ρ:

{ρ �→ 〈tr(ρ1)〉}⊗{ρ1 �→ int[]} � {ρ �→ 〈int[]•〉}
We instantiate the remaining part of the focus rule
with C3 = · (the empty capability). Our focus key
ρ maps correctly to h = 〈int[]•〉, therefore, we can
end the focus scope, since all aliases to the focused cell
now again see the correct type h. Ending the focus
consumes the focus key ρ and reinstates the capabil-
ity C1 = {ρd �→ dictionary} that was temporarily
revoked, leaving us with {ρd �→ dictionary}, which
matches the final capability of resize.

4.3 Recovering adoptees on free
To simplify the type systems, we have assumed that
freeing an adopter will recursively free all adoptees. This
is only one possible way to deal with adoptees. In this
section, we briefly contrast three different semantics for
free.

Recursive free. Possibly the simplest semantics of free
recursively frees all adoptees. This semantics raises
a practical issue: to avoid leaks the operation must
also free components of linear types of any object en-
countered. In order to traverse objects recursively, the
generic deallocator needs to understand the layout of all
objects in memory, much as a garbage collector would.
This requirement goes against the desire to apply the
presented techniques in a low level system language,
where explicit data layout control is important.
A slightly more restrictive scenario however does not

rely on a generic memory traversal and is used widely.
The region abstraction for memory allocation allows in-
dividual objects to be allocated from a given region.
Objects are freed not individually, but collectively by
freeing the entire region. This model can be viewed

as a special case of adoption, where objects are co-
allocated from a common block of memory and imme-
diately adopted by the region (thus no reference of lin-
ear type is ever accessible to the new block). If data
allocated in regions is restricted to nonlinear compo-
nents, there is no need to traverse blocks recursively to
free components. Thus freeing remains a constant time
operation as is expected from most region implementa-
tions [15].

Callback semantics. Another possibility to avoid the
generic object traversal at free is to register a call-
back function with each adoptee at the time of adop-
tion. When the adopter is freed each callback is called
with the corresponding adoptee (now of linear type),
thereby returning the adoptee to the context. Only the
particular callback function of an adoptee needs to un-
derstand the layout of the adoptee. This semantics has
been applied in the region implementation by Gay and
Aiken [4].

Linear list of adoptees. The third semantics we find use-
ful requires free to return all adoptees via a linear list.
The context in which free is applied can then choose to
deal with the adoptee objects in whatever way is appro-
priate. This semantics however has the restriction over
the previous two proposals that it requires all adoptees
to have the same type. We express this by having a
special adopter type of the form adopter〈h〉 reflecting
the type h of the adoptees.
In our experience all three semantics are useful in

some programming scenarios. A realistic programming
language can provide all three through libraries.

5. ALGORITHMICS
The main detail we glossed over in the technical presen-
tation is the treatment of control flow merge points. In
our prototype compiler, we insist on obtaining a single
capability description (modulo key renaming) per pro-
gram point. Thus, the capabilities along two control
flow edges with the same target have to be compatible.
This requirement restricts the set of programs that can
be typed, but the techniques described in our earlier
paper [3] for encoding correlations between values and
capabilities can be used to program around this limita-
tion in many cases.
Given this restriction, the complexity of type checking

is O(ekt), where e is the number of edges in the control
flow graph of a function, k is the maximal number of
keys at any program point, and t is the maximal size
of a type expression. In practice, k is relatively small
(less than the number of local variables), for only few
references refer to tracked objects.

6. EXTENSIONS
This section discusses a number of extensions that are
important in practice, but would have obscured the pre-
vious development unnecessarily.

Multi guards. The guards G we discussed so far con-
sist only of the single key name of the adopter. It is
straight forward to extend guards to conjunctions of

19

keys G ::= · | ρ ∧ G. Such guards can be introduced
via a guard strengthening subtyping step: given an ex-
pression e with type G � h, we can also give e the type
(G ∧ ρ) � h, for any ρ. Strengthening the guard makes
it harder to access the object, since more keys must be
held at the time of access. Guard strengthening is useful
to view objects adopted by different adopters under a
common type. For instance, given objects of types ρ1�h
and ρ2 � h, we may want to hold a reference to either of
these objects. Since their types are incompatible, this
is not possible without weakening each object’s type to
(ρ1 ∧ ρ2) � h.

Abstract guards. Our definition of resize has the un-
fortunate property that it mentions in the pre and post
capability the fact that the key ρd guarding the cell is
the key of a dictionary object. The nature of the guard
is irrelevant for the code at hand. To solve this prob-
lem, we extend guards with abstract guard variables γ,
so that guards have the form G ::= . . . | γ ∧ G. Us-
ing an abstract guard γ in place of the explicit guard
{ρd}, along with an abstract capability ε instead of the
explicit capability {ρd �→ dictionary} makes the type
of resize applicable in more contexts. The only extra
piece of information needed is that capability ε implies
the guard γ. This is recorded in the type context ∆
with ε ≤ γ. The more abstract type of resize is then

∀[γ, ε ≤ γ].(ε, γ � 〈int[]•〉, int)→ (ε, int)

and is applicable to guarded cells no matter what the
guard is. The idea of using bounded quantification on
capabilities has been proposed by Crary et.al. to allow
region aliasing in particular contexts [2]. Similarly, ab-
stract guards and bounded capabilities give control over
the aliasing granularity of guarded types. Consider the
type context

∆ = γ1, γ2, γ3, ε1 ≤ (γ1 ∧ γ2), ε3 ≤ γ3

with capability ε1⊗ε3, and three objects of respective
types γ1 � h, γ2 � h, and γ3 � h. The capability bounds
imply that guard γ1 and γ2 may overlap. Thus during
a focus on γ1 � h, guard γ2 is not satisfiable, but guard
γ3 is, because the capabilities used to prove γ1 and γ3

are disjoint.

Tracked vs. linear functions. So far he have treated
function types as ordinary types τ , not heap types h,
thereby ignoring the space requirement of an associated
closure record. If we want programmer control over clo-
sure allocation and deallocation, we can treat function
types as heap types. Closures then need to be allocated
via new and result in a tracked type, and they can be
explicitly freed at a later point via free. Tracked func-
tions can be called any number of times, until the point
of deallocation.
In contrast, linear functions as proposed by Wadler

in [17] have the property that they can be called only
once (so-called once functions). Once functions arise
naturally in linear type systems if function closures can
capture objects of linear type. Note that in our for-
malism, this is not possible, since the type environment
contains no linear types σ. If a function requires access

to a key, the key must be explicitly mentioned in the
pre capability.
Interestingly, once functions are easily modeled in our

formalism as tracked functions, where the function itself
deallocates its own closure record. The type of such a
function is tr(ρc), where the heap type h associated
with ρc has the form:

h = ∀[ε, ρc]({ρc �→ h}⊗ε, σ1)→ (ε, σ2)

The pre capability contains {ρc �→ h}, thereby requir-
ing the key for the closure, but the post capability
does not contain ρc, thereby expressing that the func-
tion consumes its own closure record. Once functions
would be allowed to capture objects of linear type in
their closure.
It is also interesting to note here that Wadler’s let!

cannot be applied to linear function types for which it
is unsound. Interestingly, adoption is sound for tracked
and once functions. As long as the function does not
require its own closure record in the pre capability it can
be called after adoption. If it does, then the guarded
function type will be uncallable, since the key of the
closure is not available.

Autofocus. We have described focus as an explicit con-
struct, where the extent of the focus is a lexical scope.
Requiring a full lexical scope for a focus is often imprac-
tical, i.e., the focus should be released before the end of
the scope3. From a static typing perspective, the action
occurring at the end of a focus scope is that the tem-
porary key ρ has to be revoked after checking that the
associated heap type h is the same as at the beginning
of the scope, and to reinstate the revoked capability C1

used to prove the focus guard. To do away with the
lexical scope, we simply have to record this information
in the capability state for later perusal when the focus
should end. We propose therefore to extend capabilities
with a linear implication

C ::= . . . | {ρ �→ h}(C

along with the focus elimination rule

{ρ �→ h} ⊗ {ρ �→ h}(C � C

Now focus can be a simple expression with the following
typing rule:

∆; Γ;C � e : G � h;C1⊗C2

∆ � C1 ≤ G ρ fresh
C3 = C2 ⊗ {ρ �→ h} ⊗ {ρ �→ h}(C1

∆;Γ;C � focus e : tr(ρ);C3
[focus(e)]

Applying the above rule establishes focus on the result
of expression e, until the focus elimination rule is ap-
plied. A step further is to infer focus expressions au-
tomatically whenever a tracked type is expected and a
guarded type is provided, thereby providing autofocus.

Self-adoption. Wadler’s let! has the advantage over
adoption that there is no runtime operation involved,
whereas adoption establishes an adoption pointer. There

3This issue is similar to the one of early deallocation in
region based memory management.

20

are two ways to provide a similar noop behavior in
the adoption model. The lifetime relationship estab-
lished by adoption states that the adoptee will outlive
the adopter. This is a reflexive relation (it is okay, if
both lifetimes end simultaneously). Thus we can view
an adopter as its own adopter. A simple, but unsound
approach of doing so would be to view a reference of
tracked type tr(ρ) with current capability {ρ �→ h} as
ρ � h. The approach is unsound because, through the
handle of type tr(ρ), it is possible to change the heap
cell from type h to h′ via a strong update and then to
view the cell through the guarded type under h. There
are two ways to solve this problem: 1) Provide a vir-
tual adopter ρ′ and revoke capability ρ, thereby making
it impossible to change the type h (except temporar-
ily under focus). To release the adoptee, we use linear
implication and the focus elimination rule introduced
above, as expressed by the following typing rule

∆; Γ;C � e : tr(ρ); {ρ �→ h}⊗C2

ρ′ fresh
C3 = C2 ⊗ ρ′ �→ h′ ⊗ {ρ′ �→ h′}({ρ �→ h}

∆;Γ;C � e : ρ′ � h;C3
[self(1)]

Here, ρ′ serves as the virtual adopter with h′ being an
arbitrary type, since there is no actual reference avail-
able to ρ′. The linear implication {ρ′ �→ h′}({ρ �→ h}
allows the adoption to be undone by eliminating the
virtual adopter.
A second solution is to strengthen the guard to in-

clude the heap type under which the alias is estab-
lished. Given tracked type tr(ρ) with current capability
{ρ �→ h} we provide an alias with guarded type ρ:h � h.
The guard ρ:h is satisfied by a capability C only if C
contains {ρ �→ h}. This solution allows an object to be
viewed under a tracked type tr(ρ) and simultaneously
under a guarded type ρ:h � h. If strong updates via
the tracked type change h to h′, the guarded reference
becomes inaccessible.

Transitive adoption. The adoption relationship is tran-
sitive, i.e., if object o1 is adopted by o2, which in turn is
adopted by o3, then o1 is effectively adopted by o3. This
observation can be exploited in two ways: First, when
object o2 with key ρ2 is adopted by o3 with key ρ3, any
object earlier adopted by o2 thereby having type ρ2 �h1

can be viewed under the new guard ρ3 � h1. Second,
there is no reason that o2 cannot adopt further objects
after having been itself adopted by o3. Given a refer-
ence to o2 with guarded type ρ3 � h2, it can adopt any
object tr(ρ4) with underlying type h4 which can then
be viewed under type ρ3 � h4.

7. VALIDATION
We have incorporated the ideas of adoption and focus
into the Vault programming language [3]. We briefly
describe how Vault makes these features available more
conveniently than this paper’s “mini” language and show
a “real world” example.

7.1 Implementation in Vault
We implemented adoption and focus in the Vault pro-

gramming language, including the extensions of multi-
guards, abstract guards, tracked functions, autofocus,
and self-adoption. In Vault’s surface syntax, the tracked
type tr(ρ) is written tracked($R), and the guarded
type ρ1 ∧ . . . ∧ ρn � τ is written {$R1,...,$Rn}:t or as
$G:t for an abstract guard. For protocol checking, a
programmer may attach a state token to a key, for exam-
ple $FILE@open. Our function syntax combines the pre-
and postconditions into a change specification, which
states the difference between the before and after capa-
bilities. The constituents of a change specification are
the following:

Syntax Precondition Postcondition
new $K@s C C⊗{$K@s} (fresh $K)
+$K@s C C⊗{$K@s}
-$K@s C⊗{$K@s} C
$K@s C⊗{$K@s} C⊗{$K@s}
$K@s1->s2 C⊗{$K@s1} C⊗{$K@s2}
The @s suffix may be omitted for those protocols that
track object lifetime but not state. The change specifi-
cation is both more terse than separate pre- and post-
conditions and also hides the universally quantified con-
text capability C.
Besides self-adoption, Vault provides general adop-

tion in the three forms described in Section 4.3. Re-
gion allocation is provided through primitives in the
language, while the callback and linear list approaches
are provided through two library interfaces. These in-
terfaces have functions to create an adopter, to adopt
objects, and to delete the adopter and relinquish the
adoptees.

7.2 Example: Direct3D vertex buffers
Microsoft’s Direct3D graphics library provides an exam-
ple of a realistic interface protocol. The library supports
a “vertex buffer” abstraction for rendering images to a
screen. To render an image, the programmer must cre-
ate a buffer, clear it, draw primitives to it, and then
present it. Further, calls to drawing primitives must be
directly enclosed by calls to the functions BeginScene
and EndScene. Figure 4 shows a Vault specification of
this protocol. The right side of the figure illustrates the
interface as a state machine.
To draw a single frame of an animation, a program

loops through the cycle in this protocol, taking the buffer
through the states raw, clear, rendering, ready, and
back to raw. Within this larger cycle, the program will
typically call DrawPrimitive many times to draw a com-
plex scene. (Indeed, the function DrawPrimitive here
is a surrogate for a collection of drawing functions.)
For Direct3D graphics programs, vertex buffers tend

to be the program’s central objects, referenced from
many data structures. The need to alias vertex buffers
and the cyclic nature of the protocol lend themselves
well to adoption and focus. A graphics program can
create vertex buffers and adopt them in the raw state.
The adopted vertex buffers can then be referenced from
many data structures and no static knowledge of their
aliasing relations is available.
When the program wants to render an animation frame,

21

interface VERTEX_BUFFER {

type buffer;

tracked($B) buffer CreateVertexBuffer () [new $B@raw];

void Clear (tracked($B) buffer) [$B@raw->clear];

void BeginScene (tracked($B) buffer) [$B@clear->rendering];

void DrawPrimitive ($B:buffer, ...) [$B@rendering];

void EndScene (tracked($B) buffer) [$B@rendering->ready];

void Present (tracked($B) buffer) [$B@ready->raw];

}

raw

ready

Present

clear

rendering

BeginScene

Clear

EndScene

DrawPrimitive

Figure 4: The interface to vertex buffer objects in the Direct3D library.

it focuses on a particular vertex buffer in order to call
the interface’s state-changing operations. By the end of
the focus, the buffer is back in the raw state, leaving any
alias of the buffer unaware of the intermediate states.
This example illustrates how adoption and focus al-

low an object to switch back and forth from supporting
aliasing to supporting protocol checking over the course
of its lifetime.

8. RELATED WORK
We briefly review the related work on reasoning about
state changes in programs with dynamically allocated
memory.

Region-based memory management. Tofte and Talpin
present an inference system for classifying all allocated
data of a program into regions and deducing a safe
lifetime for each region [16], which enables provably
memory-safe implementations of ML-like languages with-
out a garbage collector. Crary et al.’s Capability Cal-
culus extends this work by allowing explicit region al-
location and deletes, while making sure that all data
accesses to a region happen during its lifetime [2]. Sim-
ilarly, Niss and Henglein study an explicit region calcu-
lus, albeit for first order programs [5].
The commonality of these systems is that only re-

gions are treated linearly; all other objects are allocated
within regions and have types akin to guarded types.
Regions are not first-class values and cannot be stored
in data structures.

Linear type systems. Starting with Wadler [17], linear
types systems have been used in purely functional lan-
guages to enforce single threading on the state of the
world or to implement operations like array updating
without the cost of a full copy [12]. Linear type sys-
tems enable resource management at the granularity of
a single object. Every use of an object of linear type
consumes the object, leading to a programming style
where linear objects are threaded through the compu-
tation. Wadler’s let! construct, or its variations [9],
can be used to give a temporary nonlinear type to a
object of linear type. Walker and Watkins [19] study
a type system with three kinds of objects: linear, ref-
erence counted, and region allocated. The kind of an
object is fixed at allocation without a means to change

kind. They provide let! only for regions.

Alias type systems. Originally developed to track incre-
mental initialization in TAL, alias types provide compile
time names for unshared objects [13]. Walker extends
this approach with existentially bound capabilities to
support recursive data structures [18], bringing back the
full expressibility of linear types and its fine grained re-
source management. The advantage of alias types over
linear types is that uses are not destructive and local
aliasing can be handled. This leads to a more natural
imperative programming style, since the threading of
values in linear type systems is done at the type level.
Walker does not examine ways to switch between linear
and nonlinear views of objects.

Object-oriented analyses. The problem of representa-
tion exposure, namely uncontrolled sharing of the in-
ternals of an abstraction, is most problematic in ob-
ject oriented systems, where sharing and destructive
updates are common. A number of different approaches
to declaring and checking representation invariants have
been proposed, all with incomparable expressivity and
enforceability. For example, the pivots used in ESC
correspond to a linear component of a possibly shared
container, but the formalism developed by Leino et al.,
does not allow pivots to be reused [8]. Roles [7] enable
the description of precise heap structures, since they al-
low more than a single reference to tracked objects, as
long as all references are known. However, if an ob-
ject’s role is the equivalent of a guarded type, i.e., with
an unknown number of references, the object’s role is
frozen (no more type changes), and it can only be freed
by a garbage collector. The alias burying system pre-
sented by Boyland also allows unique pointers in shared
data structures, but access control is exercised through
read effects, rather than the possible aliasing we express
via guards [1]. Furthermore, the alias burying approach
does not provide lifetime control.

Heap logic. The Logic of Bunched Implications (BI) [6]
is a formalism that allows one to reason about heap
allocated structures and their sharing properties. At
its core, BI uses spatial conjunction to reason about
disjoint parts of the heap. We are not aware of any
automatic reasoning systems based on BI.
Shape analysis based on 3-valued logic (TVLA) [11] is

22

another formalims for reasoning about heap structures.
TVLA is promising in that there exists an effective algo-
rithm for inferring rather precise heap properties, albeit
with high worst case complextiy.

9. FUTURE WORK
The current paper does not address the problem of shar-
ing objects between multiple threads. Whereas exclu-
sive object access is easily modeled with keys, actually
sharing data between threads is not. Adoption does not
provide a solution here, since the adopter’s key would
still be available only to one thread at a time. We are
investigating mechanisms for sharing keys. In shared
key scenarios, the focus operation on shared keys would
have to become an explicit locking operation.

10. CONCLUSION
Enforcing interface protocols, data structure invariants,
and proper memory management at compile time greatly
improves the quality of imperative resource-handling
software. Our work aims to develop techniques and lan-
guage features to make such static enforcement practi-
cal and mainstream. This paper provides a large step in
that direction by enabling property checking and data
structure invariants for a much larger class of program-
ming idioms. Still, there are data structure scenarios
that our type system cannot handle. For instance, once
an object is adopted, it cannot be recovered indepen-
dently of all other adoptees of the same adopter. Fur-
thermore, the present techniques do not address issues
related to concurrency.

REFERENCES

[1] J. Boyland. Alias burying: Unique variables
without destructive reads. Software—Practice and
Experience, 31(6):533–553, May 2001.

[2] K. Crary, D. Walker, and G. Morrisett. Typed
memory management in a calculus of capabilities.
In POPL’99 [10].

[3] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Proceedings of
the 2001 ACM SIGPLAN Conference on
Programming Language Design and
Implementation, June 2001.

[4] D. Gay and A. Aiken. Memory management with
explicit regions. In Proceedings of the 1998 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, number 33:5 in
SIGPLAN notices, pages 313–323, June 1998.

[5] F. Henglein, H. Makholm, and H. Niss. A direct
approach to control-flow sensitive region-based
memory management. In ACM Conference on
Principles and Practice of Declarative
Programming, Sept. 2001.

[6] S. S. Ishtiaq and P. W. O’Hearn. BI as an
assertion language for mutable data structures. In
Conference Record of the 28th Annual ACM
Symposium on Principles of Programming
Languages, pages 14–26. ACM Press, Jan. 2001.

[7] V. Kuncak, P. Lam, and M. C. Rinard. Role
analysis. In Conference Record of the 29th Annual
ACM Symposium on Principles of Programming
Languages, Jan. 2002.

[8] K. R. M. Leino and G. Nelson. Data abstraction
and information hiding. Technical Report 160,
Compaq SRC, nov 2000.

[9] M. Odersky. Observers for linear types. In
B. Krieg-Brückner, editor, ESOP ’92: 4th
European Symposium on Programming, Rennes,
France, Proceedings, pages 390–407, New York,
1992. Springer-Verlag.

[10] Conference Record of the 26th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM Press, Jan. 1999.

[11] M. Sagiv, T. Reps, and R. Wilhelm. Parametric
shape analysis via 3-valued logic. In POPL’99
[10], pages 105–118.

[12] S. Smetsers, E. Barendsen, M. v. Eekelen, and
R. Plasmeijer. Guaranteeing safe destructive
updates through a type system with uniqueness
information for graphs. Lecture Notes in
Computer Science, 776:358–379, 1994.

[13] F. Smith, D. Walker, and J. G. Morrisett. Alias
types. In European Symposium on Programming,
pages 366–381, 2000.

[14] R. E. Strom and S. Yemini. Typestate: A
programming language concept for enhancing
software reliability. tose, SE-12(1):157–171, Jan.
1986.

[15] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg,
T. H. Olesen, P. Sestoft, and P. Bertelsen.
Programming with regions in the ml kit (for
version 3). Technical Report 98/25, Department
of Computer Science, University of Copenhagen,
1998.

[16] M. Tofte and J.-P. Talpin. Implementation of the
typed call-by-value λ-calculus using a stack of
regions. In Conference Record of the 21st Annual
ACM SSymposium on Principles of Programming
Languages, pages 188–201, Jan. 1994.

[17] P. Wadler. Linear types can change the world! In
M. Broy and C. Jones, editors, Programming
Concepts and Methods. Apr. 1990. IFIP TC 2
Working Conference.

[18] D. Walker and G. Morrisett. Alias types for
recursive data structures. In Proceedings of the 4th
Workshop on Types in Compilation, Sept. 2000.

[19] D. Walker and K. Watkins. On linear types and
regions. In Proceedings of the International
Conference on Functional Programming (ICFP
’01), Sept. 2001.

APPENDIX

23

∆;Γ;C � e : τ ;C

Γ(x) = τ

∆;Γ;C � x : τ ;C
[var]

∆; Γ;C � i : int;C
[int]

∆; Γ;C � e : tr(ρ); {ρ �→ h}⊗C2

h = 〈σ1..σi−1, τi, σi+1..σn〉
∆;Γ;C � e.i : τi; {ρ �→ h}⊗C2

[t-index]

∆; Γ;C � e : G � h;C2

∆ � C2 ≤ G
h = 〈σ1..σi−1, τi, σi+1..σn〉
∆;Γ;C � e.i : τi;C2

[g-index]

∆; Γ;C � e1 : tr(ρ);C1

∆;Γ;C1 � e2 : τ ; {ρ �→ h}⊗C2

h = 〈σ1..σi−1, τi, σi+1..σn〉
h′ = 〈σ1..σi−1, τ, σi+1..σn〉

∆;Γ;C � e1.i := e2 : τ ; {ρ �→ h′}⊗C2
[t-update]

∆; Γ;C � e1 : G � h;C1

h = 〈σ1..σi−1, τi, σi+1..σn〉
∆;Γ;C1 � e2 : τi;C2

∆ � C2 ≤ G

∆;Γ;C � e1.i := e2 : τi;C2
[g-update]

τf = ∀[∆1](Cb, σ1)→ (Ca, σ2)
Cb;σ1 � C1; τ1

∆,∆1; Γ[f : τf][x : τ1];C1 � e : τ2;C2

C2; τ2 � Ca; σ2

∆; Γ;C � fun f [∆1](x : σ1) : σ2

pre Cb post Ca {e} : τf ;C

[fun]

∆; Γ;C � e1 : ∀[].(Cb, σ1)→ (Ca, σ2);C1

∆;Γ;C1 � e2 : τ2;C2

C2; τ2 � Cb;σ1

Ca;σ2 � C3; τ3

∆;Γ;C � e1(e2) : τ3;C3
[app]

∆; Γ;C � e : ∀[ρ′,∆′].τf ;C1

∆;Γ;C � e[ρ] : ∀[∆′].(τf [ρ/ρ′]);C1
[key]

∆; Γ;C � e : ∀[γ,∆′].τf ;C1

∆;Γ;C � e[G] : ∀[∆′].(τf [G/γ]);C1
[guard]

∆; Γ;C � e : ∀[ε ≤ G,∆′].τf ;C1

∆ � C0 ≤ G

∆; Γ;C � e[C0] : ∀[∆′].(τf [C0/ε]);C1
[cap]

∆; Γ;C � e1 : τ1;C1

∆;Γ[x : τ1];C1 � e2 : τ2;C2

∆;Γ;C � letx = e1 in e2 : τ2;C2
[let]

h = 〈int..int
| {z }

n

〉 ρ fresh

∆; Γ;C � new〈n〉 : int; {ρ �→ h}⊗C
[new]

∆; Γ;C � e : tr(ρ); {ρ �→ h}⊗C1

∆;Γ;C � free e : int;C1
[free]

∆; Γ;C � e1 : tr(ρ1);C1

∆;Γ;C1 � e2 : tr(ρ2); {ρ1 �→ h}⊗C2

∆ � C2 ≤ {ρ2}
∆;Γ;C � adopt e1:h by e2 : ρ2 � h;C2

[adopt]

∆; Γ;C � e1 : G � h;C1⊗C2

∆ � C1 ≤ G
ρ fresh
∆; Γ[x : tr(ρ)];C2⊗{ρ �→ h} � e2 : τ2;C3⊗{ρ �→ h}
∆;Γ;C � letx = focus e1 in e2 : τ2;C1⊗C3

[focus]

∆; Γ;C � e : τ ;C1

C1 � C2

∆;Γ;C � e : τ ;C2
[cap-transform]

C � C C1 � C2

{ρ �→ h}⊗C1 � {ρ �→ h}⊗C2

C1;σi � C2;σ
′
i

{ρ �→ 〈σ1..σn〉}⊗C1 � {ρ �→ 〈σ1..σ′
i..σn〉}⊗C2

C;σ � C;σ

C; σ � C;σ

C1; ∃[ρ|{ρ �→ h}]. tr(ρ) � C1⊗{ρ �→ h}; tr(ρ) [unpack]

C1⊗{ρ �→ h}; tr(ρ) � C1;∃[ρ|{ρ �→ h}]. tr(ρ) [pack]

∆ � C ≤ G

∆ � C ≤ ·

∆ � C ≤ G1

∆ � C ≤ G2

∆ � C ≤ G1 ∧ G2

∆ � C1 ≤ G

∆ � C1⊗C2 ≤ G

∆ � C2 ≤ G

∆ � C1⊗C2 ≤ G

∆ � {ρ �→ h} ≤ {ρ} ∆, ε ≤ G1 ∧ G2 � ε ≤ G1

24

